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Abstract: Wounds are a major health concern affecting the lives of millions of people. Some wounds
may pass a threshold diameter to become unrecoverable by themselves. These wounds become
chronic and may even lead to mortality. Recently, 3D printing technology, in association with bio-
compatible hydrogels, has emerged as a promising platform for developing smart wound dressings,
overcoming several challenges. 3D printed wound dressings can be loaded with a variety of items,
such as antibiotics, antibacterial nanoparticles, and other drugs that can accelerate wound healing
rate. 3D printing is computerized, allowing each level of the printed part to be fully controlled in situ
to produce the dressings desired. In this review, recent developments in hydrogel-based wound dress-
ings made using 3D printing are covered. The most common biosensors integrated with 3D printed
hydrogels for wound dressing applications are comprehensively discussed. Fundamental challenges
for 3D printing and future prospects are highlighted. Additionally, some related nanomaterial-based
hydrogels are recommended for future consideration.
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1. Introduction

It is well-known that the human skin can regenerate naturally to overcome bruises
and wounds. There are 20 million patients worldwide who suffer from chronic wounds,
costing healthcare systems about USD 20 billion [1,2]. Skin wounds present the highest
burden in the United States. In 2018, the estimated investment in treating acute and chronic
wounds, was in the range of USD 28.1–96.8 billion [3]. Wound management has been
shown to be a considerable burden in the United Kingdom too. Studies indicate that the
amount spent on wound treatments is approximately 4% of annual public expenditure [4].
High expenses for treating wounds are associated with diabetic foot ulcers and outpatient
wound care compared with inpatients [3]. The continued threat of diabetes and obesity
means that chronic wounds present substantial clinical, social, and economic challenges
worldwide [3]. Traditional skin wound dressings are often used as primary or secondary
dressings to shield a skin wound from contamination. Common types of traditional
wound dressings include bandages, body netting, cohesive wraps, composite dressings,
impregnated gauze, non-adherent dressings, leaves, cobwebs, and honey [5]. One of the
main drawbacks of traditional dressings is that they become attached to newly grown
granulations and cause pain when removed [6]. There are significant differences between
traditional and modern wound dressings. Modern wound dressings are multifunctional,
provide physical protection, maintain the moisture content of the wound microenvironment,
and accelerate the healing process by improving the wound healing rate. On the other side,
traditional dressings cover the wound and absorb exudates only [7,8]. The type of wound
dressing is selected based on the wound type, depth, body part location, and the extent
of the wound [9]. Heyer et al. reported a comparison between traditional/conventional
and advanced/modern wound dressings [10]. In a meta-analysis of 287 controlled and
uncontrolled trials, the mean odds ratio for chronic wound healing was found to be
1.52, favoring advanced over traditional wound treatments in 65 controlled trials [10].
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In experimental studies, an effective reduction in chronic infection was observed with
advanced/modern wound dressings.

The emergence of modern multifunctional wound dressings arose because of a great
medical need, as some wounds pass a threshold diameter such that they cannot recover by
themselves. Furthermore, in some patients, the wound becomes chronically impaired, and
can lead to mortality [11]. Currently, the best methods for wound treatment are referred
to as the ‘gold standard’. They include split and full-thickness skin grafts, skin flaps, skin
expansion techniques, and dermal substitutes (Figure 1) [12–14]. The primary challenges
associated with these techniques are the shortage of donor sites, and the hypertrophic
scars or keloids arising that can lead to dysfunction or psychosocial problems [15,16].
In addition to high costs, the availability of techniques worldwide is another issue that
requires attention. Therefore, there is a great need to devise new solutions to address
these challenges. As mentioned, when conventional wound dressings are placed on the
wound, they absorb the wound exudates and dry out, peeling off some tissues around
the wound site whenever they are taken-off, resulting in further infection. Other side
effects of traditional wound dressings include low oxygen permeability, non-biomimicry,
and difficulty in loading with adequate levels of drugs. Tissue regeneration engineering
has produced skin substitute techniques that offer promising alternatives to overcome
these limitations. The tissue engineering field has produced a heterogeneous range of
both temporary and permanent wound dressings [17]. However, skin biomimicry and
mechanical strength are still challenges.
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Figure 1. (a) Skin structure, (b) conventional wound dressing, (c) wound structure, (d) types of
wounds and curing system, (e) VAT polymerization 3D printing system, and the produced hydrogel
wound dressing.

Promising features of 3D printing technology, in association with biocompatible hydro-
gels, may overcome the identified challenges for wound dressing. 3D printing technology
allows for subtle micro-component design that can regulate the delivery of different bio-
logically functional agents. During printing procedures, the hydrogel can be loaded with
various items, such as antibacterial nanoparticles and other biological substances. The main
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advantages of usage 3D printing technique in manufacturing hydrogel wound patches are
high reliability and cost-effectiveness. Conventional manufacturing techniques, including
molding, casting, and forming and machining, are good for mass production, but they are
not suitable for complex and multi-material designs.

Several review articles have considered 3D printed hydrogels used either for bone
and tissue engineering or for medical applications in general. Relevant reviews from
2014 to date are summarized in this section. M.L. Pita-López et al. reported progress
in the fabrication of physically cross-linked chitosan hydrogels for applications in tissue
engineering [18]. The review highlighted the 3D printing techniques used for developing
the chitosan hydrogel. R. Rodríguez-Rodríguez et al. reviewed advances in fabrication
of composite hydrogels used for biomedical applications [19]. The applications included
wound caring, drug delivery, and tissue engineering; however, 3D printing methods were
not in the scope of the review. R. Pugliese et al. highlighted recent advances in the field
of 3D printing hydrogels and their biomedical applications, focusing on analyzing the
different hydrogels and bio-inks based on their printability properties, cost-effectiveness,
degradation rate, and biocompatibility [20]. J. Li et al. reported a review which focused on
hydrogel designs, and the development of hydrogel-bio-ink materials for 3D printing [21].
Stereolithography printing and inkjet printing techniques were covered. Several applica-
tions of 3D printed materials were highlighted, including regenerative medicine, tissue
engineering, drug screening, and wearable electronics. M. Rajabi et al. summarized recent
advances in chitosan-based hydrogels developed using 3D printing for biomedical applica-
tions [22]. The review provided an overview of the physical and chemical approaches used
for synthesizing chitosan-based hydrogels as a 3D printable ink. S. Bakhtiari et al. consid-
ered nanocomposite hydrogels fabricated using 3D printing, focusing on the properties of
the printed materials and their biomedical applications [23]. A. Zamboulis et al. reviewed
recent advances in 3D printing of polysaccharides, paying attention to applications in drug
delivery [24]. The review covered cellulose and cellulose derivatives, chitosan and sodium
alginate which were printed using fused deposition modeling and extrusion-based printing.
S. Agarwala et al. reviewed electrically conductive hydrogels, concentrating on composite
hydrogels and their synthesis routes [25]. The fabrication, design, and components of
conductive hydrogels were highlighted, and 3D printing, as an advanced approach for
designing, functioning, and printing conductive polymers, was discussed. The review
aim was to assist readers in selecting the most suitable methodology for designing desired
composite conductive hydrogels. S.S Athukorala et al. reviewed electrically conductive
hydrogels manufactured using 3D printing [26]. The review provided an overview of
state-of-the-art 3D printed conductive polymers, including polythiophene, polyaniline,
and polypyrrole. The review provided insights into the electric conductivity mechanisms
and the design considerations for tunable physiochemical properties. In addition, recent
advances in 3D printable bio-inks and their practical applications, were discussed. R.C.
Advincula et al. presented an overview of progress in the development of 3D printed hydro-
gels used for tissue engineering applications [27]. The scope of the review included natural,
synthetic, and nanocomposite polymers and their design considerations for 3D printing.
A.I. Pérez-Sanpablo et al. presented cutting edge developments in 3D printing technology
and their applications in healthcare [28]. Challenges related to 3D printing applications in
healthcare were addressed, as well as consideration of the advantages and disadvantages
of emerging 3D printing technology. M. Topuz et al. reported a review of the hydrogels
used in bioprinting, including both natural and synthetic hydrogels [29]. G.M. Paul re-
ported recent developments in the application of 3D printing in medicine [30]. The review
evaluated the limitations of the 3D printing in medical applications. F. Fayyazbakhsh et al.
provided an overview of 3D bioprinted substitutes [31]. The review addressed the use
of bioprinting compositions and three types of 3D printing mechanisms, i.e., inkjet, mi-
croextrusion, and laser-assisted bioprinters. R.S de Oliveira et al. presented advances
in 3D printing for developing pharmaceutical and biomedical products for drug deliv-
ery, skin applications, and plain dressings [32]. The study discussed composite, natural
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and synthetic hydrogels. W. Sun et al. reviewed 3D printing technology used for print-
ing hydrogel actuators [33]. The actuation mechanisms, including pneumatic, hydraulic,
ionic, dehydration-rehydration, and cell-power actuation, were addressed. Applications of
hydrogel actuators in micro-swimmers, wearable devices, and origami structures, were
discussed. N. Li et al. reviewed 3D printing technology used for printing biopolymers,
i.e., polysaccharides and proteins [34]. The most commonly used printing mechanisms,
including inkjet and extrusion-based printing, stereolithography, selective laser sintering,
and binder jetting, were discussed. Applications of printed polysaccharides and proteins in
food and biomedical fields were covered. N. Beheshtizadeh et al., reviewed 3D bioprinting
applications in human tissues, particularly for bone scaffolds based on hydroxyapatite
and biphasic calcium phosphate [35]. S. Derakhshanfar et al., described recent advances
in bio-inks and bioprinting methods [36]. The review concentrated on the diverse types
of crosslinking methods used in bio-inks, and the challenges related to 3D bioprinting for
applications in medical sciences. A. Bauermeister et al. summarized ongoing research
on 3D printing for applications in reconstructive surgery [37]. M. Askari et al. consid-
ered hydrogel–based bioprinted scaffolds, including skin, bone, cartilage, vascular, neural,
and muscular scaffolds [38]. The study focused on 3D bioprinting methods, including
multi-dispenser, coaxial, and hybrid bioprinting. G. Souvik et al. provided an overview
of the basic principles of 3D bioprinting and the diverse 3D printing mechanisms [39].
The basic components of bio-inks used in skin bioprinting were discussed. The study
analyzed the skin constructs developed by 3D bioprinting. S. Gupta et al. introduced
the conventional and 3D printing technologies used for manufacturing biomaterials for
biomedical applications [40]. Primary attention in the study was paid to FDM-based print-
ing techniques. P. He et al. summarized strategies for 3D bioprinting and recent advances
in the bioprinting of skin constructs [41]. The study highlighted the challenges of 3D
bioprinting for skin regeneration. H. Li et al. evaluated the significant potential of bio-inks
and 3D printing developed constructs [42]. Properties of bio-inks, including degradation
rate, and structural, biological, interfacial, and rheological features were summarized. In
addition, the most commonly used hydrogels for 3D bioprinting were addressed. X. Li et al.
reviewed advances in the development of biopolymer materials, including both natural and
synthetic biopolymers [43]. 3D printing technology, as an advanced production approach
for biopolymers, was briefly covered. M. Sahranavard et al. presented an overview of 3D
printing mechanisms used for developing chitosan scaffolds and their applications in the
biomedical field [44]. Recent progress in 3D printed chitosan matrices, and their production
limitations, were discussed. S. Malekmohammmadi et al. reviewed stimuli-responsive
hydrogels based on their external triggers, and their applications in biomedical fields [45].
3D printing techniques used for manufacturing hydrogels were briefly summarized. A.
Samandri et al. reported a systematic review of natural bio-inks developed by 3D print-
ing for skin regeneration and wound healing [46]. The authors found that collagen and
gelatin hydrogels were the most commonly used bio-inks for wound healing applications.
Recently, M. Nadhif et al. briefly reviewed 3D printed wound dressings. The study found
that alginate, among the hydrogels, was the most common hydrogel used for wound
dressings, and pneumatic FDM, among the 3D printing mechanisms, was the most popular
mechanism [47]. The authors stated that 3D-printed hydrogel wound dressings have never
been reviewed. This review focuses particularly on 3D printing of smart hydrogel wound
dressings which can perform multiple functions, such as delivering drugs and monitoring
wound site conditions, in addition to their primary functions. Unfortunately, these have
been rarely mentioned in previous literature, to the best of the authors’ knowledge. The
shortcomings of traditional wound dressings are summarized. In addition, the advantages
of modern hydrogel wound dressings are highlighted. Commercially available 3D printing
techniques used for developing hydrogel wound dressings are discussed in detail and the
challenges involved in manufacturing are considered. Recent advances in smart hydrogel
wound dressings are covered in detail. Additionally, hydrogel wound dressings which are
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integrated with sensors for monitoring wound site conditions are discussed. Furthermore,
the future potential of smart wound dressings developed using 3D printing is discussed.

