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Abstract: Recent ecological perturbations are presumed to be minimized by the application of
biofertilizers as a safe alternative to chemical fertilizers. The current study aims to use bioinoculum (I)
as an alternative biofertilizer and to alleviate salinity stress in the cultivar Solanum melongena L. Baldi.
The salinity drench was 200 mM NaCl (S), which was used with different treatments (0; I; S; S + I)
in pots prefilled with clay and sand (1:2). Results showed that salinity stress inhibited both plant
fresh and dry weights, water content, and photosynthetic pigments. The content of root spermine
(Spm), spermidine (Spd), and puterscine (Put) decreased. However, addition of the bioinoculum to
salt-treated plants increased pigment content (80.35, 39.25, and 82.44% for chl a, chl b, and carotenoids,
respectively). Similarly, K+, K+/Na+, Ca2+, P, and N contents were significantly enhanced. Increases
were recorded for Spm + Spd and Put in root and shoot (8.4-F, 1.6-F and 2.04-F, 2.13-F, respectively).
RAPD PCR showed gene expression upregulation of photosystem II D2 protein, glutathione reductase,
glutathione-S-transferase, protease I, and protease II. The current work recommends application of
the selected bioinoculum as a green biofertilizer and biopesticide. Additionally, the studied eggplant
cultivar can be regarded as a source of salt tolerance genes in agricultural fields.

Keywords: biofertilizer; biopesticide; eggplant; gene expression; physiological traits; polyamines;
salinity; stress; Solanum melongena

1. Introduction

Chemical fertilizers have been widely used to achieve maximum crop productivity
in conventional agricultural systems. Nevertheless, when chemical fertilizers exceed
the threshold level, they accelerate soil acidification, pollute groundwater, and harm
the environment overall [1]. It is recommended to apply biofertilizers as eco-friendly
alternatives as they play a pivotal role in phosphate solubilization, nitrogen fixation,
production of ammonia, enzymes, siderophores, and secretion of variable phytohormones.
Furthermore, they exhibit biocontrol activity against a wide variety of phytopathogenic
agents [2]. Bhattacharyya and Jha [3] observed that inoculation of bacteria and fungi into
the soil or seedling roots may colonize either the rhizosphere or the inner sections of the
plants, thus enhancing plant growth and development.

The application of microbes can be used to enhance systemic tolerance in plants against
biotic as well as environmental stress. Bacillus subtilis inhibits pathogens causing diseases
either directly or indirectly through a biocontrol mechanism [4]. Some Pseudomonas species
stimulate plant growth through the production of water-soluble vitamins like niacin [5].
Besides, specific mycorrhizal fungi like Trichoderma harzianum that act as plant symbionts
can be widely used for their ability to induce plant tolerance to biotic and abiotic stresses
such as salinity and drought [6]. Moreover, inoculation of Aspergillus terreus enhances NaCl
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tolerance in Pennisetum glaucum by mitigating the physicochemical attributes of the host
plant [7]. Interestingly, the plant growth promoting ability of Pinicillium critinum initiates
habitat revegetation and conservation. Also, its production of GA5 from gibberellins opens
new insights in research and investigation [8].

Eggplant (Solanum melongena) is the fifth most economically important crop within
the Solanaceae family and is considered by the Food and Agriculture Organization of the
United Nations (FAO) as one of the 35 foods with the most considerable relevance for
world food security [9]. In this respect, Egypt is ranked third out of the top five producing
countries of eggplant [10]. Because eggplant has a relatively long growth period, it is more
exposed than other vegetable crops to a broad range of plant diseases, pests, nematodes,
and weeds [11].

Excess salts in soil pose a serious threat to agricultural production and environmental
health [12]. Soil salinity is a widespread problem that extends over one billion hectares
spread across many countries. If left abandoned, this condition could develop into a
socioeconomic and human health problem in the long run [13].

Eggplant is a sensitive species to salinity and is not well adapted to saline soils [14].
Thus, one of the objectives of this study was to select the best combination of plant growth
promoting rhizobcteria (PGPR) and rhizo fungi (RF) for eggplant growth in saline soil and
investigate the alleviative role of combining the selected bioinoculum on salinity stress in
Solanum melongena L. Baldi cultivar. Another objective was to elucidate the physiological
and molecular systemic resistance exhibited by eggplant to withstand salt stress. Finally, a
question was posed to establish whether the selected bioinoculum applied is recommended
(or not) in agricultural fields as a biofertilizer/biopesticide alternative to chemical fertilizers.

2. Results
2.1. Molecular Identification and Phylogeny of Bacterial Isolates in the Selected Bioinoculum

Identification of the most promising isolates, B1, B4, and B7, was carried out using 16S
rDNA (Figure 1). Agarose gel (1%) was used to examine the PCR results, where the 1500 bp
amplified fragment’s sequence was easily determined. The sequences of various types of
strains from the gene bank were a popular tool for identifying and classifying prokaryotes.
Thus, when the gene sequences (16 s) of the selected bacterial isolates were compared to
those of the gene bank, the isolate code B1 (B1SRZS) was found to be 99.71 percent identical
to Bacillus subtilis with accession no. MT214144.1 (Figure 2a), the isolate code B4 (B4SRZS)
was found to be 99 percent identical to Bacillus subtilis with accession no. MH359177.1
(Figure 2b), and the isolate code B7SRZS was found to be 99 percent identical to Pseudomonas
sp. with accession number KR054995.1 (Figure 2c). Supplementary Tables S3–S5 show the
percentages of similarity and accession numbers obtained after comparing the sequences of
the tested strains to the sequences submitted to Gene Bank.

Figure 1. Agarose gel electrophoresis of the amplified PCR fragment for 16 r DNA gene. M: 1 kb
DNA marker, isolates with code no. (B1, B4 and B7) (MW~1550 bp).



Plants 2022, 11, 659 3 of 22

1 
 

 
Figure 2. Phylogenetic tree of isolate coded B1SRZS, B4SRZS, and B7SRZS ((a–c), respectively) achieved, displaying the location amid the selected bacteria based on
16Sr RNA sequence assessments.
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2.2. Solanum melongena L. Salt Tolerance Indices Percentage as Affected by Salt Stress and/or
Inoculum Treatments

Solanum melongena L. seeds were germinated and grown in sandy clay soil for 66 days
and treated with the selected PGPR and RF alone and in combination with 200 mM NaCl.
At the end of the experimental period, the role of selected inoculum of PGPR and RF
was assessed in morphometric traits including plant height (PH), root length (RL), shoot
length (SL), R/S ratio, individual and total root and shoot; fresh and dry weights (RFW;
RDW; SFW; SDW; TFW; TDW), and leaf area (LA), in addition to individual and total root
and shoot water content (RWC; SWC; TWC). Salinity stress significantly decreased leaf
area, root fresh and dry weights, in addition to root water content by (59.14, 95.87, 96.30,
and 95.66%, respectively) compared to control (Supplementary Data—Tables S1 and S2).
Inoculating the soil of salt-stressed eggplants showed a significant increase in leaf area,
total fresh, dry weight, and water content (by 1.95-F, 3.53-F, 3.97-F, and 3.42-F, respectively)
compared to salt-stressed plants (Supplementary Data—Tables S1 and S2). Salt tolerance
indices percentage (STI%) revealed that the selected inoculum significantly increased
salinity tolerance of eggplant morphometric traits except for PH, RL, SL, R/S ratio, and LA
(Table 1). The significant increase in STI% was recorded for RFW, SFW, TFW, RDW, SDW,
TDW, RWC, SWC, and TWC (17.67-F, 2.98-F, 4.90-F, 19.88-F, 3.79-F, 7.37-F, 16.82-F, 2.82-F,
and 4.4-F, respectively).

