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Abstract: Aims: Children with HIV exhibit chronic inflammation and immune dysfunction despite
antiretroviral therapy (ART). Strategies targeting persistent inflammation are needed to improve
health in people living with HIV. The gut microbiota likely interacts with the immune system, but
the clinical implications of modulating the dysbiosis by nutritional supplementation are unclear.
Methods: Pilot, double-blind, randomized placebo-controlled trial in which 24 HIV-infected on
ART were randomized to supplementation with a daily mixture of symbiotics, omega-3/6 fatty
acids and amino acids, or placebo four weeks, in combination with ART. We analyzed inflammatory
markers and T-cell activation changes and their correlations with shifts in fecal microbiota. Results:
Twenty-four HIV-infected children were recruited and randomized to receive a symbiotic nutritional
supplement or placebo. Mean age was 12 ± 3.9 years, 62.5% were female. All were on ART and had
HIV RNA < 50/mL. We did not detect changes in inflammatory (IL-6, IL-7, IP-10), microbial translo-
cation (sCD14), mucosal integrity markers (IFABP, zonulin) or the kynurenine to tryptophan ratio, or
changes in markers of the adaptive immune response in relation to the intervention. However, we
found correlations between several key bacteria and the assessed inflammatory and immunological
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parameters, supporting a role of the microbiota in immune modulation in children with HIV. Conclu-
sions: In this exploratory study, a four-week nutritional supplementation had no significant effects
in terms of decreasing inflammation, microbial translocation, or T-cell activation in HIV-infected
children. However, the correlations found support the interaction between gut microbiota and the
immune system.

Keywords: HIV; inflammation; immunoactivation; microbiota; children

1. Introduction

It is well known that HIV-infected children present persistent immune dysfunction
despite early antiretroviral treatment (ART) [1–4]. Among adult populations, recent studies
have pointed out the potential influence of the microbiome [5–8]. Different interventions
aimed at mitigating the complex HIV-related gut-associated lymphoid tissue defects have
been attempted to reduce the long-term consequences of chronic inflammation, mostly
among adults [9,10]. Still, the effects of long-term immune abnormalities in the context of
vertical infection are barely understood [1,4].

During acute HIV infection, massive depletion of lymphocyte populations occurs in
the gut, only partially restored by ART [5,8,11,12]. In the last years, several studies have
underlined the potential role of not only subsequent microbial translocation but also gut
microbiota-immune system interactions in the persistent immune dysfunction associated
with chronic HIV infection [5,11]. Although there is some controversy regarding the pattern
of dysbiosis among people living with HIV, most studies addressing gut microbiota in this
population describe significant changes in comparison to uninfected controls [8,9,13,14],
some of them potentially promoting inflammatory pathways [6,7,11]. While first studies
describing gut microbiota composition pointed towards an altered ecosystem also among
children, whose microbiome settles already in the presence of an altered immune system,
results are controversial in terms of the extent of gut dysbiosis [15,16]. The persistence of
thymic function in children may hypothetically play a role for gut-associated-lymphoid
tissue (GALT) immune reconstitution despite HIV infection [17], leading to differences
in terms of dysbiosis when compared to the infection acquired later in life. Furthermore,
childhood is known to be key in terms of acquisition of the human microbiome, which
seems to establish over the first years of life [18]. Not surprisingly, recent evidence has
raised the question of whether childhood might be the optimal window for intervention
targeting microbial communities, potentially impacting the bacteria-immune system in-
terplay, influencing different metabolic and inflammatory conditions. Nevertheless, few
attempts targeting the microbiome have included children [19], and none to our knowledge
has included symbiotics.

Strategies aimed at reducing chronic inflammation are also needed for children living
with HIV. On the basis that the gut microbiota-immune system interactions likely influence
immune dysfunction during HIV infection, we aimed to assess the potential impact on
chronic inflammation, microbial translocation, and immunoactivation of a nutritional
supplementation aimed at modulating the dysbiosis of perinatally HIV-infected children.