2. Skin Structure

The skin defends against external, chemical, and biological factors [48]. In addition, it
prevents water loss from the body (dehydration) and maintains temperature regulation.
Healthy skin has a weakly acidic pH which assists in combating harmful microbes and
damaging free radicals that might increase the aging process. Several factors may alter
the skin’s pH level, such as skin exposure to environmental factors (e.g., air pollution
and humidity levels), some detergent antibacterial soaps and gels, sweat, and longtime
exposure to the sun. When the skin is subjected to an injury, the pH level changes to
alkaline due to release of exudate from the tissues. The human skin consists of three layers:
the epidermis, the dermis, and the hypodermis which are discussed in more detail in the
next section (Figure 1a).

2.1. Epidermis

The epidermis is the visible outer layer of the skin that provides protection for the
body. The skin has a barrier function, containing keratinocytes that form the epithelium,
including basal keratinocytes in the innermost layer, and keratinized tissue [49]. The basal
keratinocytes undergo regular proliferation to reconstruct the whole epidermis to ensure
the epidermis renews. There is a basement membrane underneath the epidermis which
separates the epidermis from the dermis.

2.2. Dermis

The dermis layer is located beneath the epidermis and has a thickness of 1–4 mm. Fi-
broblasts are the primary cells in the dermis providing the dermis with mechanical strength
and elasticity [49]. The dermis layer includes fibroblasts, neutrophils, mast cells, and dermal
dendritic cells. The dermis contains various structures, such as sweat glands, hair follicles,
sebaceous glands, and nerve endings [50]. In addition, it contains substantial networks,
such as nerve, blood, and lymphatic vessels [49]. The dermis is made of two layers: the
papillary and the reticular dermis [49]. The papillary dermis is the top layer and contains
the connective tissues and the blood vessels that deliver nutrients to the epidermis [48,49].
The reticular layer is located below the papillary dermis and consists of thick collagen and
elastic fibers which give the skin strength and elasticity [49].

2.3. Hypodermis

The hypodermis is the subcutaneous layer located below the dermis and consists
mainly of fat. The hypodermis prevents heat loss from the body by providing thermal
insulation between the skin and skeletal structures [50]. The thickness of the hypodermis
varies in different regions of the body and between different individuals. Initially, the
hypodermis was viewed as a tissue used for fat storage, but, later, it has been found that
it serves many important functions. These functions include hormone production, body
temperature regulation, and protection.

3. Skin Wounds

The Wound Healing Society divide chronic wounds into four categories: pressure
ulcers, diabetic ulcers, venous ulcers, and arterial insufficient ulcers. These categories
share common characteristics, such as persistent reactive oxygen species (ROS), senescent
fibroblasts, prolonged infection, and dysfunctional and insufficient stem cells [51].

3.1. Common Skin Wounds and Clinical Treatment

A skin wound refers to damage at the surface of the skin. The typical clinical medica-
tion is suturing (stitches) if there is an open split or gaping has occurred. Wound healing is
a complex and dynamic process which involves the repair of cellular structures and tissue
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layers. The healing rate and the process depend on whether the wound is acute or chronic.
Tables 1 and 2 summarizes the common wound types, their causes, clinical treatments, and
the characteristics of each treatment.

Table 1. Common types of wounds [52].

Types of Skin Wounds Caused by

Puncture Often caused by a sharp or pointed object. It pierces through the
skin and can also affect the soft tissue beneath.

Laceration The skin is cut open, torn, or torn off completely (avulsion).
Lacerations can vary in size, shape, depth, and the left flap of skin.

Pressure injury Lesions are caused by long periods of pressure over a bony part
of the body. The hip and heel are common sites for this wound.

Incision A surgical wound or intentional cut to the skin.

Abrasion
The skin is scraped or rubbed off. Minor abrasions affect only the
top layer of skin. Deep abrasions affect deeper layers of the skin

tissues and are more likely to leave a scar.

Thermal Caused by exposure to extreme hot or cold.

Chemical Caused by exposure to strong acids or bases, such as those found
in cleaning products, pool chemicals, or drain cleaners.

Table 2. Conventional clinical skin closure.

Types of Skin Closure Strips Characterized Ref.

Skin glue

Helps to hold the wound together and allows it to
heal. Most of the time, strips are used on the face,

arms, legs, and torso. However, the surface areas are
clean and dry.

[53]

Sutures

In deep wounds, stitches are applied under the skin
to enhance injury closure. The body can absorb these
stitches or a physician can remove the stitches from

the skin surface.

[54]

Skin grafts

Are used when the skin around the wound is too
damaged to heal together. This may happen with

pressure sores or after the skin is removed in surgery.
Skin grafts take healthy skin from another area of

the body. This healthy skin is then placed over
the wound.

[55]

3.2. Acute and Chronic Skin Wounds

Wounds can be caused by physical, chemical, and thermal damage. There are
two types of skin wounds based on their healing period and healing ability: acute and
chronic wounds.

3.2.1. Acute Wounds

Acute wounds may last for 8 to 12 weeks accompanied by a substantial exudate,
heavy infections, pain, and tissue necrosis [56–62]. Acute wounds are mainly caused by
mechanical injuries, such as frictional contact between the skin and hard surfaces, such as
knives, penetration of gunshots, and surgical incisions. They may happen due to chemical
and burn injuries, radiation, corrosive chemicals, electricity, and thermal injuries [62]. Acute
wounds are characterized by common bacteria, low inflammatory cytokines, and high
mitogenic activity [63].
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3.2.2. Chronic Wounds

Chronic wounds take more than 12 weeks to recover [64]. These wounds are mostly
caused by repeated insults to skin tissues or exposure to physiological conditions, such as
diabetes, impaired angiogenesis or innervation, or cellular migration [64]. Some related
factors are malignancies, infections, poor primary treatment, and other patient-related
factors [65]. Examples of the most common chronic wounds include, diabetic foot ulcers,
pressure ulcers, and venous leg ulcers [66]. Bacterial infections, impaired immune function,
and serious health conditions, increase the risk for developing chronic wounds. Addi-
tionally, diagnosis with diabetes or cancer may increase the risk for developing chronic
wounds. Wound dressings can accelerate the wound healing rate for both acute and chronic
wounds. In some instances, wound dressings may deliver and control release of drugs or
growth factors [67]. Chronic wounds are characterized by contamination with high levels
of bacteria, high inflammatory cytokines, and a degrading nonfunctional matrix [68]. The
methods used to identify the wound type are summarized in Table 3.