Table 1. Solanum melongena L. salt tolerance indices percentage as affected by 200 mM NaCl (S)
and/or inoculum (I) treatments.

STI% of Parameters S S + I T p

PH 76.89 ± 11.62 82.41 ± 11.65 0.581 0.592
RL 118.61 ± 28.20 112.53 ± 24.45 0.282 0.792
SL 60.35 ± 12.71 70.93 ± 17.23 0.856 0.440

R/S 204.65 ± 69.85 167.30 ± 59.26 0.706 0.519
RFW 4.12 * ± 0.55 72.79 ± 39.92 2.979 * 0.041 *
SFW 16.97 * ± 5.20 50.56 ± 6.48 7.002 * 0.002 *
TFW 11.03 * ± 1.54 54.07 ± 11.72 6.310 * 0.022 *
RDW 3.68 ± 0.33 73.14 ± 36.09 3.333 * 0.029 *
SDW 17.35 * ± 2.93 65.79 ± 15.08 5.459 * 0.005 *
TDW 9.12 * ± 0.23 67.21 ± 20.81 4.834 * 0.040 *
RWC 4.35 * ± 0.71 73.15 ± 42.58 2.798 * 0.049 *
SWC 16.90 * ± 5.69 47.71 ± 5.13 6.964 * 0.002 *
TWC 11.64 * ± 1.98 51.18 ± 9.91 6.774 * 0.002 *
LA 41.24 ± 5.95 92.68 ± 35.89 2.449 0.128

Note: STI % = salt tolerance index percentage; PH = plant height; RL = root length; SL = shoot length;
R/S = root/shoot ratio; RFW = root fresh weight; SFW = shoot fresh weight; TFW = total fresh weight; RDW = root
dry weight; SDW = shoot dry weight; TDW = total dry weight; RWC = root water content; SWC = shoot water
content; TWC = total water content; and LA = leaf area. Parameters measured 66 days after sowing. Values
are means ± SD based on triplicate independent determinations, * means statistically significant difference at
p ≤ 0.05, t: Student t-test.

2.3. Solanum melongena L. Leaves Photosynthetic Pigments and Chlorophyll Fluorescence as
Affected by Salt Stress and/or Inoculum Treatments

The effect of the selected microbiome on photosynthetic pigments revealed that under
salinity stress all pigments were significantly decreased compared to control (Table 2).
Nevertheless, inoculating S, melongena L. plants after exposure to salinity stress resulted
in a significant increase in chl a, chl b, chl a + b, chl a/b, and carotenoid content by (80.35,
39.25, 69.20, 29.37, and 82.44%, respectively) compared to salt stressed plants.
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Table 2. Solanum melongena L. leaves photosynthetic pigments as affected by 200 mM NaCl (S) and/or
inoculum (I) treatments.

Parameters
Treatments

C I S S + I

Chl a
(µg g−1 FW) 10.11 a ± 0.78 7.38 b ± 0.61 5.75 b ± 0.77 10.37 a ± 2.39

Chl b
(µg g−1 FW) 3.30 a ± 0.38 1.99 c ± 0.11 2.14 bc ± 0.09 2.98 ab ± 0.82

Chl a + b
(µg g−1 FW) 13.41 a ± 0.74 9.36 b ± 0.71 7.89 b ± 0.85 13.35 a ± 3.20

Chl a/b 3.06 b ± 0.23 3.71 a ± 0.02 2.69 c ± 0.08 3.48 a ± 0.05
Carot.

(µg g−1 FW) 2.36 a ± 0.24 1.78 b ± 0.11 1.31 b ± 0.12 2.39 a ± 0.49

Fv/Fm 0.79 a ± 0.01 0.79 a ± 0.03 0.75 a ± 0.02 0.76 a ± 0.02
Fv/F0 3.84 a ± 0.27 3.76 a ± 0.60 2.98 a ± 0.36 3.38 a ± 0.31

Note: C = control; Chl a = chlorophyll a; Chl b = chlorophyll b; Chl a + b = chlorophyll a and
b; Chl a/b = chlorophyll a/b; Carot. = carotenoids; Fv/Fm = variable to maximum fluorescence; and
Fv/F0 = variable to ground fluorescence. Parameters measured 66 days after sowing. Values are means ± SD
based on triplicate independent determinations, and different letters means significant difference as evaluated by
Duncan’s multiple comparison test (p < 0.05).

Examination of the maximum quantum efficiency and photochemical efficiency of
PSII using chlorophyll fluorescence expressed by Fv/Fm and Fv/F0 unexpectedly showed
insignificant change among all treatments tested.

2.4. Element Homeostasis in Solanum melongena L. as Affected by Salt Stress and/or
Inoculum Treatments

To detect the elemental homeostasis in S. melongena plants, the element contents (K+,
Na+, K+/Na+, Mg2+, Ca2+, P, and N) of shoots and roots were determined (Figure 3). Under
salinity stress, a significant decrease was observed for all ions except for Na+ compared
to control. In contrast, no significant effect of Mg2+ was recorded for S. melongena root or
shoot. In the case of the double interaction S + I, there was a significant increase for K+,
K+/Na+, Ca2+, P, and N ions (2, 2.8, 5.6, 1.2, 1.3-F in root and 1.4, 2.6, 1.3, 1.2, 1.16-F in
shoot, respectively). Whereas, Na+ showed an opposite trend to the other measured ions
compared with salt-stressed plants.

Interestingly, ions such as K+, K+/Na+, Ca2+, P, and N were found to be transported
actively from roots to shoots (Translocation factor (TF) = 3.4, 4.7, 1.9, 2.4, and 3.4, respec-
tively) at S+I treatment, whereas Na+ attained relatively lower values (TF = 0.71 and 0.9,
respectively). The relative high translocation factor for measured ions in inoculated S. mel-
ongena after salinity stress suggests the presence of a transport system somehow for these
ions from root to shoot as a defense mechanism towards salt stress.