2. Methods
2.1. Study Design, Participants, Setting and Eligibility

We conducted a pilot, double-blind, randomized, placebo-controlled study. Perinatally
HIV-infected children and adolescents aged 6 to 18 years, on stable ART and virologically
suppressed for at least 6 months, with CD4+ T-cell counts ≥350 cells/µL, were enrolled.
Patients were under follow-up at the Outpatient clinics of four Hospitals in Madrid, Spain
(Hospital La Paz, Hospital Clínico San Carlos, Hospital Gregorio Marañón y Hospital de
Getafe), between October 2013 and November 2014. Exclusion criteria included: use of
systemic antibiotics during the previous three months; concomitant medications; and any
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acute or chronic condition other than chronic HIV infection. Patients co-infected with
hepatitis B or C viruses were excluded. At inclusion, cases were randomized to receive
either a nutritional supplement designed ad hoc (PMT25341) or the placebo, daily for four
weeks. Peripheral blood samples and fecal samples were collected at baseline and after the
four weeks intervention (±7 days).

The study protocol was approved by the Independent Ethics Committees at all partici-
pating institutions (approval number 173/13) and all parents/tutors and participants above
12 years of age provided written informed consent/assent. The protocol was conformed to
the principles of the Declaration of Helsinki and the Good Clinical Practice Guidelines.

2.2. Nutritional Intervention

A specifically designed powder formulation (PMT25341) [20] containing Saccharomyces
boulardi, fructooligosaccharides, galactooligosaccharides, eicosapentaenoic acid, docosa-
hexaenoic acid, linoleic acid, glutamine, arginine, AM3, and vitamin D was administered
(20 g per day). The placebo was skimmed milk powder. Both products were manufactured
by Nutricion Médica, S.L. and distributed to the centers in indistinguishable individual
packages that were delivered to the patients to be administered daily mixed with food or
beverages for 4 weeks. The study participants were randomized by a computer-generated
randomized number system in blocks. All participating clinicians and researchers, as well
as the children and their families, were blind to the assigned patient group.

2.3. Laboratory Assessments

Fasting blood samples were drawn for real-time plasma HIV-1 viral load measure-
ments and immunological studies. HIV viral load (VL) was quantified using the Cobas
TaqMan HIV-1 assay (Roche Diagnostics Systems, Inc., Branchburg, NJ, USA) with a de-
tection limit of 50 copies/mm3. Immunophenotyping was performed from fresh samples:
CD4, CD8 T-cell counts, and T-cell subpopulations were measured with standard flow cyto-
metric methods. T regulatory cells were characterized by the expression of CD25+CD127−.
T-cell activation was characterized by HLA-DR+ and CD38+ expression, senescence by
CD28−CD57+ expression, and exhaustion by PD-1. Stained cells were run on a Gallios flow
cytometer (Beckman Coulter, Inc., Münster, Germany), and Kaluza software was used for
data analysis (Beckman Coulter, Inc., Münster, Germany). A sample of every participant
was sent to the Pediatric H.I.V. BioBank-HGUGM, and plasma was stored at −80◦ using
standard procedures for the determination of inflammatory markers.

IL-6 and IP-10 were determined using multiplex immunoassays by Invitrogen™ Pro-
cartaPlex™ (ThermoFisher, Waltham, MA, USA) based on the principles of a sandwich
ELISA with the use of Luminex® xMAP®. Additional ELISAs were performed for IL-7
(R&D IL-7 Quantikine HS ELISA Kit, R&D Systems, Minneapolis, MN, USA); intestinal
fatty acid binding protein (IFABP), as a tissue-specific injury marker (R&D IFABP ELISA Kit,
R&D Systems, Minneapolis, MN, USA), and soluble CD14 (sCD14) (R&D sCD14 Quantikine
ELISA Kit DC140, R.D.D.) as a marker of monocyte activation/microbial translocation.
Zonuline (Abyntek Biopharma S.L. ELISA Kit, Derio, Vizcaya, Spain) was measured as a
marker of mucosal barrier integrity.

The plasma kynurenine to tryptophan ratio (KT ratio) was determined by mass spec-
trometry, as a measure of the activity of the indoleamine 2,3-dioxygenase (IDO) enzyme.
Each analysis was achieved using a liquid chromatography system consisting of a degasser,
binary pump, and autosampler (1290 Infinity, Agilent Technologies, Santa Clara, CA, USA)
coupled to a triple quadrupole mass spectrometer (6460, AgilentTechnologies).

2.4. Gut Microbiota Analysis

Fecal samples were collected in sterile tubes with RNAlater (Life Technologies, Austin,
TX, USA) and frozen at −80 ◦C. Total DNA was extracted from bacterial pellet as previously
described [20]. For each sample, the V3-V4 region of the 16S rRNA gene were amplified
from total DNA, and amplicon libraries were constructed following Illumina instructions.
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The alpha diversity was determined at the Operational Taxonomic Units (OTUs) using
vegan library in R package. To analyse beta diversity, we applied Principal Coordinates
analysis (PCoA) based on weighted and unweighted UniFrac distances in R package.

