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A B S T R A C T

This paper empirically investigates the causal linkages between COVID-19 spread, government
health containment and economic support policies, and economic activity in the U.S. up to
the introduction of vaccines in early 2021. We model their joint dynamics as generated by a
structural vector autoregression and estimate it using U.S. state-level data. We identify structural
shocks to the variables by making assumptions on their short-run relation consistent with salient
epidemiological and economic features of COVID-19. We isolate the direct impact of COVID-19
spread and policy responses on economic activity by controlling for demand fluctuations using
disaggregate exports data. We find that health containment and economic support policies are
highly effective at curbing the spread of COVID-19 without leading to a long-term contraction
of economic activity.

. Introduction

Economic activity contracted sharply in the U.S. during 2020 as COVID-19 spread rapidly and all levels of government introduced
ealth and containment policies aimed at curbing the virus. Understanding the impact of the pandemic on economic activity as well
s the effectiveness and economic impact of health and containment policies has been a major challenge faced by policymakers
hroughout the world when designing policies to respond to the outbreak of COVID-19. Disentangling the effects of COVID-19
pread and health containment policies on economic activity is a difficult problem. The fundamental issue is that economic activity,
OVID-19 spread, and health containment policies are jointly determined and causally affect each other.

The goal of this paper is to empirically investigate the causal linkages between COVID-19 spread, health containment policies,
nd economic activity up to the introduction of vaccines in early 2021. To do so, we model their joint dynamics as generated by a
tructural vector autoregression (SVAR) model and estimate it using U.S. data. Motivated by salient economic and epidemiological
eatures of COVID-19, we identify shocks to each of these variables by making assumptions on the short-run relation between
hem. We estimate the model with sufficient power despite the short time series by exploiting heterogeneity across U.S. states
n the timing and intensity of COVID-19 spread and policy responses. We use exports data disaggregated by state of production,
estination country, and disaggregated product codes to isolate the direct impact of COVID-19 spread and health containment
olicies on economic activity controlling for fluctuations in demand that might also be affected by these channels.
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Our main findings are as follows. First, we find that an increase in the spread of COVID-19 leads to a moderate contraction of
conomic activity but does not significantly affect the stringency of health containment policies. In particular, a shock that leads
o a doubling of COVID-19-related deaths is estimated to lead to an almost 5% decline of exports on impact. This finding shows
hat COVID-19 has been detrimental to economic activity and suggests that it might not be possible to overcome the economic
ontraction observed during the COVID-19 outbreak without first resolving the pandemic itself.

Second, we find that health containment policies are very effective at reducing the spread of COVID-19 but are estimated to lead
o a significant yet transitory contraction of economic activity. In particular, a shock to health containment policies that increases
heir stringency by approximately one standard deviation of their cross-state variation is estimated to reduce deaths and exports
y approximately 75% and 7.5%, respectively. Our estimates imply that economic activity recovers quickly and the impact of the
olicies returns to pre-shock levels within a quarter. These findings provide a positive view on the effectiveness of health containment
olicies, significantly mitigating the pandemic without inflicting long-term damage to economic activity.

Finally, we find that economic support policies lead to a significant decline of COVID-19 spread while keeping overall economic
ctivity unchanged. In particular, a shock to economic support policies that increases their generosity by approximately half a
tandard deviation is estimated to reduce deaths by 13%. Economic support policies might provide firms and households with
he resources to adapt their operations to the new environment: encouraging contact-intensive economic activity to shut down
emporarily, leading to a reduction of COVID-19 spread while allowing economic activity in non-contact-intensive occupations to
ontinue operating.

Taken together, these findings suggest that health containment and economic support policies are complementary to each other
nd highly effective at curbing the spread of COVID-19 without leading to a long-term contraction of economic activity. Conversely,
hey suggest that limited governmental responses on both health and economic fronts exacerbate the spread of COVID-19 while
ontracting economic activity. Thus, our paper contributes to a rapidly growing literature that investigates the joint relation between
OVID-19 spread, the policy responses to it, and economic activity. While much of the literature has investigated these joint
ynamics using quantitative equilibrium models, we provide a novel approach to identify empirically the relative role of these
hannels during the COVID-19 pandemic.