Table 3. Some methodologies for identifying a chronic or acute wound.

Gauge used Measurement Indication Ref.

iDr or mobile app. 3D imaging of the
wound (Figure 2a)

By applying the optical imaging principle and
surface feet per minutes (SFM), using a

smartphone video, iDr can accurately and
non-invasively reconstruct a 3D wound model
and measure the wound’s area and volume in

3D digital space. Using recorded history data on
volume and area, iDr can help clinicians analyze
wound healing effectiveness during treatment.

[69]

Matrix metalloproteinase
(MMP)

Collecting wound fluids (22 samples)
and chronic wounds (25 samples) of
various etiologies, including mixed
vessel disease ulcers, decubitus and

diabetic foot ulcers (Figure 2b).

Chronic wounds (median 22.8 µg MMP Eq/mL)
compared to acute wounds (median 0.76 µg

MMP Eq/mL) (p < 0.001).
[70]
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3.3. Skin Wound Healing Process

The short wound healing process follows specific biological steps. When the injury
begins to heal, the blood platelets are activated to form a blood clot and play a role in
leukocyte recruitment [58]. Then, neutrophils and macrophages remove dead or impaired
cells, external bacteria, and other debris located in the wound site. Next, fibroblasts
migrate, proliferate, and activate the angiogenesis process. After that, granulation tissue is
formed, extracellular matrix proteins are deposited to reconstitute the dermal tissue, and
the epidermis is regenerated [71]. Finally, the formed capillaries and fibroblasts are aborted.
The four phases occurring during the wound healing process are summarized in the next
sections (Figure 2c).

3.3.1. Hemostasis (Blood Clotting)

Hemostasis is a body response in which the platelets and the inflammatory cells
aggregate at the wound site. It is accompanied by the release of clotting factors [56,58].
A few minutes after injury, blood platelets stick together, adopt an amorphous shape,
and aggregate at the wound site (Figure 2c(i)). Platelets play a crucial role in leukocyte
recruitment, and in the initiation and progression of inflammation [71].

3.3.2. Inflammation

Inflammation occurs after or during the hemostasis stage, once the fiber clotting
system is formed. Blood monocytes and lymphocytes differentiate the tissue macrophages
at the wound site, releasing growth factors [72]. In this phase, immune cells, particularly
neutrophils and macrophages are released into the wound site (Figure 2c(ii)) [50]. The
inflammatory cells and platelets release different peptides and growth factors, which initiate
formation of fibroblasts in the wound site and activate angiogenesis [73].

3.3.3. Tissue Growth (Proliferation)

The tissue growth phase begins after 2 to 3 days of the injury and lasts until wound
closure. In this stage, fibroblasts differentiate into myofibroblasts that seal the injured area
by pulling the wound edges together [74]. During the releasing phase, the fibroblasts are
further stimulated to proliferate in the wound area. This phase reconstructs the dermal
tissue components by forming granulation tissue and deposition of extracellular matrix
proteins, mainly collagen [75]. Enhanced angiogenesis induces ingrowth of a new network
of blood vessels (Figure 2c(iii)). Epithelial cells migrate from the wound edges to cover the
defect, a process known as ‘epithelialization’. During the proliferative phase, the granulated
tissues are constructed from epithelial cells and fibroblasts, and the keratinocytes are altered
to extracellular matrix (ECM) [76].

3.3.4. Tissue Remodeling (Maturation)

In the maturation phase, excess collagen fibers are degraded in the dermis and wound
contraction begins to peak. The healed wound reaches 80% of the original ultimate mechan-
ical strength [77]. The human skin consists of fibroblasts, keratinocyte cells, and collagen
matrix that together form dermis and epidermis-like structures (Figure 2c(iv)). Previously,
to achieve compatibility, researchers produced embedded fibroblasts and keratinocytes into
the collagen matrix to form dermis and epidermis-like structures. For instance, researchers
reported introducing a composite made of embedded fibroblasts and keratinocytes into the
collagen matrix, using 3D printing. More details are given of the wound healing processes
in [77].
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4. Smart Hydrogel Wound Dressings

Hydrogels are three-dimensional crosslinked hydrophilic polymers which are water
insoluble. They imbibe and retain a large amount of water while maintaining their defined
structures [18]. Hydrogels contain at least 10% water of their total volume/weight [78].
Hydrogels are very flexible in a similar way to human tissues because of the considerable
water content. The hydrophilicity of a hydrogel network results from the hydrophilic func-
tional groups distributed in the structure, such as hydroxyl, carboxylic, amine, sulphonyl
hydroxide, and amide groups [78]. Hydrogels possess distinctive properties, including
tunable mechanical strength, sensitivity to external stimuli, and high oxygen and water
permeability [79].

Hydrogels can be classified into two categories: natural and synthetic hydrogels.
Natural hydrogels are suitable for biomedical applications as they are biocompatible,
biodegradable, and biologically recognizable moieties [80]. They involve collagen, fibrin,
hyaluronic acid, and derivatives of natural materials, such as chitosan, alginate, and skill
fibers [80]. They are physiological hydrogels as they mimic the extracellular matrix (ECM);
however, they may trigger immune/inflammatory responses if introduced to the human
body [81]. Natural hydrogels show a significant improvement in healing rate, rate of
granulation, and repair of impaired blood vessels [81]. However, the main drawbacks of
natural hydrogels are the challenges related to reproducibility of their final microstruc-
tures [82]. Examples of typical natural hydrogels incorporating chitosan or alginate are
chitosan/polyethylene glycol (PEG) hydrogels, chitosan/PEG/poly(vinyl pyrrolidone)
(PVP) coated cotton fibers, chitosan/poly(vinyl alcohol) (PVA) sponges and hydrogels,
chitosan/PVA/poly(ethylene oxide) (PEO) hydrogels, carboxymethyl chitosan/gelatin
hydrogels, and chitosan/lactic acid aerogels [83–89].

In contrast, synthetic hydrogels, such as poly(ethylene glycol) diacrylate, poly(acrylamide),
and polyvinyl alcohol, are more reproducible [86]. However, their final structures depend
on the polymerization conditions. So, rigorous control of the preparation protocols, in-
cluding temperature and environment control, are necessary [87]. Generally, synthetic
hydrogels offer more flexibility for tuning their chemical composition and mechanical prop-
erties. For example, modifying precursor concentration, molecular weight, and percentage
of the used crosslinker, may optimize mechanical properties and other favorable properties.
Synthetic hydrogels can also be selected or tuned to be hydrolysable or biodegradable over
variable periods. However, synthetic hydrogels do not have any inherent bioactivity.

Smart hydrogels can respond to various stimuli, such as temperature, pH, electric
and magnetic fields, light intensity, and biological molecules [88]. The stimuli generate
macroscopic responses in the material, such as swelling or collapse [89]. Smart hydrogels
comprise intelligent cross-linked networks that undergo chain reorganization from col-
lapsed to expanded. They also retain smart surfaces that transform their hydrophilicity as a
function of the stimulus-responsive interface. In some circumstances, linear and solubilized
smart macromolecules pass from monophasic to biphasic, giving rise to reversible sol-gel
hydrogels [90]. For example, temperature-sensitive hydrogels of low critical solution tem-
perature (LCST) or upper critical solution temperature (UCST) depend on temperature
for their transition behavior from monophasic to biphasic or vice versa [91]. pH-sensitive
hydrogels such as poly-acidic moieties (poly(acrylic acids), and poly(methacrylic) acids), or
polybasic moieties (poly(N-dimethylamino ethyl methacrylate), poly(N-diethylaminoethyl
methacrylate), and poly(ethyl pyrrolidine methacrylate)), protonate or deprotonate as a
response to the surrounding pH [92]. Photo-sensitive hydrogels experience a reversible
or irreversible transformation in conformation, polarity, amphiphilicity, charge, optical
chirality, and conjugation in response to a light stimulus [92]. Reversible chromophores or
molecular switches undergo a reversible isomerization upon light irradiation [93], while
irreversible chromophores are cleaved from the polymer chain upon light exposure.
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In addition to physical stimuli, biological materials which contain receptors for
biomolecules undergo modification in material properties when stimulated. An example of
these smart biological hydrogels are enzyme-responsive hydrogels that respond to selective
enzyme catalysis [93]. These materials represent a significant advancement in integrating
artificial materials with biological entities. Enzyme responsive hydrogels can also display
reversible and dynamic responses to a stimulus.

