Skip to main content
. 2022 Mar 10;111(3):403–417. doi: 10.1007/s10470-022-02014-1

Table 3.

Results were obtained from different algorithms

Training method MLP training algorithms Benchmark dataset Experimental dataset
MSE(AVE±STD) P-value Classification rate % MSE(AVE ± STD) P-value Classification rate %
ChOA 0.1381 ± 0.1483 1.351 65.6015 0.1388 ± 0.1563 2.009 35.8461
Metahsoristic FChOA 0.1016 ± 0.1121 0.038 89.3480 0.1006 ± 0.1222 0.019 89.1355
CVOA 0.1277 ± 0.1371 0.184 81.9422 0.1254 ± 0.1451 0.106 79.0043
BWO 0.1421 ± 0.1509 2.169 58.0248 0.1254 ± 0.1451 2.894 58.8453
HHO 0.1109 ± 0.1295 0.086 76.1208 0.1192 ± 0.1386 0.057 74.0199
KF 0.1611 ± 0.1662 2.871 18.01533 0.1530 ± 0.17244 3.322 57.9411
Traditional GD 0.5944 ± 0.6231 6.7892 13.4590 0.69908 ± 0.2576 6.908 11.9184