2.5. Hormonal Status in Salt-Stressed Solanum melongena L. as Affected by Salt Stress and/or
Inoculum Treatments

Quantification of free polyamines in S. melongena L. plants showed that salinity-stress
significantly decreased Spmand Spd. levels in roots (by 100 and 68, respectively), while
it increased Spm and Spd levels in shoots by 26% and 113%, respectively with respect
to control (Table 3). Inoculation with selected PGPR and RF caused a marked increase
in levels of Spm + Spd and Put in the root as well as the shoot (8.4-F, 1.6-F and 2.04-F,
2.13-F, respectively) compared to salt-stressed plants. It is also notable that root Put
(2.37 mg·g−1FW) was greater than Spm + Spd (0.84 mg·g−1FW) in bioinoculated salt
stressed eggplants compared to S, whereas shoot Put (0.17 mg·g−1FW) attained lower
values than Spm + Spd (1.14 mg·g−1FW).
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Figure 3. Effect of 0 (C), selected bioinoculum (I), 200 mM NaCl (S), and their interactions on
elements content: (A) = potassium (K+), (B) = sodium (Na+), (C) = K+/Na+ ratio, (D) = calcium
(Ca2+). (E) = magnesium (Mg2+), (F) = phosphorous (P), and (G) = nitrogen (N) and translocation
factor (TF) (mineral content in shoots/mineral content in roots) in the roots and shoots of S. melongena
L. plants 66 days after sowing. Values are means ± SD based on triplicate independent determinations,
and different letters means a significant difference as evaluated by Duncan’s multiple comparison
test (p < 0.05).
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Table 3. Hormonal Status in Solanum melongena L. roots and shoots as affected by Salt Stress and/or
inoculum treatments.

Parameters

Treatment

Roots Shoots

C I S S + I C I S S + I

Spm
(mg g−1FW) 0.58 b ± 0.01 0.0 c ± 0.0 0.0 c ± 0.0 0.66 a ± 0.02 0.31 d ± 0.02 0.80 b ± 0.04 0.39 c ± 0.02 0.93 a ± 0.02

Spd
(mg g−1FW) 0.31 a ± 0.02 0.0 d ± 0.0 0.10 c ± 0.01 0.18 b ± 0.01 0.08 c ± 0.02 0.10 c ± 0.01 0.17 b ± 0.01 0.21 a ± 0.02

Put
(mg g−1FW) 3.37 a ± 0.07 0.18 d ± 0.01 1.50 c ± 0.03 2.37 b ± 0.02 0.08 b ± 0.01 0.03 c ± 0.01 0.08 b ± 0.02 0.17 a ± 0.02

Prol
(µg g−1 FW)

10.35 c ±
0.28 7.73 d ± 0.67 16.22 b ±

0.30
19.22 a ±

1.22
18.71 c ±

1.43 8.87 d ± 0.26 24.37 b ±
0.29

30.05 a ±
0.54

Note: C = control; Spm = spermine; Spd = spermidine; Put = putersciene; and Prol = proline. Parameters measured
66 days after sowing. Values are means ± SD based on triplicate independent determinations, and different letters
means significant difference as evaluated by Duncan’s multiple comparison test (p << 0.001).

To investigate the mechanisms related to osmotic adjustment, it is necessary to incor-
porate measurement of proline content in roots and shoots of S. melongena under normal
and stressed conditions. The results presented in Table 3 showed that there was an increase
in proline content under salinity stress by 57% and 30% in root and shoot, respectively,
compared to control. Application of the selected bioinoculum to salt-stressed eggplants
resulted in a significant increase in proline content of roots and shoots by 18.50% and
23.31%, respectively, compared to salt-stressed pots.

2.6. Selected Inoculum Modulates Some Genes Related to Defense System of Salt-Stressed Solanum
melongena L. Roots and Shoots

The measurements of parameters at the molecular levels are essential to understand
the defense mechanism of inoculated eggplant after exposure to salinity stress.

The fold of gene expression for five genes related to different physiological aspects—
photosynthesis, glutathione, lipids, and proteins—is represented in Figure 4. These genes are
related to variable physiological aspects: photosynthesis, glutathione, lipids, and proteins.

The gene of psbD related to D2 protein participates in the D1/D2 heterodimer of PSII
complex where it binds with cofactors to facilitate e-transfer for ATP formation (Figure 4a).
The gene expression of shoot psbD was upregulated about 5-fold after inoculation of
salt-stressed eggplants.

Glutathione reductase (GR) plays an important role in the ascorbate–glutathione cycle
under abiotic stress. The gene expression of GR in the current study was increased by about
4-fold and 2-fold for root and shoot, respectively at S + I compared to salt stressed pots
(Figure 4b).

Glutathione S-transferase (GST) minimizes reactive molecules with the accumulation
of glutathione (GSH), thus protecting the cell from oxidative damage. The gene expression
of GST recorded upregulation by about 4-fold and 6-fold for roots and shoots, respectively,
with respect to salt-stressed pots (Figure 4c).

Lipases cause alterations in membrane lipid composition; this response induces the
formation of toxic lipid intermediates that cause membrane damage or cell death. Unlike
all the tested genes, the gene expression of lipase was downregulated at S + I in roots and
shoots by 86.7% and 88%, respectively, compared to salt-stressed eggplants (Figure 4d).

In plants, PGPR can produce cell-wall-degrading enzymes (e.g., proteases) to suppress
pathogen growth. In the present study, the gene expression of Prot. I and II was upregulated
in inoculated salt-stressed plants with respect to stressed pots. It is to be noted that Prot. I
showed higher gene expression upregulation than Prot. II for root and shoot (Figure 4e,f).
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Figure 4. Effect of 0 (C), selected bioinoculum (I), 200 mM NaCl (S), and their interactions on the
gene expression of PSII D2 (a), glutathione reductase (GR) (b), glutathione S transferase (GST) (c),
lipase (d), protease I (e), and protease II (f) in the roots and shoots of S. melongena L. plants 66 days
after sowing. Values are means ± SE based on triplicate independent determinations.

3. Discussion

Solanum melongena L. is an important economic species that exhibits a sensitive re-
sponse to moderate salinity levels [15].

In the present study, application of 200 mM NaCl caused a significant decrease to
all morphometric growth traits except RL and R/S ratio. Several studies have shown an
inhibition in growth parameters and biomass production due to the increase in salinity
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level [15,16]. Triticum vulgare exhibited reduction in plant height and total shoot dry weight
under 200 mM NaCl-stress [17]. Perica et al. [18] reported that the primary response to
salinity stress is expressed by reduction of root and shoot development. In the current
work, a relatively insignificant increase in root length accompanied by a significant decrease
in shoot length emphasized that shoot growth is more sensitive to salt stress than root.
Therefore, an increase in R/S ratio is a direct consequence of plants exposure to salinity-
stress [19].

The applied selected inoculum to salt-stressed plants in the present study caused a
significant increase in morphometric traits such as: root and shoot water contents together
with fresh and dry weights. As Ha-Tran et al. [20] elucidated, the beneficial impacts of
crop plant bacterization with PGPR include inducing plant growth and development and
stimulating tolerance to salt stress through different mechanisms. Also, PGPR contributes
to salinity stress alleviation in plants by advancing water absorption ability and enhancing
essential nutrients uptake [21]. Abd Allah et al. [22] found that the B. subtilis (BERA71)-
inoculated salt-stressed Cicer arietinum plants yielded higher plant biomass with reduced
ROS levels compared to the non-inoculated seedlings. Concomitantly, Khosravi et al. [23]
reported that the use of Pseudomonas fluorescens bacterium enhanced shoot dry matter and
uptake of different nutrients in Lactuca sativa L.