2.5. Statistical Analysis

Between-group comparisons of continuous variables were analyzed using the Mann-
Whitney U test, and to evaluate differences in numerical outcomes between time-points
we used the Wilcoxon signed-rank matched-pairs test. A cross-sectional analysis was
performed to address baseline correlations between microbial composition/diversity and
immunological/inflammatory variables. The Spearman correlation was used to assess
correlations between biomarkers. Fold changes between baseline and week four measure-
ments were calculated to analyze correlations between inflammatory and T-cell biomarkers
and microbiome-associated biomarkers. Due to the reduced sample size, the exploratory
design and to improve interpretability [21], we decided to select a few biomarkers from
the microbiota dataset without adjusting for multiple comparisons rather than computing
the correlations for the whole microbiota dataset. Statistical analysis was performed using
Stata v17.0 (StataCorpL.P.P, College Station, TX, USA) and R package for the correlation
analyses (library corrplot). Prism v.7.0, GraphPad, Inc., La Jolla, CA, USA), was used to
create figures.

3. Results
3.1. Characteristics of the Study Population

Twenty-four vertically HIV-infected children and adolescents were recruited and ran-
domized. The median age was 12 ± 3.9 years, 62.5% were female. All were on ART and
virologically suppressed. Two patients, one in the intervention and one in the placebo arm
did not complete the follow-up and were withdrawn from the study. Despite random-
ization, there was a significant difference at baseline between CD4 counts, which were
higher in the intervention group at baseline. CD4 nadir was also significantly higher in
the intervention group, with a non-significant difference in the CD4/CD8 ratio. The main
characteristics of study participants are shown in Table 1.

Table 1. Main characteristics of the study participants at baseline according to the intervention group.

Placebo
N = 12

Nutritional Intervention
N = 12 p

Female (N,%) 7 (58.3) 8 (66.7) 1.000
Age (years), mean (SD) 13.8 (3.6) 10 (3.4) 0.064

Caucasian (N, %) 6 (50) 7 (58.3) 1.000
CD4 count (cells/mm3) 556 (453–754) 852 (617–1182) 0.0496

CD4/CD8 ratio 1.1 (0.56–1.67) 1.4 (1.09–1.94) 0.106
CD4 Nadir (cells/mm3) 333 (169–382) 519 (384–979) 0.006

PI based ART (N, %) 8 (66.7) 9 (75) 0.136
All values are expressed in median (IQR) except otherwise specified. ART: antiretroviral treatment. PI: protease
inhibitor.

3.2. Analysis of Inflammatory Biomarkers

At baseline, levels of inflammatory biomarkers were comparable between groups,
with the exception of I-FABP levels, which were higher in the intervention group. Figure 1
represents the levels of soluble biomarkers at baseline and after intervention in each group.
No within or between-group differences were appreciated in IL-6 or IL-7, both considered
important cytokines for inflammation and immunoregulation, over the study period. The
K/T ratio, a marker of indoleamine-2,3-dioxygenase-1 (IDO-1) induction involved in the
regulation of mucosal immunity [22] remained stable over time. The baseline difference in
IFABP between groups, a marker increasing after the loss of enterocyte barrier integrity
and a predictor of clinical progression in treated HIV [23], was not observed at the end
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of the study, but changes over time within the groups were non-significant. We neither
observed differences within nor between groups in sCD14.
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Figure 1. Inflammation, microbial translocation, and intestinal permeability markers. Determinations
of IL-6, IL-7, IP-10, K.T.T. ratio, sCD14, zonulin, and IFABP at baseline and week 4 in HIV-infected
children according to the intervention group (placebo vs. PMT25341). ** Statistical significance < 0.01.

3.3. Analysis of Immune Cell Phenotypes

As previously mentioned, CD4 T cell counts were significantly higher in the inter-
vention group at baseline. No significant differences were identified when comparing
changes over time according to the intervention group for CD4+, CD8+ T cell counts, or
the CD4/CD8 ratio (Figure 2), and the difference in CD4 counts between intervention
arms disappeared during the follow-up. We did not detect differences in the percentage
of CD4+ or CD8+ T cells expressing markers of activation (HLADR+ CD38+), senescence
(CD28-CD57+), and exhaustion (PD-1) (Figure 2), or in the naïve/memory subsets, with
similar findings for the frequency of B or NK cells (data not shown).