In 1970, the first moistened wound dressing was introduced, which overcame some
problems of traditional dressings [94]. Hydrogel-based wound dressings have unique
characteristics as they mimic the native skin microenvironment. Researchers found that
wounds covered with hydrogel bandages heal faster. Moreover, hydrogel bandages can
be applied to some body parts which traditional wound dressings cannot reach [94]. In-
troducing hydrogel bandages assists in keeping the wound moistened, enhances oxygen
permeability, and absorbs wound exudate, protecting the wound from external pathogens
and contaminations that occur during the wound healing process. In addition, hydrogel
dressings can be loaded with biomarker indicators which are sensitive to external stimuli
and function smartly [95,96]. Hydrogel wound dressings are hydrophilic porous structures
capable of absorbing large amounts of water as they contain hydrophilic groups, such as
-NH3, -COOH, -OH, -CONH2, -CONH, and -SO3H, that can form polar to polar adhesion
with water chains. In addition, they can deliver water to the wound site, with their moisture
content, non-adhesive nature, and malleability similar to that of living tissues [97]. In some
instances, a highly absorptive wound dressing is very desirable, such as in the case of ve-
nous leg ulcers which produce an extensive amount of exudate [98]. Furthermore, hydrogel
bandages modulate transmission of gases and ions to the wound site [97]. Hydrogel wound
dressings assist in stopping bleeding, relieve pain, and provide mechanical protection.
They absorb excess exudate, keep the wound moist, and dissolve necrotic tissue and fibrin.
Furthermore, they are easy to attach to healthy skin, and do not adhere to neoformative
granulation growing tissues, avoiding secondary injuries during dressing replacement [97].
They can also protect new growing tissues from damage during the taking-off and covering
of the wound. There is also a great need to be able to load active drugs and antibiotics into
wound dressings to assist in healing chronic or complex wounds. The specifications for an
ideal wound dressing include plentiful water vapor, oxygen permeability, biocompatibility,
nontoxicity, infection protection, and acceleration of the formation of granulation tissue
and epithelialization rate [99–102]. Hydrogel dressings can cool down the wound and
reduce pain, which makes them very beneficial for burns or painful wounds [103]. All
these properties of hydrogel dressings make them the best option for wound dressings.
However, available hydrogels may exhibit very low tensile stresses that are not compatible
with load-bearing applications.

Wound dressings can be made of natural and synthetic hydrogels (more information
can be found in the cited references [80–82]). Roel et al. reviewed the types of hydrogel
skin wound dressings and the materials they are produced from, including natural and
synthetic. Some examples are given in Table 4 [104].
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Table 4. Commercial production of hydrogel wound dressings.

Type of Hydrogel Cross Linker Characterization Properties Limitation Commercial Producing Companies Ref.

Alginate Natural ionic
cross linker

A polysaccharide supports
cell production of collagen I,
reducing the concentration

of proinflammatory
cytokines in chronic wounds.

Due to the hydrophilic
nature, it can absorb a high
amount of wound exudate.

Hemostatic effect -

Nu-Gel® (Systagenix), Tegagel®

(3M GmbH)),
Algosteril® (4M Medical GmbH),
Curasorb® Alginate (Medtronic),

Sorbsan® (B. Braun Melsungen AG))
Flexible® (Coloplast AG), Kendall™

Hydrocolloid Dressing (Medtronic)).

[102,105]

Chitosan Natural hydrogel Hemostatic, bacteriostatic,
fungistatic properties.

Accelerates healing
rate

Dependent on the
molecular weight of
the macromolecules

low elasticity leading
to difficulty in

producing fibrous
wound dressings.

KytoCel® (MasterCare Medical GmbH),
Chitoderm® plus (Trusetal Verb and

stoffwerk GmbH), a
chitosan-coated dressing.

[106–112]

Collagen protein Natural hydrogel

It is found in ECM, blood
vessels, bones and tendons

naturally. Collagens of
bovine, porcine and avian

derivation are common
medical products.

High liquid
absorbance capability
and good mechanical
strength. Enhanced

vascularization,
granulation tissue

formation and collagen
deposition via

fibroblasts, endothelial
cells and keratinocytes.

Rapid loss of stability
and shape due to

enzymatic degradation.
Pathogen

transmission risk.

CellerateRX®

(Wound Care Innovations LLC),
Regenecare®

Wound Gel (MPM Medical Inc.),
Wun’Dres® (Coloplast AG)),

Biobrane® (Smith & Nephew),
CollaSorb® (Paul Hartmann AG),

Fibracol® (Acelity))
Medifil® (Human Bio Science, Inc.),

Stimulen™
(Southwest Technologies, Inc.))

[113–120]

Collagen Synthetic

Well-defined chemical
structure and precise

modified desired material
properties.

Limited activity wound
healing process.

polyacrylamide/polysaccharide based
FlexiGel® (Smith & Nephew),

Poly(ethylene glycol) (PEG)/oakin
based Oakin® hydrogel wound

dressing (Amerigel),
Polyurethane (PU) based AquaClear®

dressing (Paul Hartmann AG).

[121]
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Effect of the Hydrogel Crosslinking Process on Mechanical Strength and Water Absorption

Hydrogel-based wound dressings generally contain 5 to 10% of crosslinking poly-
mers [88]. Crosslinking is the stabilization process in which a polymer makes multidi-
mensional extension chains. The crosslink is the bond that links one polymer to another.
Crosslinking can be measured by determining the swelling ratio or the water absorption
rate. The more crosslinked the hydrogel, the less swelling is attained, however, the higher
the strength. Increasing the crosslinking ratio potentially increases the strength; however,
if crosslinking is excessive or in a high ratio, the material becomes rigid or glassy. The
cross-linker can be a physical crosslinker formed by weak interactions that constitute a
bridge between the bonds of the polymers, or a chemical crosslinker, formed by covalent
bonds which are tough to degrade [117]. Crosslinking works by crossing the polymer chain
as some polymers may lose their ability to move as an individual chain. The different types
of crosslinking, illustrated with some examples, are summarized in Table 5.

Table 5. Types of crosslinking mechanism.

Type of Crosslinking Monomers Common Crosslinkers Ref.

Homopolymer (single
network)

Poly(2-hydroxyethyl methacrylate)
(Figure 3) Polyethylene glycol dimethacrylate [90,93]

Triethylene glycol dimethacrylate
(TEGDMA)

Co-polymer (double or more)

Polyethylene glycol (PEG)/

methacrylic acid (MAA) (Figure 3) Tetra(ethylene glycol)
dimethacrylate [90,92,122]

Carboxymethyl acid cellulose (CMC)/
Poly(vinyl pyrrolid) (PVP)

Semi-interpenetrating
network (semi-IPN)

Acrylamide/acrylic acid copolymer/
Linear cationic polyallylammonium

chloride
N,N’-methylene bisacrylamide [93]

Interpenetrating network
(IPN)

Poly(N-isopropyl acrylamide)/
Chitosan N,N’-methylene bisacrylamide [123]

Most of the hydrogels mentioned in Table 5 are involved in drug delivery and tissue
regeneration applications. Among the different crosslinking types, the semi-IPN type
effectively responds to pH or temperature due to their restricting interpenetrating elastic
network [92]. In addition, they possess characteristics such as modified pore size and slow
drug release. Double network (DN) hydrogels have a lower water absorption rate, and
higher mechanical strength and toughness. The first network, the minor component, com-
prises abundantly cross-linked polyelectrolytes (rigid skeleton) and the second network, the
primary component, comprises poorly cross-linked neutral polymers (ductile substance).
Haque et al. found that the specific combinations of two networks with contrasting struc-
tures were the main reason for the high mechanical performance of biomaterials [124]. The
first network is sacrificial bonds that effectively dissipate the stress and the second ductile
polymer chain can extend extensively to sustain large deformation [124]. The primary and
secondary networks in the double network are responsible for the mechanical stability. At
high strain, the primary network is irreversibly destroyed preventing the secondary chain
from failing. Characteristics of double network hydrogels are summarized in Table 6.
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Table 6. Double network characteristics.

Double Network (DN) Characteristics Ref.

t-DN

t-DN gels become more robust than the c-DN
gels when the second network is loosely

cross-linked. t-DN gels have a more simple
structure than c-DN gels.

[125]

c-DN Interconnection between the two networks
through covalent bonds [125]

5. Additive Manufacturing/3D Printing

3D printing technology has been popularized over recent years [126,127]. Each 3D
printing technique, i.e., fused deposition modeling (FDM), stereolithography (SLA), polyjet
process, selective laser sintering (SLS), 3D inkjet, and digital light processing (DLP), has
different characteristics (Figure 4). The characteristics involve repeatability, resolution, and
accuracy, printing time, and the ability to process different raw materials. Table 7 summa-
rizes the main characteristics for each 3D printing technique [128]. There is a compromise
among 3D printing techniques in terms of materials used, resolution, repeatability, accuracy,
and hence in their applications. Compared to conventional techniques, 3D printing requires
fewer steps and less manual labor to produce intricate prototypes [128]. Moreover, some
of the essential advantages of 3D printing include its simple fabrication process, quick
production, low waste generation, and risk mitigation [129]. The advent of 3D printing in



Polymers 2022, 14, 1012 14 of 36

wound dressings has shown promising outcomes through overcoming several challenges.
The promising features of 3D printing in wound dressing applications result from the capa-
bility of 3D printing to control and design sub-micro components of the printed bandages.
All 3D printing techniques have been shown to be helpful over a specific range; however,
inkjet printing and DLP were found to be capable of providing prototypes with the highest
repeatability [128]. The most commonly used 3D printing techniques for skin wound
dressings, are digital light processing (DLP) and stereolithography (STL) due to their ability
to process biocompatible polymer materials, such as hydrogels, that can mimic the ECM
of the skin structure. DLP and STL have additional advantages, such as high accuracy,
smooth surface finish, high resolution, and high repeatability (Table 7) [103]. However,
DLP and STL suffer from challenges, such as being unable to print large structures with
good mechanical properties, and boxy surface finishes [128].
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Table 7. Summary of common characteristics of 3D printing techniques.