In the current work, reduction of photosynthetic pigments is another consequence of
salinity stress that led to photosynthetic disruption. This finding agreed with the results
of Taibai et al. [24] on Phaseolus vulgaris L., and on Vigna subterranean L. [25]. Lower levels
of photosynthetic pigment under salt stress were attributed to either slow synthesis or
fast degradation of pigments [26]. Nevertheless, the results of all photosynthetic pigments
were significantly increased when the selected bioinoculum was applied to salt-stressed
plants. Photosynthetic pigments of Gossypium hirsutum were significantly reduced under
salinity conditions, however, utilization of salt tolerant bacteria including Bacillus subtilus
and Bacillus sp. while producing IAA restored cotton systemic resistance to salt-stress [27].
Analogously, the protective effects of salt tolerant PGPR on photosynthetic pigment were
also recorded in Phaseolus vulgaris L. and Arachis hypogaea L. [28]. Azarmi-Atajan et al. [29]
reported that inoculating Lactuca sativa L. with strains of Pseudomonas sp. significantly
increased chlorophyll and carotenoids content under different salinity levels, enriching soil
fertility through the production of hormones, proteins and prolines [30]. This may elucidate
the role of the selected bioinoculum in the enhancement of chla, chl b, and carotenoids
under salt-stress conditions, as well as suggest that this microbiome can be applied as an
effective green biofertilizer under salt-stress conditions.

Insignificant changes in PSII activity expressed by Fv/Fm and Fv/F0 in all treatments
suggest that the activity of PSII isn’t affected by salinity stress. This is supported by four
eggplant regenerates that showed an evident stability in tolerating salinity by preserving
quite stable Fv/Fm Chl fluorescence [31]. Similar findings have been attained for salt-
tolerant tomato [32] and wheat [33]. The insignificant increase in Chl fluorescence was
accompanied by a significant increase in photosynthetic pigments after microbiome inoc-
ulation of salt-stressed plants. Inoculation with Azotobacter chroococcum and application
of Zn2+ to Glycine max causes enhancement of chlorophyll (a, b, and a + b), carotenoid
contents, and Fv/Fm ratio [34].

The current work’s elemental status revealed that the utilized bioinoculum signifi-
cantly restricted Na+ uptake in the roots of salt stressed plants, with TF = 0.71 compared to
0.96 under salt stress. In addition, the decreased Na+ uptake was possibly due to a reduced
passive (apoplasmic) flow of Na+ into the stele as a result of a greater proportion of the root
zones being covered with soil sheaths in inoculated treatments [35,36]. However, K+ ions
and K+/Na+ ratios were increased more in shoots than roots. The favored translocation of
K+ over Na+ from roots to shoots and the greater K+/Na+ ratio in the shoots of inoculated
eggplant indicated that selective uptake of K+ had occurred, which appears to be one of
the processes involved in the tolerance of eggplant to salinity stress. Similar results were
detected by Ha-Tran et al. [20] on NaCl-exposed eggplants inoculated with Bacillus brevis.
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Moreover, Bacillus subtilis (BERA 71) stimulates the acquisition of K+, Ca2+, Mg2+, and N in
Cicer arietinum, while inhibiting Na+ uptake [22].

The significant increase of the selected bioinoculum to K+, K+/Na+ and Ca2+ revealed
that this association collaborated to expel Na+ ions. This might be concluded from the
perspective mechanism illustrated by El-Dakak et al. [37] involving salt overly sensitive
signaling pathway (SOS). Thus, the proposed regulatory mechanism to control salinity
stress in eggplant involves the mitigating effect of PGPR and RF through decreasing Na+

and increasing K+ as both share a common pump. Thus, K+/Na+ ratio as well as Ca2+

content increased where both have an effective role in expelling Na+ through SOS pathways.
An increase in Ca2+ content gets perceived by SOS3, which starts the regulation mechanism
of ion homeostasis. Then, SOS3 binds to the activated SOS2 [38]. The activated SOS3–
SOS2 protein complex phosphorylates the SOS1 plasma membrane Na+/H+ antiporter to
efficiently pump Na+ out of the cell [39].

The slight insignificant increase in Mg2+ ions for shoots of inoculated salt-stressed
eggplants was accompanied by a significant increase in photosynthetic pigments. This
may be explained by the fact that in the current study, Mg2+ concentration was recorded at
2.75 mg g−1 DW which might not hamper photosynthesis. In addition, it was reported by
Hauer-Jákli and Tränkner [40] that Mg2+ concentrations of less than 1.5 mg g−1 DW didn’t
induce negative effects on the photosynthetic capacity of Triticum aestivum and Helianthus
annus. In another study, low leaves Mg2+ supply (0.3 mg g−1DW) did not affect vegetative
biomass formation in wheat [41].

Phosphorous and nitrogen were also significantly enhanced in bioinoculated salt-
stressed eggplants compared with salinity-stressed conditions. This was suggested to be
due to the attractive approach of P-solubilizing activity of Bacillus subtilis, Pseudomonas
sp., and Aspergillus terreus. Bacillus subtilis solubilizes soil P, enhances nitrogen fixation,
and produces siderophores that suppress the growth of pathogens [42]. The Pseudomonas
stutzeri strain A1501 fixes nitrogen under microaerobic conditions in the free-living state
where certain gene products in this species are involved in the regulation of the nitrogen
fixation process. Interestingly, A. terreus strains were able to solubilize zinc-P under very
saline conditions (up to 10% NaCl) [43].

Solanum melongena as glycophyte restricts toxic ions intake by roots and constrains
their transport to the shoot. In the current study, under salinity stress Na+ ions were largely
translocated to the shoot; this was revealed from the relatively higher TF compared to that
of untreated plants, while application of selected bioinoculum to salt-stressed eggplants
relatively decreased the TF of Na+ ions with respect to saline pots. The Solanum trovum
resistance mechanism to salinity was moderately based on the active transport of toxic ions
to the leaves and, probably, a better capacity to store them in the vacuoles [44,45].

Polyamines are documented to enhance plants stress tolerance, however, PGPR secre-
tion of polyamines is largely unknown [46]. Application of the selected bioinoculum to
salt-stressed eggplants in the current work showed a significant increase of both root and
shoot tested Spm and Spd compared to salt stressed plants. The shoot attained relatively
higher PAs than the root, suggesting production of hormonal signals from the root that
communicates information to the shoot. The higher level of root Put compared to Spm
+ Spd revealed its substantial alleviative role in defending against salt-stress in eggplant
roots. Because of the polycationic nature of polyamines, they participate with antioxidant
activity and scavenging free radicals in plant salt tolerance strategies to abiotic stresses [47].
Concomitantly, Zhang et al. [48] emphasized Put effect on enhancing salt tolerance by
reducing the oxidative damage in Glycine max L. roots. The exogenous Put might be closely
related to salt stress tolerance in plants, which inhibits Na+ uptake and stimulates K+

inward, thus increasing the K+/Na+ ratio in cucumber [49]. Current data showed that the
increase in endogenous root Put exerted the same effect on Na+, K+, and K+/Na+ ratio.