3.4. Links between Shifts in the Microbiota and Changes in Systemic Markers

We previously published the comparison of microbiota composition in children with
HIV vs. their uninfected peers, along with the effects of the nutritional intervention [20].
In summary, while we did not appreciate clear differences in alpha diversity at baseline
or after the intervention when comparing HIV-infected vs uninfected children, or before
and after nutritional supplementation. Differences in beta diversity at baseline between
HIV-infected and uninfected controls suggested an effect of HIV on overall microbiota
structure. The fact that the differences disappeared over the study period suggested mild
attenuation of the compositional changes in the microbiota associated with HIV infection,
yet differences were non-significant between intervention arms. Children with HIV showed
enrichment for Prevotella, and Akkermansia, and depletion of Faecalibacterium and Lachnospira,
among others.

We then asked whether longitudinal variations in the microbiota, regardless of the
effect of the nutritional intervention, could affect the immune parameters measured in
plasma and PBMC. Thus, we performed targeted correlation analyses with fold changes of
key microbiota markers of HIV (alpha diversity and 13 selected genus based on our previous
findings and the background literature) and the immunological parameters measured in
plasma and PBMCs. We found several significant associations between variations in
these parameters (Figure 3). Direct correlations included changes in alpha diversity and
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CD4/CD8 ratio (Figure 4); Faecalibacterium with IL-7, % naïve CD4+ and CD8+ T cells;
Lachnospira with CD4+ T cells and %memory CD8+ T cells (Figure 5). Inverse correlations
included alpha diversity with naïve CD4+ and CD8+ T cells (Figure 4); Coprobacillus with
IFABP; Lachnospira with IL-6; Eubacterium and Dorea with CD8+ T cell counts and %memory
T cells; and Ruminococcus with NK cells (Figure 5).
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Figure 2. Changes in immune cell phenotypes in blood according to the intervention group (placebo
vs. PMT25341). CD4, CD8, CD4/CD8 ratio, activation markers on CD4 and CD8 T cells, and exhaus-
tion in CD4 T cells, at baseline and week 4 in HIV-infected children according to the intervention
group (placebo vs. PMT25341).
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Figure 3. Heat map of targeted correlations between immunological parameters, and the microbiota
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parameters and the microbiota (alpha diversity). We considered the fold changes from baseline for
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4. Discussion

In this pilot, controlled trial evaluating a short nutritional intervention based on the
administration of a mixture containing prebiotics, probiotics, essential amino acids, and
oligonutrients in children with HIV, we did not detect effects on microbial translocation,
inflammation, and immunoactivation. However, our data support an implication of several
key bacteria in relevant immune parameters, supporting a role of the microbiota in immune
modulation in children living with HIV.

Several studies have evaluated dietary supplementation in adults living with HIV
with various nutritional products, such as prebiotics and probiotics, among others [24–26].
However, the two large, controlled trials assessing the effects of probiotics or symbiotics
on adults with HIV on ART failed to detect differences in any of the outcomes assessed,
including the microbiota composition [24,25]. To the best of our knowledge, repeated
fecal microbiota transplantation is the only intervention that so far demonstrated ability
to induce long-lasting changes on the gut microbiota in adults living with HIV [27]. The
lack of an effect on microbiota composition after prebiotic or probiotic supplementation
in larger and longer studies in HIV-infected adults, compared to evidence of an effect in a
smaller and shorter study in children, was encouraging for pediatric HIV research. This
finding was in line with the hypothesis that the microbiota is less resilient in children than
in adults, and a better scenario to assess strategies aiming to improve immune dysfunction
by shaping the microbiota [20].
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Most studies assessing dietary interventions in children with HIV have been designed
to assess the impact on malnourishment and diarrhea [28,29]. The information regarding
the effects of dietary interventions to target inflammation and persistent immune defects in
children with HIV is very scarce. In a controlled study in 21 children with HIV in Iran, a
6-day supplementation with Lactobacillus plantarum resulted in decreases of LPS level with
no changes on T cell counts, or fecal sIgA [30]. In a study in 60 children with HIV with and
without HIV, both naïve and on ART, supplementation with fermented milk for 8 weeks
resulted in changes in several T cell subsets, although in absence of a placebo group it is
unclear whether these findings might be attributable to the nutritional intervention [19].