3D Printing
Methods Principle Materials Accuracy (µm) Resolution (µm) Ref.

Digital light
processing (DLP)

Photo-curing by
a digital projector

Photopolymer
and

photo-resin
10–25

x: 25
y: 25
z: 20

[129–131]

3D Inkjet printing Extrusion of ink and
powder liquid binding

Photo-resin or
hydrogel 100

x: 10
y: 10
z: 50

[132,133]

Selective laser
sintering (SLS)

Laser-induced
sintering of

powder particles

Metallic powder,
polyamide, PVC 300

x: 50
y: 50
z: 200

[134]

Polyjet

Deposition of the
droplets of the

photo-curable liquid
material and cured

Polymer 10–20
x: 30
y: 30
z: 20

[135–137]
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Table 7. Cont.

3D Printing
Methods Principle Materials Accuracy (µm) Resolution (µm) Ref.

Stereolithography
(STL)

UV initiated
polymerization cross-

section by cross-section

Resin (acrylate or
epoxy-based with

proprietary
photoinitiator)

25–150
x: 10
y: 10
z: 15

[138–140]

Fused deposition
modeling (FDM)

Extrusion of constant
filament

ABS, PLA, wax
blend, nylon 350

x: 100
y: 100
z: 250

[141–146]

5.1. Recent Bio-Printing Technologies Outcomes and Limitations

Burn treatment, especially in the case of extensive burn injuries, involves surgical
excision of the injured skin and reconstruction of the burn injury with skin substitutes. To
accomplish the substitution of the skin, bioprinting methodology is applied. Skin bioprint-
ing is the most recent and advanced wound treatment in the clinical field. Bioprinting for
reconstructing burn injuries, involves layer-by-layer deposition of cells and scaffolding
materials over the injury area. Bioprinting is a reproducible fabrication technique that
enables accurate placement of cell types. Traditional dressings work to stop bleeding and
to seal the wound from external pathogens but bioprinting-based wound dressings aim
to achieve wound closure, and to improve scar quality and functional outcomes [147].
Bioprinted wound dressings are usually produced for small to moderate-sized burn scars
and consider Langer’s skin tension lines to achieve optimal esthetic outcomes [148]. The
bioprinting procedure for manufacturing a wound dressing is the same as for traditional
3D printing. The wound site is scanned by computed topography (CT) or magnetic res-
onance imaging (MRI) and the image is converted to a CAD model. This is followed by
selection of the appropriate biomaterial and cells. Finally, the 3D printed cells are applied
to the wound directly. In bioprinting, an adequate cell donor is needed. Inkjet bioprint-
ing, micro-extrusion bioprinting, and laser-assisted bioprinting are standard 3D printing
techniques for developing wound dressings [149]. The desired shape could be printed in
a liquid container- or a solid container-3D printer. Stabilizing the final shape using UV
light, and other chemical and physical processes are quite often needed after 3D printing.
A post-printing process, such as tissue maturation in a bioreactor, animal impanation, or
in vitro testing, is necessary.

There are some technical limitations with bioprinting at the pre-printing stage, dur-
ing bio-printing, and during maturation stages [148]. Some of the main challenges with
bioprinting are the need for multiple cells, the biomechanical properties for the clinical
translation, and the high printing resolution required to replicate inner microarchitec-
tures [150]. Optimizing printing parameters, such as the dispensing pressure, printing
time, nozzle diameter, extrusion speed, laser energy, substrate film thickness, viscosity,
droplet size, and cell differentiation, are other challenges. Building a functional vasculature
and producing a bio-ink which conform to the native skin of different cell types, requires
different nutritional and metabolic support. Additionally, there is a knowledge gap with
respect to post-printing of cellular dynamics, fusion, deformation, and the stiffness of
bio-printed parts [148].

Skin closure could also be performed using skin stretching devices which can cover the
excised burn wound with autologous skin harvested from an uninjured donor site. Despite
promising clinical results, there are still many challenges regarding skin substitutes. For
example, most skin substitutes consist of allogeneic skin which can be highly immunogenic
and contain cellular remnants that may cause body rejection for the skin substitute [151]. In
addition, methods to sterilize skin substitutes may be insufficient to eliminate transmission
of unknown or prion disease from animal material [152]. Furthermore, human-derived skin
is limited by its supply and the structure of human skin is more complex than biosynthetic
substitutes. Finally, although most skin substitutes perform relatively well in the clinic,
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these substitutes do not include hair follicles and pigments, which are critical for the skin
to function normally [149]. Grafting can be considered the gold-standard type treatment
for some cases; however, in some instances, patients may not have enough skin available
for grafting due to extensive burns. In addition, in some cases, immune system rejection or
virus transmission may occur [153].

5.2. D Printed Hydrogel Patches by DLP/SLA

Stereolithography (SLA) and digital light projector (DLP) printers are based on contain-
ers that hold photo-curable liquid resins, laser sources or UV-light to induce polymerization,
with dynamic systems allowing 3-dimensional movements (Figure 5). The fundamental
differences between SLA and DLP printers are that DLP printers use a UV-light from a
projector energy source, while SLA printers use a UV-laser beam source [154]. The DLP
cures the resin layer at one point in time, but the SLA uses a point-by-point curing tech-
nique. As a result, DLP printing saves time and cost compared to SLA printing [154]. Both
SLA and DLP have advantages in the wound dressing manufacturing field. 3D printed
wound dressings made by SLA/DLP techniques can be loaded with antibacterial nanopar-
ticles, antibiotics, and some other biological substances. Each level of the printing is fully
controlled in situ to produce the desired part. The DLP process prints successive layers
by lifting the platform equal to the thickness of the part. The main reason for curing a
whole layer at once is the dynamic mask that combines liquid crystal display (LCD), spatial
light modulator (SLM), digital micro-mirror device (DMD), etc. The dynamic mask carries
the design pattern in which the light passes and transmits the pattern to the receiving
substrate [155]. Though additive manufacturing has shown promising results in manufac-
turing the bandages and has reduced the difficulty of traditional wound dressings, some
issues still need to be resolved.
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In both SLA and DLP techniques, after completing the curing of the first layer, the
platform goes down, so that a new layer of the resin covers the previous layer. In DLP
printers, a digital micro-mirror device (DMD) includes an array of millions of independently
rotatable micro-mirrors that can generate an image of a cross-sectional layer on the resin
vat and all the targeted points are cured at once, which makes the DLP faster than the
SLA technique [126,156]. However, in the SLA, the laser spot provides a mini-feature size.
Objects printed via SLA have a better spatial resolution than DLP, mainly due to the SLA
laser’s small spot size. Further details on the difference between STL and DLP printers,
are discussed in [157]. 3D printers work by creating successive layers using a photo-
or thermal-polymerization process. As a result, proper adhesion is necessary between
the layers, and in some instances, this generates a problem if the printed part contain
voids or is overhung. The low quality of layer adhesion is the main reason behind the
poor mechanical properties of printed wound dressings. Additionally, light is attenuated
as it propagates to the resin, so the light intensity decreases with the resin volume and
insufficient polymerization may be induced [158]. In the DLP printing technique, the
resin monomer should be filled above 40% of the resin tray, and its volume requires to
be checked by a built-in sensor before the printing process is initiated. After printing,
the supporting material of the printed part should be appropriately removed without
destroying the surface features. Then, the samples need to be washed with isopropyl
alcohol (IPA) to remove leftover unreacted resins, followed by a UV bath to solidify the
part if needed. Alketbi et al. reported 3D printed polyethylene glycol diacrylate (PEGDA)
hydrogel that showed high elasticity and irreversible densification. Pore formation in the
hydrogel was highly dependent on the exposure time, light intensity, and the associated
degree of crosslinking [159]. Sherman et al. studied the effect of resin viscosity, orientation,
and spacing of the pores in DLP printing [157]. At higher viscosity, Newtonian behavior
appeared, and the porosity of the printed part was slightly reduced from theoretical values
by 7% [158]. Steyrer et al. showed that higher printing temperatures produce higher double-
bond conversion and tensile strength (Figure 6) [158]. However, printing temperature did
not affect the properties after post-curing in the XYZ orientation [158]. High printing
temperatures decreased the viscosity of the resin reducing the printing time and provided
better mechanical properties while post-cured properties were found to be unaffected [158].
Many factors need to be considered when selecting DLP and SLA printers, which include
the part size, printing speed, scanning speed, layer thickness, laser type, optical system,
operating software, CAD interface, machine size, ambient temperature, relative humidity,
and the power.
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6. Recent Developments in the 3D Printing of Hydrogel Wound Dressings

The most common 3D printing technologies employed for printing hydrogels, are
direct ink writing (DIW), DLP, and SLA [161]. UV-curable polymers are widely used, in-
cluding elastomers, rigid polymers, acrylonitrile butadiene styrene (ABS), and polylactide
acid (PLA) polymers; however, they are water-insoluble. On the other hand, PEGDA and
acrylamide/PEGDA hydrogels are highly stretchable, and have high water retention capa-
bility [161]. Cascone et al. discussed conventional or acellular hydrogel-based commercial
wound dressings for biomedical applications [129]. Some of the standard commercial
hydrogel-based wound dressings are listed in Table 8.