Nevertheless, the shoot Spm + Spd of the studied eggplant exceeded Put by about
7-fold suggesting their substitutive role in shoot salt tolerance. Zapata et al. [50] recorded
an increased ratio of (Spm + Spd)/Put under salinity that has been correlated with the
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defensive role against salt-stress. Similarly, El-Shintinawy [51] also referred that salinity
significantly boosted the increase of Spm and Spd accompanied with an inhibition in
Put content in Triticum aestivum L. cultivars. Xie et al. [52] reported that Bacillus subtlilis
OKB105 synthesized spermidine and is the pivotal compound related to plant growth
promotion. Additionally, Spermidine from Bacillus megaterium BOFC15 increased cellular
polyamine accumulation in Arabidopsis, thereby activating PA-mediated signaling pathways
contributing to the osmotic stress tolerance of plants [46].

Accumulation of proline is a common feedback to salt stress in crop plants. In the
current study, under salinity stress, proline content recorded a significant increase in
roots and shoots compared to control. Proline content was increased in two genotypes
(Barcelone and Threa) of S. melongena L. under salinity stress [53]. Similarly, leaf proline
levels increased significantly in S. melongena and S. insanum in response to different salt
stress treatments, moreover it is suggested that S. insanum is more tolerant to salinity stress
due to its capacity to accumulate proline and to a lesser extent Na+ and Cl− [44].

Application of the bioinoculum to salt stressed eggplants resulted in higher proline
content for roots and shoots, which was consistent with the substantial enhancement of
proline after inoculation of Oryza sativa with nine salt tolerant bacterial isolates including
Bacillus sp. [54]. This clarifies the mitigating role of proline in the defense system of
eggplants through sweeping ROS, adjusting ion homeostasis, protecting osmotically, and
stabilizing subcellular structures. Interestingly, it seems to be a cooperative role between
proline and polyamines to alleviate salinity stress in roots and shoots of S. melongena L.
as both attained increasing contents at S + I compared to salt-stressed pots, at least in the
presented dataset under the prevailing experimental conditions.

Molecular characterization of the gene expression using RAPD PCR reveals some of
the physiological defensive mechanisms. The expression of psbD gene encoding the D2
subunit of the PSII reaction center (PSII D2 protein) is particularly interesting, because
D2 represents the starting point for the assembly of PSII as a whole [55]. In the current
work, the upregulation of the shoot psbD gene expression by about 5-fold was achieved
after treatment of salt-stressed eggplants with the selected bioinoculum. This refers to
the efficiency of binding to cofactors and the effectiveness of electron transfer through D2
protein that constitutes part of the D1-D2 heterodimer of PSII; consequently, it signifies the
efficiency of PSII in ATP formation. The amount of D2 available directly determines the
levels of the other component subunits of PSII via feedback control mechanisms according
to the CES model (control by epistasis of synthesis) for the temporal sequence of PSII
assembly [56]. As well, mycorrhizal colonization of salt stressed Robinia pseudoacacia
upregulated the expression of three chloroplast genes, including RppsbD in leaves [57].

The activity of GR is reported to play a pivotal role in determining stress tolerance
in plants under different abiotic stresses [58]. The upregulation of GR gene expression in
eggplant roots and shoots confirmed that, as a consequence of PGPR and RF inoculation,
eggplant acquired protection against challenging salt stress. These results agree with
the study of Gururani et al. [59], who documented the enhanced mRNA expression of
different ROS pathway genes after exposure to salt, drought, and heavy metal stress
in PGPR inoculated Solanum tuberosum plants. Also, inoculating Abelmoschus esculentus
L. plants with PGPR, including Bacillus megaterium and Enterobacter sp. resulted in the
upregulation of ROS pathway genes (APX, CAT, DHAR, and GR) under salinity stress [60].
Moreover, in a study by Brenes et al. [44], results of semiquantitative RT-PCR revealed that
expression levels of different ROS pathway genes encoding APX, CAT, GR, and DHAR
were increased in the ACC deaminase-containing PGPR treated salinized plants compared
to the untreated controls.

Various environmental stimuli enhanced the expression of GST, including biotic
stresses such as fungal elicitors and pathogen attack [61], and abiotic stresses such as
salt [62] and drought [63]. The gene expression of GST in the currently studied salt-treated
eggplants inoculated with PGPR and RF was upregulated 4-fold in salt-treated pots. Tre-
halose metabolite application derived from PGPR improved glutathione-S-transferase
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(GST), CAT, APX, and DHAR activities, and stimulated the glyoxalase network [64]. Analy-
sis of Arabidopsis cell-suspension culture suggested early stress-induced changes in the
expression of genes with the involvement of GST in oxidative stress protection [65]. Simi-
larly, GmGSTU4-expressing transgenic tobacco plants provided tolerance to salt stress and
the herbicide alachlor [66].

Different types of abiotic stress, including salinity, induce lipid remodeling through
specific lipases that form toxic lipid intermediates, causing membrane damage or cell
death [67,68]. Nevertheless, in the current study, downregulation of lipase gene expression
for salt-stressed eggplants treated with bioinoculum confirmed the mitigating role of PGPR
and RF of salt stress through the integrity of lipid constituents of the cell membrane. Singh
and Jha [69] discovered that treating salt-stressed wheat plants with the Serratia marcescens
bacterium efficiently scavenged ROS, resulting in lower levels of lipid peroxidation and
membrane injury. It was reported in a study by Cook et al. [70] that lipases play a pivotal
role in oxylipins synthesis, thus lipases specific to lipids of thylakoids confer in environ-
mental stress response. Therefore, it has been suggested to focus on the role of lipases
under different environmental stresses to better understand the physiological regulatory
mechanisms involved.

Control of pathogenic diseases can be generated by PGPR extracellular secretion of
proteases that hydrolyze other microbial cell walls, and trigger induced systemic resistance
against pathogenic infection in plants [71]. Thus, in the current work, the exposure of salt-
stressed eggplants to the selected bioinoculum caused the production of two proteolytic
enzymes (prot. I and prot. II) with higher upregulation of prot. I than prot. II in both roots
and shoots. This suggests that the biocontrol of PGPR and RF as biopesticides against infec-
tious pathogens could enhance the systemic resistance of eggplants. Aminisarteshnizi [72]
emphasized that the growth-promoting bacterium Pseudomonas fluorescens produces a lytic
enzyme protease that suppresses the root-knot pathogen nematode Meloidogyne incognita in
eggplant crops. In addition to inhibiting penetration and consequent root-knot infection
in Vigna radiata [73], Bacillus subtilis strain and Pseudomonas aeruginosa caused more than
50% mortality of juveniles of the root-knot nematode Meloidogyne javanica. Also, an iso-
lated strain of Bacillus subtilis was recorded to induce systemic resistance against powdery
mildew on barley [74]. In a study by Behera et al. [75], the two fungal isolates Trichoderma
longibrachiatum and Penicillium rubidurum were able to produce a proteolytic zone of the
alkaline protease. Moreover, many fungal species of the genera Aspergillus, Trichoderma,
Rhizopus, Mucor, and Penicillium have been documented for protease production [76].