While we failed to detect an effect of a nutritional intervention on the immune param-
eters, our study was useful to evaluate the associations between longitudinal variations of
key microbiota components and inflammatory and immunological parameters. To avoid
a large number of comparisons in an unpowered study, we selected bacteria that were
differentially abundant in our previous analysis in this cohort of children with HIV (de-
pleted: Faecalibacterium, Lachnospira, Coprococcus, Dorea, Lactococcus, Anaerostipes; enriched:
Coprobacillus) [20], along with other key relevant taxa (Akkermansia, Bacteroides, Bifidobac-
terium, Butyricicoccus, Eubacterium, Prevotella, Roseburia, and Ruminococcus highlighted as
relevant in people living with HIV [8,10,31–33]. The findings summarized in Figures 3–5
deserve further comment. First, increasing alpha diversity correlated with amelioration
of the CD4/CD8 ratio. This finding is novel, and because a lower CD4/CD8 ratio is pre-
dictive of higher risk of clinical progression in adults with HIV [34], and increased T cell
activation and senescence in children with HIV [4], this finding suggests that increasing
alpha diversity could be interpreted as a sign of microbiota restoration in children with
HIV, a question that is still debated in adults with HIV [32]. Second, Lachnospira increases
correlated with IL-6 decreases, a robust predictor of mortality in HIV-infected adults [35],
increases of CD4+ T cell counts, and a shift towards the memory compartment of CD8+
T cell maturational subsets. Interestingly, variations of Ruminococcus and Faecalibacterium
abundance, belonging to the Ruminococcaceae family, and Blautia, Dorea, Eubacterium, and
Lachnospira, belonging to the Lachnospiraceae family, were associated with changes in the
immunological parameters measured in plasma and PBMC. These families comprise the
major butyrate producers, which are thought to crucially influence human physiology [36].
Butyrate is considered a fundamental energy source of the colon epithelial cells since 70%
of their energy is obtained from the oxidation of this acid [37]. Butyrate is implicated in
maintaining gut homeostasis by promoting immunotolerance to commensal bacteria via
down-regulation of lipopolysaccharide-induced pro-inflammatory mediators [38]. Hence,
our data further support the butyrate synthesis pathway as a relevant mechanism mediat-
ing host-microbiota interactions in children with HIV. Last, decreases of Lactobacillus, which
was a genus significantly increased in these children with HIV compared to their uninfected
siblings [20], correlated with IFABP decreases, a biomarker of enterocyte integrity, which
has been shown to independently predict mortality in adults with HIV [23]. Whether
the nutritional intervention failed to improve these immunological predictors of disease
progression, these findings support a link between changes in the microbiota and predictors
of disease progression in children with HIV and encourage further research in this field.

The fact that, for safety reasons, a basal CD4 T cell count above 350 cell/mm was
required for inclusion, excluded immunological non-responders from participation, which
may be the population that hypothetically benefits most from an intervention addressing
immune dysfunction. In fact, CD4+ T cell counts were significantly increased at baseline
in the intervention group, and this could have limited the impact of the intervention. As
immune cell subsets typically evolve slowly under stable conditions, we interpret that
detecting changes at this level was difficult given the short course of the intervention,
coupled with the good immunological situation of the study participants.

The main strengths of our study include (i) the inclusion of a placebo arm that allowed
a better interpretation of the results, (ii) the selection of uninfected siblings as controls,
which diminished the potential confounding effect of genetic and lifestyle factors, (iii) the
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novelty and relevance for the field of immunonutrition of assessing interventions in child-
hood, in which microbial communities have not yet achieved a stable configuration [39],
(iv) the comprehensive assessment of multiple biomarkers of inflammation and adaptive
immunity. The main limitations are inherent to exploratory studies and include the small
sample size and the short duration of the intervention, which might have limited our ability
to detect effects.

In conclusion, in this pilot study exploring the effect of a short dietary intervention to
improve immune dysfunction among vertically HIV-infected children we did not detect
effects on markers of inflammation and the adaptive immune response. However, the
correlations found between several key bacteria and the assessed immune parameters
support a role of the microbiota in the regulation of chronic inflammation and immune
modulation in children with HIV. Strategies aimed at downregulating inflammation sec-
ondary to HIV infection are needed to improve the health of perinatally HIV-infected
children, with life-long exposure to the infection. Our findings could help in the design of
future studies evaluating approaches to target persistent immune defects via modulation
of the gut microbiota.
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