Table 8. Commercial hydrogel-based wound dressings.

3D Printing
Methods Principle Materials Accuracy (µm) Resolution (µm) Ref.

Digital light
processing (DLP)

Photo-curing by
a digital projector

Photopolymer
and

photo-resin
10–25

x: 25
y: 25
z: 20

[129–131]

3D Inkjet printing Extrusion of ink and
powder liquid binding

Photo-resin or
hydrogel 100

x: 10
y: 10
z: 50

[132,133]

Selective laser
sintering (SLS)

Laser-induced
sintering of

powder particles

Metallic powder,
polyamide, PVC 300

x: 50
y: 50
z: 200

[134]

Polyjet

Deposition of the
droplets of the

photo-curable liquid
material and cured

Polymer 10–20
x: 30
y: 30
z: 20

[136,137,162]

Stereolithography
(STL)

UV initiated
polymerization cross-

section by cross-section

Resin (acrylate or
epoxy based with

proprietary
photoinitiator)

25–150
x: 10
y: 10
z: 15

[138–140]

Fused deposition
modelling (FDM)

Extrusion of constant
filament

ABS, PLA, wax
blend, nylon 350

x: 100
y: 100
z: 250

[141–146]

Yongji et al. produced a paper on a photo-curable hybrid chitosan/acrylamide bio-ink
for DLP-based bio-printing [156]. The hydrogel characteristics were analyzed by carrying
out mechanical testing, scanning electron microscopy (SEM) analysis, and swelling tests.
In the mechanical test results, the several ratios of the co-polymerizing covalent crosslink-
ing between the chitosan modified with methacryloyl groups (CHIMA) and acrylamide
(AM), significantly affected mechanical strength differences. Proportions of 20 wt% of
pAM and 1% of CHIMA showed the highest tensile and compression strength [156]. The
results indicated that the higher the degree of hydrogel crosslinking, the higher the me-
chanical strength. Unlike other published outcomes, a higher swelling ratio for the highly
crosslinked polymer was observed in this study. However, the involved paper limited
any actual application due to a decrease in the adhesion and the compatibility with the
dynamic skin motion. Muwaffak et al. developed wound dressings using stereolithogra-
phy [163]. The fabricated patches were made of polyethylene glycol diacrylate (PEGDA)
laden with metals, including silver, copper, and zinc polycaprolactone. Diphenyl(2,4,6-
trimethylbenzoyl)phosphine oxide (TPO) was used as the photo-initiator. The wound
dressings were capable of preventing wound infections due to the anti-mycobacterial
properties of the incorporated metals that enhanced wound healing. The dressings were
shown to have fast- and slow-release properties. Using this technique, six drugs, includ-
ing paracetamol, caffeine, naproxen, chloramphenicol, prednisolone, and aspirin, were
incorporated into the 3D printed bandages with different geometries and material com-
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positions [163]. However, the adhesion of the printed bandages and their applicability
to some unreached parts of the body were still limited. Cereceres et al. produced 3D
printed hydrogel wound dressings loaded with a novel antimicrobial (gallium maltolate) to
prevent chronic wound infection [164]. The gallium maltolate rapidly leaked out when the
dressings contacted water. The shortcoming of the produced wound dressing was that it
could not be applied on wet wounds. Nizioł et al. produced antimicrobial wound dressings
by 3D printing based on thermo-responsive hydrogel [165]. Nanofibers were prepared via
electrospinning with controlled relative humidity and surrounding temperatures. Then, a
temperature-controlled pneumatic-based extrusion printer was used to print the wound
dressings. Nanofibers with a maximum breaking strength of 0.06 MPa were obtained at the
maximum crosslinking time (8 h). The bandage’s stretch ability provided a robust solution
for the joint section of the skin. The researchers correlated the swelling ratio, temperature,
and time of the developed bandages to optimize the specifications. The wound dressings
were capable of sensing the temperature as the printed ink contained poly (N-isopropyl
acrylamide) (PNIPAAm). Although the dressings had good stretchability, they suffered
from low mechanical strength due to the poor layer-on-layer adhesion. Milojevic et al.
developed a hybrid, extrusion-based 3D printed hydrogel for wound dressing [166]. Poly-
caprolactone and alginate/carboxymethylcellulose gels were printed layer-by-layer. The
analysis of the printed parts showed fine-tuned wettability (50–75%), an enhanced swelling
ratio and mechanical strength (11 MPa). Moreover, the dressings were found to have a
reasonable degradability rate. However, the adhesion technique and its applicability to
bending joints, such as knees, are still a challenge. Liu et al. developed tough hydrogel
patches by incorporating CaCl2 [167]. The results showed an increase in the concentration
of Ca2+ was linked with a decrease in the water content leading to an enhanced Young’s
modulus. In addition, a modified pH phenol red dye was entrapped in the hydrogel patches
to show change in pH by indicating the color. Navarro et al. reported that the printing
orientation has a statistically significant effect on the compressive modulus independent of
the printer type [168]. The analysis showed that the horizontal structure exhibited a higher
Young’s modulus than for the vertical structure [168]. It is also expected that structures with
high porosity possess low compressive moduli. Additionally, as the tilt angle increased,
the print time increased, subsequently, the building layers increased [82]. It is well-known
that the AM process demonstrates microstructural anisotropy due to the layer-by-layer
nature of the production. Mueller et al. conducted intensive experiments to correlate the
printing orientation with the ultimate tensile strength and elastic modulus [169]. It was
found that the horizontal orientation had the highest ultimate tensile strength and elastic
modulus. During sample printing, the laser light used for polymerizing the new layer
passes through previously printed layers, so the light is attenuated with the penetration
depth. If the thickness of the printed layers is thick enough, the laser might not be sufficient
to induce photo-polymerization [170].

Furthermore, 3D printing of hydrogels exhibits some compelling features. H. Bani-
asadi et al. reported 3D printed hydrogels that showed a very high porosity with open and
interconnected pores which allowed for a high-water uptake capacity (up to 1600%) [171].
Composite 3D-printed materials open options for skin wound dressing applications due
to their mechanical strength that is comparable to that of soft tissues. Drug-loaded dress-
ings demonstrated controlled and efficient delivery of the antioxidant, ascorbic acid, in
phosphate-buffered saline (PBS) at 23 ◦C, where 80% of the loaded drug was released
within 8 h [171]. The experimental findings indicated a correlation among shrinkage,
porosity, pore size, and the swelling ratio of the dressings. The shrinkage of the dressing
was reversibly proportional with the pore size. However, the mechanical strength of the
developed dressing was not as high as the commercial non-hydrogel polymers but good
water absorption was observed for the reported dressing. Y. Ren et al. conducted in vivo
tests on rat models using tannic acid/keratin hydrogel wound dressings crosslinked by
graphene oxide quantum dots and citric acid [172]. The results revealed complete skin
wound healing in 16 days [172]. The printed dressings showed promising results; however,
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more investigation is still needed prior to clinical testing [172]. Several research groups
have shown that use of micro gels has similar effects to hydrogel dressings. S. Hou et al.
prepared a gelatin microgel and injected it directly into a cut section of a porcine cornea
along with the crosslinker microbial transglutaminase [173]. The microgels turned to mi-
croporous hydrogel upon crosslinking, allowing cell migration and controlled release of
growth factors [173]. Likewise, X.Zhang et al. used methacrylate hyaluronic acid and
modified alginate microgels to form macroporous gels under alkaline conditions. These
gels were shown to be effective for cell migration in the growth of blood vessels tested on
rat models. Y.Ashoori et al. treated chitosan nanogels with probiotics which promoted
wound healing during in vivo tests on rat models [174].

Y. Hu et al. used an extrusion-based cryogenic 3D printing technology to construct
decellularized small intestinal submucosa (SIS) integrated with a mesoporous bioactive
glass (MBG) and exosomes to produce a 3D scaffold dressing (SIS/MBG@Exos) that was
capable of sustained release of bioactive exosomes [175]. The fabricated SIS/MBG@Exos
hydrogel scaffolds were shown to possess a 3D structure with appropriate porosity, bio-
compatibility, and hemostasis capability. The results of testing the scaffolds on diabetic
wounds, confirmed that hydrogel scaffolds can accelerate diabetic wound healing by in-
creasing blood flow and promoting the angiogenesis process of the diabetic wound [175].
H. Chen et al. reported polyethylene glycol (PEG) wound dressings loaded with silver
nitrate (AgNO3) and the angiogenic drug, desferrioxamine (DFO) [176]. The dressings
were tested on rat models and were shown to resist myriad external forces, such as squeeze
and twist, and stayed in their initial shapes. Kumar et al. developed chitin hydrogel nano
ZnO composite bandages [177]. The homogenized mixture of chitin hydrogel and nano
ZnO was freeze-dried to obtain microporous composite bandages. The nanocomposite
bandages showed enhanced swelling, blood clotting, and antibacterial activity [177,178].
J. Leppiniemi et al. demonstrated that an alginate/nanocellulose hydrogel wound dressing
developed using 3D printing had good mechanical properties and tissue compatibility [179].
Some examples of common nanocomposite hydrogel wound dressings are listed in Table 9.