The PGPR and RF selected in the current work suggest a modulatory impact on the
systemic resistance of Solanum melongena L. Baldi cultivar to challenging salt stress, which
strongly recommends their application as an effective green biofertilizer and biopesticide.
Systemic resistance begins with plant genes until morphometric traits (Figure 5). Resistance
originates from gene expression related to four of the most treasured physiological aspects
in plants, photosynthesis, the antioxidant system, and the catabolism of lipids and proteins.
Thus, the collaboration of these genes was reflected in the biochemical constituents in
roots and shoots, and sometimes leaves. It seems that psbD enhances photosynthetic
pigments and the efficiency of PSII (Fv/Fm and Fv/F0) with no significant change among
all treatments. Osmoprotection and antioxidant systems to ROS formed under salinity
stress are scavenged and controlled by GR and GST, which might have a role in increasing
proline and polyamines content. Elemental homeostasis contributes to either restricting
or expelling Na+ ions via the SOS signaling pathway. Catabolism of lipids contributes to
preserving the compartment cell membrane while defending against pathogenic diseases
and is achieved by lytic proteases. Finally, this was expressed in the morphology and
morphometric traits of Solanum melongena L. plants.
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Figure 5. Proposed modulation of systemic resistance in salt-stressed Solanum melongena L. shoots
and roots due to inoculation with selected PGPR and RF. Colored box refers to physiological aspects;
psbD related to photosynthesis in green; GR and GST related to antioxidant system in red; lipase
related to lipid catabolism in yellow; protease I and protease II related to protein catabolism in brown.

4. Materials and Methods
4.1. Experimental Materials and Growth Conditions

A pure variety of eggplant seeds (Solanum melongena L. Baladi) cultivar was obtained
from Nubaseed Company. Viable seeds of eggplant were surface sterilized with 0.1% (v/v)
HgCl2 solution for 5 min and then rinsed three times with distilled water. Seeds were
soaked in distilled water for 5 days to break dormancy until they radically began to rise a
few mm in length. Early germinated seeds (EGS) were translocated to a styrofoam seedling
tray. The soil mixture used in all experiments was composed of (clay: sand; 1:2). The
styrofoam seedling tray was watered twice a week with distilled water till the first foliage
leaf appeared (14 days after sowing “DAS”).

4.2. Isolation and Identification of Plant Growth Promoting Rhizobacteria and Rhizofungi

Strains of PGPR as well as RF were isolated from the rhizospheric soil of S.melongena
L. Baladi cultivar grown in saline soil. In experiments conducted as part of the current
study, two strains of PGPR (Bacillus subtilis B1ZSRS and Pseudomonas sp. B2ZSRS) and three
strains of rhizofungi (RF) (Trichoderma harzianum, Aspergillus terrus, and Penicillium citrinum)
were used as test inoculum.

4.2.1. Differentiation between Bacterial Isolates

RAPD PCR was developed in recent years to describe and indicate the phylogeny of
different organisms. The chosen bacterial isolates were subjected to RAPD PCR utilizing A
and C short primers; their sequences are A: AGGAGGACACTATGAGTG and C: TACGGY-
ACCTTGTTACGACTT. The cyclic reaction, composed of 4 min at 95 ◦C and then 40 cycles
of 40 s at 94 ◦C, 50 s at 30 ◦C, and 50 s at 72 ◦C, followed by a supplementary 10 min at
72 ◦C [77]. Primer C more effectively differentiated selected bacterial isolates than primer
A. For all isolates tested, the size of the amplified PCR fragment was estimated; the primers
will bind somewhere in the structure, but it is unknown exactly where. Three bacterial
isolates, B1, B4, and B7 were subjected to further study and identification.

4.2.2. Molecular Identification and Phylogeny of Bacterial Isolates

A Thermo Fisher’s kit was used to extract genomic DNA. The universal primers
were used to amplify the 16S rRNA region (F: AGAGTTTGATCMTGGCTCAG and R:
TACGGYACCTTGTTACGACTT) [78]. The reaction was carried out with the aid of a DNA
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template. The MEGA 7 software tool was used to perform several alignments based on the
most closely related sequences and similarity values. The MEGA 7 program was used to
rebuild a phylogenetic tree.

4.2.3. Identification of Fungal Strains

The three fungal strains used in the applied bioinoculum were identified at the my-
cological center in the faculty of science at Assuit University, Egypt. The fungal cultures
were grown in sterile Petri plates containing autoclaved Czapek’s yeast extract agar (CYA)
followed by incubation for 7 days at 28◦C [79]. The medium contained (g/L): sucrose, 30;
Na2NO3, 2; K2HPO4, 1; KCl, 0.5; MgSO4.7H2O, 0.5; FeSO4, 0.01; ZnSO4, 0.01; CuSO4, 0.005;
yeast extract 5; chloramphenicol, 0.25; and agar, 15 (final pH 7.3). Identification of the
growing fungi was based on colony characteristics (growth rate, color, texture, and reverse
pigmentation) as well as microscopic features (shape of conidiophores, conidiogenous
cells, and conidial dimensions). Fungal hyphae and conidia were stained with lactophenol
cotton blue for better visualization. An Axiostar trinocular microscope, made by Zeiss in
Germany, was used for the examination. The main references consulted for identification
included [80–82].

4.3. Characterization of the Selected Plant Growth Promoting Bacteria and Rhizofungi

Table 4 gives an insight into different bacterial and fungal species constituting the
selected bioinoculum applied to the S. melongena Baldi cultivar exposed to salinity stress in
the present study.

Table 4. Microbial load (bioinoculum I) characterization applied on Solanum melongena L. after
exposure to 200 mM NaCl salinity stress.

Organism Type of
Organism

Location of the
Organism Function of the Organism Reference

Bacillus subtilis

Gram + ve
non-

pathogenic
Bacterium

Soil/Colonizing
plant roots

* Salt tolerant bacterium
* Protect cellular membranes integrity

* Increase nitrate reductase and glutamine synthetase activities
* Supply IAA to the cultures

* Reduce ethylene generation under salt stress through ACC
deaminase secretion, thus increase nutrient uptake and growth.

* Decrease oxidative and osmotic induced stress
* Manifested plant growth improvement, slowing down statolite

starch hydrolysis under salinity

[4,83–86]

Pseudomonas sp. Gram -ve
Bacterium

Saprophytic/
parasite on plant

surfaces

* Salt tolerant bacteria
* Promote plant growth by suppressing pathogenic micro-organisms

* Synthesize growth-stimulating plant hormones
* Promote increased plant disease resistance

[87–89]

Trichoderma
harizanum

Free-living
saprophytic

fungi

In most types of
soils/mutualistic
endophytic with

plant species

* Salt tolerant fungi
* Significantly suppress the growth of plant

pathogenic microorganisms
* Regulate the rate of plant growth

* Well known for biological control mechanism
* Produce secondary metabolites in agroecosystems

[90–92]

Aspergillus
terrus

Saprophytic
filamentous

fungi

Part of the soil
microbiota/can be

found in many
types of

soils/frequently
found as endophytic

* May live at pH 3 and 30% salinity
* Used with PGPR, induces positive effects on plant growth

and development
* Induce systemic resistance and reduce plant stress

* Attain phosphorous-solubilizing activity
* Strong biocontrol activity

[93–95]

Penicillium
citrinum

Mesophilic
Fungus

Soil is their natural
habitat

* Isolates tolerate salt concentration above 10%
* Plant growth promoting ability

* Contain ACC deaminase activity which sustains plant growth and
development under stress conditions

* Produces mycotoxin citrinin, cellulase, endoglucanase, as well
as xylulase.

* Produces Gibberellins

[8,96,97]
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4.4. Experimental Design

The experiments of the current study were carried out as factorial experiments based
on Randomized Complete Block Design, with three replications in the Botanical Garden at
the Faculty of Science, Alexandria University, Egypt. A sublethal concentration of 200 mM
NaCl was determined after preliminary salinity screening of 30–300 mM NaCl on Solanum
melongena L.

The tested inoculum (2 PGPR X 3 RF) was selected based on prior permutations and
combinations using Minitab (version 12) for different PGPR and RF strains that have been
isolated from S. melongena as previously mentioned. The tested isolates were purified,
identified, and numbered, then preserved on 50% glycerol stock. Biochemical analysis of
isolated PGPR and RF was carried out before identification.

Selection of the tested inoculum applied in the current work on S. melongena under
salinity stress was based on the best morphological parameters measured and the leaves
proline content from a preliminary experiment (Supplementary Table S1).

The experiments were carried out under controlled conditions (photon flux density
(PFD) of 450 µmol m−2·s−1, 14/10 h light/dark cycle, temperature of 30 ± 5 ◦C and
relative air humidity of about 85%). After sowing, the field capacity of the culture pots
was estimated at 450 mL of demineralized water. Experiments were carried out using a
homogenous dried soil mixture in plastic culture pots (12 cm diameter and 30 cm height)
with 1 kg soil capacity. In each pot, two selected seedlings from the styrofoam seedling tray
of S. melongena were planted (14 DAS). Pots were regularly irrigated to field capacity three
times/week during the whole experiment. Planted pots were left for 9 days to acclimatize
to pot conditions, and on day 9, pots were supplied with 1/4 N Hoagland solution. The
first half of the pots received distilled water (30 DAS), while the second half received
200 mM NaCl until wilting symptoms appeared. All pots were exposed to optimized closed
growth chambers.

There were 40 pots for each experimental unit (replicate), with 2 plants/pot. The
pots were divided into four sets (47 DAS) with 20 plants/set; one irrigated with distilled
water I; the second one inoculated with the selected inoculum and irrigated with distilled
water (I); the third set was irrigated with 200 mM NaCl (S); and the fourth set was irrigated
with 200 mM NaCl and inoculated with selected inoculum (S + I). Eggplant samples were
harvested 66 days after sowing, washed with running tap water, followed by demineralized
water, then blotted gently using layers of tissue paper.

4.5. Measurement of Growth Traits

Different growth traits were determined in shoots and roots at the end of the salt
treatments: plant height (PH), root length (RL), shoot length (SL), R/S ratio, and fresh
weight of root and shoot systems were immediately determined. Dry weight samples
were dried at 80 ◦C till a constant dry weight was reached. The salt-tolerance index (STI
%) for different treatments was calculated as the percentage of the ratio of the value for
the NaCl-treated plant/value for the control [98]. STI was calculated for all measured
growth traits.

The Leaf Area Meter, a Model LI 3000 Portable Area Meter assembled with a con-
veyor belt, was used to calculate leaf area. Individual areas were measured to the nearest
square centimeter.

4.6. Extraction and Estimation of Chlorophyll and Carotenoid Contents

According to the method of Lichtenthaler et al. [99], the content of chlorophyll and
carotenoids were determined. Solanum melongena leaves fresh weight (100 mg FW) was
blotted dry on tissue paper and placed in 5 mL of di-methyleformamide, left to stand in
the dark over night for complete extraction. Absorbance was recorded at 646.8 nm and
663.2 nm for the chlorophyll assay and 453 nm for the carotenoids assay (in the supernatant)
by a UV-Visible spectrophotometer (JENWAY, 6305, Staffordshire, ST15 OSA, UK).



Plants 2022, 11, 659 16 of 22

4.7. Measurement of Chlorophyll Fluorescence

Chlorophyll fluorescence measurements were monitored in fully expanded young
leaves. Measurements of Chl fluorescence were performed with the OS-30P pulse modu-
lated chlorophyll fluorimeter (Opti-sciences, Hudson, NY, USA). Fluorescence was excited
by illuminating leaves with a wear, red pulsed measuring light intensity (<0.1 µmol m−2s−1)
with a peak wavelength of 650 nm. Prior to measurement of fluorescence, plants were kept
in darkness at 22 ± 2 ◦C for at least 40 min to allow dark adaptation to ensure that the
primary quinine acceptor (QA) was maximally oxidized. The basal non-variable chloro-
phyll fluorescence level with open PII reaction centers (Fo) and the maximal fluorescence
intensity indicator (Fm) level with closed PSII were determined at room temperature on
intact leaves of 10 replicate plants from all treatments. The Fo (as initial fluorescence level)
was measured by a weak red measuring beam, followed by a saturation light pulse to
measure the maximum Fm level. The variable fluorescence (Fv) was calculated as the
difference between Fm and Fo. The maximum quantum yield of PSII (Fv/Fm) was also
calculated [100].

4.8. Elements Analysis

Sample preparation, metal analysis, and quality control were carried out according to
the standard method of Kimbrough and Wakakuwa [101]. Oven-dried and homogenously
milled, 200 mg of plant samples were mixed with 3 mL of concentrated HNO3 in a beaker
and covered with a ribbed watch glass. Then, the mixture was heated on a hot plate at
90–95 ◦C and left to evaporate to a low volume. After cooling, the previous step was
repeated with additional portions (3 mL) of HNO3 until the digested solution either turned
into a lighter color or reached a stable color, and the digestate was then refluxed with a
small portion of HCl (3 mL) for complete digestion. Finally, the sample was filtered through
filter paper (Whatman 42, diameter 110 mm). Then, the beaker walls and watch glass were
washed with deionized water, and the filter paper was rinsed with diluted HNO3 (10%).
The final volume was adjusted to 25 mL with deionized water. To determine different metal
contents, the solutions were subjected to Inductively Coupled Plasma-Optical Emission
Spectroscopy (ICP-OES; Agilent 5100 VDV, Santa Clara, CA, USA). The content of Na+,
K+, Ca2+, and Mg2+ was computed as mg·g−1. The flow rates of plasma, auxiliary, and
nebulizer of ICP-OES were kept at 12, 1, and 0.7 mL·min−1, respectively. The sample
uptake and stabilization time were 10 s for each sample.