Table 9. Common nanocomposite hydrogel wound dressings.

Nanocomposites Hydrogel Resin Wound Types Advantages Challenges Ref.

Silver
nanoparticles

(AgNPs)
Chitosan hydrogel Acute wounds Self-cleaning and

antibacterial properties.
Crosslinking and

3D printing [180–182]

AgNPs Chitosan and
hyaluronic acid Diabetic foot ulcers Resisting antibiotic bacteria

Crosslinking and
fabrication of the

nanomaterial
[183]

AgNPs Surface-grafted
collagen Acute wounds

Inhibiting of bacterial
growth and increase in

membrane water absorption
Agglomeration [184]

TiO2 Collagen In vivo and in vitro
excision wounds. Accelerate healing

Crosslinking and
fabrication of the

nanomaterial
[185]

Nano ZnO Chitin hydrogel Acute and chronic
wounds

Enhanced swelling, blood
clotting and antibacterial

effect.
Absorbing large volumes

wound exudate.
Controlled degradation,

enhanced blood clotting and
excellent platelet activation.

Fabrication of the
nanomaterial [178]



Polymers 2022, 14, 1012 21 of 36

Table 9. Cont.

Nanocomposites Hydrogel Resin Wound Types Advantages Challenges Ref.

Nano ZnO Nitrocellulose Hard to cover cut
wounds

Flexibility, softness,
transparency and

conformability.
3D printing [186]

Gelatin oxidized
starch nanofibers

Lawsonia inermis
(henna)

Treating second
degree burn

Enhanced fibroblast
attachment, proliferation,

collagen secretion and
antibacterial activity.

3D printing [187]

7. D Printed Wound Dressing Integrated with Sensors

Along the healing process of the wound, non-contact, low-cost, effective and re-
mote monitoring sensors are needed. Biosensors are devices that can deliver analyti-
cal/biochemical information from the system [188]. This may significantly reduce the need
for the assistance of clinicians in diagnostics and treatment. Hydrogels are smart materials
that can respond to either physical stimuli, such as temperature, electric and magnetic
fields, light intensity, and pressure, or chemical stimuli, such as pH, ions, and specific
chemical compositions. A fascinating feature of hydrogels is their ability to return to their
original size once triggers are removed.

Biomarkers or biological biomarkers refer to what is happening to an organism at an
instant moment [188,189]. Biomarkers show symptoms resulting from a disease or effects
of a treatment. The biomarker-driven approach shortens clinical trial time and speeds up
product development. Common biomarkers are summarized in Table 10.

Table 10. Common biological biomarker.

Types of Biomarkers Characteristics Application Examples Ref.

Molecular

They have biophysical
properties that allow

their measurements in
biological samples,

such as plasma, serum,
cerebrospinal fluid,

bronchoalveolar lavage,
and biopsy.

Blood glucose

Glucose
Hemoglobin A1c levels in diabetes,

circulating viral load in viral
infections, cholesterol, low-density

lipoproteins (LDL), and high-density
lipoproteins (HDL) levels in

cardiovascular disease.

[188]

Histologic They are obtained from
imaging studies.

Grading and staging of
cancers

Prostate-specific antigen (PSA) for
prostate cancer and fecal occult blood

test for colon cancer.
[190]

Radiography

They reflect a
biochemical or

molecular alteration in
cells, tissues, or fluids.

Bone mineral density

Nuchal scan for prenatal screening.
Assessing lesion load and brain

atrophy for patients with
multiple sclerosis.

[189]

Physiologic They measures of body
processes Blood pressure

Blood flow Electrocardiogram
Functional magnetic
resonance imaging.

Electroencephalography Metabolism
positron emission tomography

Spectroscopy.

[191]

Biosensors integrated with the wound dressing have several advantages, such as
improving wound care treatment, shortening hospitalization time, reducing healthcare
costs, and decreasing the frequency of wound dressing exchange [192]. They solve many
challenges associated with wound healing, especially with chronic wounds, by allowing
real-time sensing, and responding to and reposting information on the wound environment.
Biosensors integrated with wound dressings have the property of proportional flexibility to
the hydrogel matrix and body contours, biocompatibility, and non-toxicity. They have the
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ability to respond to potential infections or hyper-inflammation in chronic wounds [193].
The degradation rate of biosensors has to be proportional to the degradation of the hydrogel
matrix, and non-toxic [193]. Temperature can be taken as an early predictor of infection be-
fore any other symptom emergence [194]. Several sensors can be integrated with the wound
dressings; however, an appropriate design is needed, and an extra cost is added. Hydrogels
can respond to changes in temperature, humidity, pH, metal ions, and gases [194–197].
Moreover, they can detect biomarkers, such as lactate, glucose, and proteins [195–199]. In
this review, the most common sensors integrated with wound dressings, i.e., temperature
and pH, are discussed.

7.1. Temperature Sensor-Integrated Wound Dressings

In recent decades, thermo-reversible hydrogels with temperature-triggered sol-gel
transition have shown promising outcomes in drug delivery applications. The temperature-
sensitive hydrogels (thermo-gel) are hydrophobic due to the presence of methyl, ethyl, and
propyl groups which bind via hydrogen bonds. The most popular thermo-responsive poly-
mer is poly(N-isopropyl acrylamide) (PNIPAAm) [200]. It forms a gel at body temperature
(37 ◦C) due to its low critical solution temperature (LCST) which is 32 ◦C. To expand its ap-
plications in healthcare, its LCST can be modified to be 37 ◦C through a co-polymerization
process. Networks made of hybrid PNIPAAm were demonstrated to have high potential
wound closure applications. For instance, PNIPAAm was co-polymerized with alginate
and silver nanoparticles for developing wound dressings. The hydrogel dressings gener-
ated sufficient temperature to activate wound contraction in order to promote the healing
process. Li et al. co-polymerized PNIPAAm with chitosan and polydopamine-coated
graphene oxide, to develop multifunctional wound dressings (Figure 7a–c). The PNIPAAm
assisted in temperature-dependent drug release [201]. The developed dressings were found
to have good thermo-responsive self-contraction and skin adhesion properties. The self-
contraction property helped wound closure by actively contracting the wound (Figure 7d).
Recently, PNIPAA was co-polymerized with alginate (ALG) and methylcellulose. The gel
precursor was 3D printed to develop wound dressings [202]. The wound dressing was
loaded with Octenisept®, to provide antimicrobial properties. The dressings demonstrated
multifunctionality; the PNIPAAm in the dressing assisted in temperature-induced shrink-
age to accelerate wound contraction, Octenisept® provided antimicrobial activity, and the
incorporated PEGDA enhanced biocompatibility.
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Figure 7. (a) Synthesis of the quaternized chitosan (QCS), (b) synthesis of the reduction graphene
oxide coated by polydopamine (rGO-PDA), (c) schematic for the preparation process of the QCS/rGO-
PDA/PNIPAm hydrogel and its properties: (1) conductivity, (2) tissue adhesion, (3) antibacterial
activity, (4) self-healing, and (5) thermo-responsive self-contraction. (d) schematic showing the
wound closure by assisting the thermos-responsive hydrogel (QCS/rGO-PDA/PNIPAm) [202].

7.2. pH Sensor-Integrated Wound Dressings

When skin is exposed to an injury, the imperceptibly acidic behavior of the skin
changes to alkaline. Therefore, trailing the healing of the wound via pH sensors is essential.
A pH-sensitive hydrogel can alter its volume in response to a change in the environment’s
pH. Hydrogels have a wide function window for pH measurements. Any pH-sensitive
hydrogel contains acidic groups, such as carboxylic and sulfonic acids, or basic groups,
such as ammonium salts, which respond to pH changes by gaining or losing protons [203].
The main reason for reading the pH ranges of the skin is to monitor the healing rate of
skin wounds. Healthy skin has an acidic pH range of 4–6 resulting from the excreted fatty
acids from the skin’s sebaceous glands which mix with lactic and amino acids from sweat
to create an acidic pH. The skin’s acidity makes it capable of defending against external
pathogens. When the skin suffers from an injury or wound, the pH range instantly changes
to basic due to fluidic mixing with the body’s internal fluid. The pH level of a wound
was found to change while it is healing. As the wound heals, its chronic environment
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progresses from alkaline conditions to neutral, and finally to acidic conditions [204]. To
monitor the volumetric response of pH-responsive hydrogels, transducers are used. The
transducers track the changes on two principles: mechanical work which is induced by the
change of the volume that can be tracked using a microcantilever bending plate transducer;
and observation of changes in properties, such as optical, conductance, and oscillation
mechanisms. Immersing the hydrogel inside different pH solutions leads to change in the
quantity of dissociated carboxylic ions that alter the volume and refractive index of the
hydrogel [205]. Generally, upon swelling of the hydrogels, the refractive index undergoes a
negative shift as pure water usually possesses a lower refractive index than the hydrogel
in its unhydrated condition [206]. Tomar et al. studied the swelling of pH-responsive
particles in response to several pH ranges, and observed that at pH 7.4, there was water
uptake [206]. El-Nahhal et al. reported phenol red, a pH indicator, entrapment inside a
hydrogel matrix [207]. Phenol red (PR) was trapped into different silica hydrogels in the
presence of ethanediyl-1, 2-bis (dimethyldodecylammonium bromide (Gemini 12-2-12),
alkyl hydroxyethyl dimethyl ammonium chloride (HY, R= 12–14), and sodium dodecyl
sulfate (SDS) surfactants [208]. The colorimetric appearance of the hydrogel changed
with pH and the absorption peak positions were correlated to the pH values. Liu et al.
used another colorimetric pH indicator, red cabbage, to detect wound pH changes [208].
Generally, the cabbage pigment has red color in acidic conditions and turns bluish green
in alkaline (basic) solution. The color of the hydrogel patches underwent a transition
from yellow at pH of 5, 6, and 7, to orange at pH of 7.4 and 8, and, finally, to red at a
pH of 9 [208]. This range of color changes matches the clinically meaningful pH range of
chronic or infected wounds. So, if the hydrogel patch is transparent, then the pH level can be
witnessed by the naked eye. However, the hydrogel water content and the amount of added
calcium could significantly impact the Young’s modulus of the pH-responsive hydrogel.

One of the advantages of wound bandage-integrated sensors is the ability to provide
reliable information on wound status in real-time continuously, without need to touch the
bandage [209]. For instance, a smart patch-integrated pH sensors was developed to monitor
wound status using a smartphone as a reader (Figure 8). The sensors were distributed under
the hydrogel substrate with microchips that tracked the ions and release drugs. When
hydrogels are reinforced with nanomaterial, they show superior properties and tailored
functionality [210]. Different sensors can be embedded in hydrogel wound dressings to
provide real-time information about wound conditions. However, the dressings must
meet certain specifications: (i) the dressing should resemble the wearable sensors that
adhere to its mechanical properties, (ii) the dressing should move with the skin’s stretching,
compression, and twisting, (iii) the patch should deform relative to the skin healing rate
and should not restrain the skin from clotting. Table 11 summarize some examples of 3D
printed dressing-integrated sensors and their characteristics.

Table 11. Summary of printed biomarkers with their respective characteristics.

Type of Sensors Methodology Characteristics Ref.

Temperature Thermo-responsive The temperature sensor provides information
about the inflammation level. [211]

3D-printed dual hydrogels with
symmetric and alternating segmented

tubular structures.

Exhibited spatially programmed swelling
behavior in response to temperature in an

aqueous environment
[212]

Graphene oxide (GO) to the
PNIPAAm-Laponite composite to

enhance the temperature
responsivity of the hydrogel and to

program the shape change.

GO particles are highly responsive to
near-infrared light and act as nano-heaters

owing to their photothermal properties and
their excellent thermal conductivity

[213]
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Table 11. Cont.

Type of Sensors Methodology Characteristics Ref.

Multi-temperature responsive
hydrogel-based structure based

on copolymerization level and the
dependent group chain length.

3D printed multi-gel structures with multiple
prescribed volume transition temperatures

have potential applications in
biological systems

[214]

Double network hydrogels
were synthesized using a micellar

copolymerization process
of hydrophobic n-octadecyl acrylate (C18)
and N,Ndimethylacrylamide (DMA) in

NaCl aqueous solution.

3D printed thermo-responsive hydrogel film
with submillimeter resolution into a

capacitor circuit
[154]

pH pH sensitive dye embedded inside the
hydrogel fiber.

Monitor to detect changes in the acidity and
basicity of the skin by changing colors.

Healing of the skin indicated by acidic color.
The potentiometric pH provides information

about bacterial infection.

[215]

Passive (poly (N-isopropylacrylamide)
(PNIPAAm)) to active (poly

(2-carboxyethyl acrylate) (PCEA)) layers
towards environmental pH changes.

The chemical composition of discrete layers
resulted in anisotropic swelling behavior.

PCEA (upper layer) swelled in high pH values
due to deprotonation of the acid groups while
PNIPAAm (lower layer) slightly swelled in an

acidic pH.

[216]

Sodium hydrogen carbonate (NaHCO3)
vapor as a cross-linker for collagen to

provide a homogeneous gelation.

Collagens as a major extracellular matrix
protein have several ionizable groups, such as

hydroxyl and amine groups in their
molecular chains.

[217]

Moisture content Absorb water due to void imperfections.

Dynamic shape and geometrical expansion,
stretching, folding and bending change in

response to variations in
environmental humidity.

[218–
221]

Hydrophilic layer expanded in water and
forced a shape change as stretching or folding

into the structure
[222]

Origami-inspired structures including
polyurethane hydrogel core and
polyurethane elastomer skins.

Discrete localized gaps at elastomeric skin
were acting active hinges. During the

hydration resulted in different
complex structures.

[223]

Composite ink for 3D printing by
incorporating cellulose pulp fibers into

carboxymethycellulose (CMC)
hydrocolloid.

Printed objects underwent reversibly
programmed transformation upon hydration

and dehydration.
[202]

Upregulation or
downregulation of

enzyme levels

Modified chitosan functionalized with a
fluorogenic substrate

The presence of various types of enzymes can
be detected using florigenic or chromogenic
substrate. It is highly useful for detection of

specific pathogenic bacteria in wound dressing.

[224]
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8. Fundamental Challenges and Future Outcomes

The currently available wearables for healing wounds or burn-related injuries have
their limitations. Most wound patches are not transparent, leave scars, are non-oxygen per-
meable, and damage skin cells. In addition, traditional patches do not provide information
about the wound curing rate or the status of the wound. Moreover, currently available
bandages are costly and have safety concerns when used with drugs. Several printed
hydrogel-based wound dressings are available on the market. However, they suffer from
low reading quality for the wound conditions. Current DLP printed hydrogel bandages
suffer from poor mechanical strength and stability so that novel approaches are needed for
clinical implementation. Additionally, dressings such as sheet-printed hydrogels do not
function on knees and joints for long-periods due to poor adhesion [204].

Generally, parts printed by the stereolithographic technique do not have convenient
mechanical properties. Another possible challenge for 3D printing technology is resin
homogeneity. Sometimes mixing different ratios of resin ingredients may generate nanopar-
ticle or nano-shape bubbles in the resin that could turn into pores after curing, which
undermine mechanical properties by generating fatigue in the final hydrogel wound dress-
ing. The challenges mentioned above can be overcome using post UV- and thermal-curing,
especially for patches containing nano-pores. Incorporating gluconic acid with hydrogel
wound dressings stabilizes the pH ranges that are significant for bacterial protection. For
instance, maintaining wound pH in the range of 3.2–4.5 by use of gluconic acid, creates
an environment that prevents pathogen growth [225]. In addition, gluconic acid may
enhance environmental moisture, and reduce inflammation and infection [225]. Adding
nanofiller to the hydrogel makes transporting active agents, such as drugs, feasible by
moving in and out of skin via diffusion and active transport. Since nanomaterials have
the property of large surface-to-volume ratio, they have been embedded in wound dress-
ings. Adorinni et al. reported carbon nanomaterials which have a high surface area and
a hydrophobic nature that can readily non-covalently bind a large number of bioactive
compounds for use in drug delivery applications [164]. Di Luca et al. discussed a skin
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bandage developed using GO and polyacrylamide and polyethylene glycol methacrylate
with a drug-release property [226]. The results showed that adding these nanocomposite
materials enhanced the specifications of the wound dressings. Carbon nanomaterials have
a vast range of applications when blended with smart hydrogels; however, their interaction
with biomolecules is still too complex to comprehend. Carbon nanotubes are toxic and
should be treated accordingly.

On the other hand, adding some cations enhances the mechanical strength of printed
hydrogels. For instance, K+ formed rigid and elastic hydrogels and Ca2+ produced stiff
and brittle hydrogels. The polymeric binder was mixed with selected conventional cation
exchange resin, and a filament was prepared using a mini extruder. This methodology
has promise in preparing 3D printed cation exchange membranes (CEMs) with a defined
structure. Adding calcium ions with graphene oxide showed an excellent response to the
smartness of the material making it a candidate for pressure sensing [227]. Calcium ions
proved to be helpful for the performance of PVA-based hydrogel dressings where they
served as a crosslinker. Silver nanowires and graphene oxide (GO) were developed to
create an artificial skin with the ability to sense pressure variations.

9. Recommendations and Conclusions

The natural human placenta has a role in wound healing. Some commercially available
placentas are monolayer products such as Amnioband® which is an aseptically processed
and dehydrated human amnion, and Amnioexcel® which is a dehydrated amniotic mem-
brane allograft. They are commonly used for skin burns and diabetic foot ulcers, or
leg ulcers.

The main value of choosing hydrogels for dressing wounds, are their ideal properties
reflected in their nontoxicity that can prevent appalling outcomes. They prevent bacterial
infection that impairs wound healing and affects healing duration. They provide a fantastic
amount of adhesive material to the wound site. Additionally, they maintain the moisture
content of the wound which assists in boosting cell migration and proliferation. Hydrogels
adjust to the amount of exudates present in damage tissue. Their oxygen permeability
allows diffusion of oxygen to the wound bed to accelerate cell activity. The mechanical and
physical properties of hydrogel-based wound dressings enable adherence to the structure
of the native skin and mimic the biological nature of the wound. Moreover, hydrogels
overcome cost challenges. The design of perfect hydrogels for skin wound healing dressings
is an ongoing project, with material choice challenges, issues in design methodology, and
issues relating to mechanical defects. The most important factors, such as the appropriate
shape, structure, porosity, and homogeneity, of hydrogels need to be fulfilled.
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