4.9. Polyamines Detection

Detection of free polyamines (spermine, spermidine, and puterscine) in S. melongena L.
shoots and roots were carried out according to the method described by Gong and Liu [102]
using HPLC Amens 2/001.

4.10. Differential-Display Reverse Transcription-PCR (DDRT-PCR) and Semi Quantitative Gene
Expression
4.10.1. RNA Extraction

The frozen plant tissue was transferred to an appropriately sized RNase-free tube. The
Easy-spin™ Total RNA Extraction Kit was used to extract total RNA from plant tissue. A
High-Capacity cDNA Reverse Transcription Kit was used for the generation of the first
cDNA strand.

4.10.2. RAPD-PCR

Twelve short primers specific for photosystem II D2, glutathione reductase (GR, EC
1.6.4.2), glutathione-S-transferase, lipase, protease I, and protease II genes designed using
sequences in the gene bank were subjected to PCR for cDNA amplification (Table 5). The
resulting patterns were analyzed using a statistical method to determine the molecular
weight of different bands that appeared on the agarose gel. PCR reaction was performed
for 4 min at 95 ◦C followed by 40 cycles each of: 40 s at 94 ◦C, 50 s at 30 ◦C, and 50 s
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at 72 ◦C, followed by a supplementary 10 min at 72 ◦C. After amplification by PCR, the
products were checked on 2% agarose gel electrophoresis. Bands which give molecular
weight specific to each gene were compared to all treatments (root and shoot) and semi-
quantitative analysis was carried out using software of gel analyzer (Syngene Geneflash
Gel Documentation). A confirmation test was done for the specific PCR product under
molecular weight related to the gene after purification using a gel extraction purification kit
using the pair of primers that related to the gene under test. A PCR reaction was performed
for 4 min at 95 ◦C followed by 40 cycles each of: 40 s at 94 ◦C, 50 s at 55 ◦C, and 50 s at 72 ◦C,
followed by a supplementary 10 min at 72 ◦C using pairs of primers for specific gene(s)
(Table 5). After converting nucleotide sequences to amino acid sequences, sequence data
were analyzed and compared with data from a gene bank using different bioinformatics
programs (Tcoffee and BioEdit).

Table 5. Primers used for the cDNA amplification to detect photosystem II D2 (psbD), glutathione
reductase (GR), glutathione-S-transferase (GST), lipase (Lip.), protease I (Prot. I), and protease II
(Prot. II).

Primer Sequence Length (bp) Gene

F: AGGCTGTGGACCGACATCTA
266 psbD

R: GCTCATGAACACGTCCCTCT

F: CACATCCTGATCGCCACCG
200 GRR: TCCTTCCTGAAGCACAGGTC

F: GAAGATCCCCGTGCTGATCC,
390 GSTR: AAGTTGGGGAACTTCTCGCT

F: GCACATCCTGAGGGTGAACA
369 Lip.

R: AGCTCGTAGTCCTCCCTGTC

F: AGGCTGTGGACCGACATCTA,
489 Prot. IR: GCTCATGAACACGTCCCTCT

F: CGACACCATGCAGTACGTGA,
386 Prot. IIR: TGGCGTAGTTGGCGTACATC

4.11. Statistical Analysis

A two-way analysis of variance (ANOVA) approach was used to analyze the obtained
data. Duncan’s multiple comparison range tests using SPSS software [103] were carried
out to identify statistically significant differences among the treatments at p < 0.05. Data
were presented as means ± standard deviation (n = 3), with different alphabetical letters
revealing significant differences between treatments. Student t-test was used for normally
distributed quantitative variables to compare between two studied groups. “*” means
statistical significance at p ≤ 0.05. The translocation factor (TF) of elements in plants was
calculated by dividing the element content in shoots by the element content in roots [104].
Statistical analysis software followed the methods of Sokal and Rohlf [105].

5. Conclusions

Most of the studies emphasize the role of plant growth promoting rhizobacteria
against biotic and abiotic stresses. Nevertheless, the current study revealed the synergistic
effects between rhizofungi and PGPR in salt-stress mitigation, which surprisingly enhance
pathogenic disease resistance concomitant with inherent systemic resistance in Solanum
melongena L. The ameliorative role of polyamines was depicted in enhancing resistance
in eggplant roots and shoots; as putrescene was activated to defend root salinity stress, it
was substituted by spermine and spermidine in shoot salt resistance. Further studies are
suggested to elucidate the PAs signaling communication for plant-bioinoculum crosstalk.
Molecular examination at the gene level untangled the systemic resistance of S. melongena
to salt-stress with different physiological aspects, which necessitates more investigation
to unravel the physiological mechanisms and pathways involved. Thus, the Solanum
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melongena L. Baldi cultivar could be regarded as a source of “salt-tolerance” genes for the
genetic improvement of this trait in other eggplants. In particular, improvement of almost
all eggplant measured parameters was achieved through PGPR and RF inoculation after
17 days of exposure to 200 mM NaCl (until wilting). Future application of concomitant
inoculum with salt stress predicts much more improvement, as this mimics the probability
of further saline water irrigation in agricultural fields. The experiments conducted to test
the efficiency of rhizobacteria and rhizofungi revealed that the applied bioinoculum is
attractive as well as an economic approach for sustainable agriculture. In the new climate
change scenario, there is a need to lower the use of chemical fertilizers. Thus, the abrupt
shift towards the environmentally safe, more productive use of natural biofertilizers to
reduce pest attacks is a demand of time. Therefore, it is recommended to be addressed
in open field conditions to save eggplant as one of the most important economic crops
worldwide. Furthermore, it is not just a biofertilizer to counteract salt-noxious effects, but it
also acts as a biopesticide due to fungal resistance to pathogenic diseases. The agricultural
world is now eager for such types of associations to be applied to further economically
important crop plants.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants11050659/s1, Table S1: Effect of 0 (C), selected bioinoculum
(I), 200 mM NaCl (S) and their interactions on plant height (PH), root length (RL), shoot length (SL),
root/shoot ratio (R/S), root fresh weight (RFW), shoot fresh weight (SFW), total fresh weight (TFW)
of Solanum melongena L. plant 66 days after sowing; Table S2: Effect of 0 (C), selected bioinoculum (I),
200 mM NaCl (S) and their interactions on root dry weight (RDW), shoot dry weight (SDW), total dry
weight (TDW), root water content (RWC), shoot water content (SWC), total water content (TWC), and
leaf area(LA) of Solanum melongena L. plant 66 days after sowing; Table S3: Similarity percentages
and accession numbers obtained after comparing the sequence of the tested strain (B1SRZS) to the
submitted sequences in Gene Bank; Table S4: Similarity percentages and accession numbers obtained
after comparing the sequence of the tested strain (B4SRZS) to the submitted sequences in Gene Bank;
Table S5: Similarity percentages and accession numbers obtained after comparing the sequence of the
tested strain (B7SRZS) to the submitted sequences in Gene Bank.
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