Our empirical strategy is based on addressing three key issues. The first problem consists of identifying the shocks to each
f the variables. We address this problem by making assumptions consistent with salient economic and epidemiological features
f COVID-19. In particular, we make the following assumptions on the short-term relation between COVID-19 spread, health
ontainment policies, and economic activity. We assume that (𝑖) shocks to economic activity do not contemporaneously affect
OVID-19 spread or health containment policies, (𝑖𝑖) shocks to health containment policies affect economic activity but do not

mpact COVID-19 spread contemporaneously, and (𝑖𝑖𝑖) shocks to COVID-19 spread affect economic activity and health containment
olicies contemporaneously. We measure COVID-19 spread using data on deaths due to COVID-19, and conduct the analysis using
onthly data. Given this empirical implementation, we argue that assumptions (𝑖) − (𝑖𝑖𝑖) capture salient epidemiological features of
OVID-19 as well as key features of the link between policy-making and economic activity.

The second problem consists of obtaining estimates with sufficient power despite the limited number of time series observations
vailable to estimate the system using data since the beginning of the pandemic. We overcome this problem by exploiting
eterogeneity across U.S. states in the dynamics of COVID-19, health and containment policies, and economic activity. We therefore
dentify the effects of COVID-19 spread and health containment policies from differences in their timing and intensity across U.S.
tates.

The third problem consists of isolating the direct supply-side impact of COVID-19 spread and health containment policies on
conomic activity. In particular, our goal is to identify how much COVID-19 spread and policies affected the extent to which
eople have been able to work and produce in isolation from changes in demand. We control for differences in demand levels
nd dynamics across U.S. states by using manufacturing exports data disaggregated by state of production, destination country, and
-digit product code. We identify the supply-side impact of COVID-19 spread and health containment policies under the assumption
hat exports are only a function of domestic supply and foreign demand factors. Moreover, our access to disaggregate exports data
llows us to contrast the dynamics of exports across states by controlling for demand fluctuations within (destination country,product
ode,month) triples.

Our estimation approach is therefore designed to identify the relative role of COVID-19 spread and government policies by
omparing the dynamics of exports within (4-digit product code,destination country,month) triples across states that differ in the
xtent of COVID-19 spread and policy responses. For instance, consider exports from multiple U.S. states of a given 4-digit HS product
ode (e.g., 4-digit HS code 8712: ‘‘bicycles and other cycles, including delivery tricycles, not motorized’’) to a given destination
e.g., France) in a given period (e.g., June 2020). Our approach identifies the relative impact of virus spread and government
olicies by comparing narrowly defined export transactions across states that differ in the intensity, timing, and response to the
andemic.

We estimate the model following this approach, orthogonalize the shocks à la Cholesky, and compute impulse response functions
o quantify the causal impact of shocks to COVID-19 spread and health containment policies. We then contrast these implications
ith their counterparts based on a model estimated with economic support policies in place of health containment policies. After
ocumenting our main findings, we investigate the potential importance of using disaggregate exports data, and the extent to which
ur findings depend on the timing in which exports are measured. We conclude by examining the implications of our findings for
he dynamics of employment during COVID-19. We show that shocks to COVID-19 spread and health containment policies are likely
2

o have led to a significant decline of employment, yet more muted than exports.
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Finally, we would like to emphasize that the focus of our analysis is restricted along a few dimensions. First, our analysis
nd identification strategy are best suited to study the joint dynamics between COVID-19 spread, health containment policies,
nd economic activity in the absence of vaccines. Thus our focus on the pre-vaccine period up to January 2021, when only non-
harmaceutical tools were available to combat the disease — a critical stage in any pandemic.1 Second, we restrict attention to

the type of health and containment policies effectively introduced by developed economies such as the U.S. or European countries
in response to COVID-19 — e.g., mask mandates, testing requirements, or school closures, among a wide range of interventions
introduced during this period. Thus, our conclusions on their role is limited to these types of policies, and we abstract from other
types of policy responses.2 Third, we abstract from the impact on relatively high contact-intensive occupations by restricting attention
to economic activity in the manufacturing sector.

Our paper contributes to several literatures that have grown exponentially since the onset of COVID-19. On the one hand,
our paper is closely related to a series of papers written early in the pandemic with the goal of theoretically and quantitatively
understanding the impact of containment policies on the spread of the virus and economic activity. The work of Eichenbaum et al.
(2021), Alvarez et al. (2020), Berger et al. (2020), Jones et al. (2021) and Kaplan et al. (2020), among many others, has been
very influential in highlighting the joint interactions between economic activity, the spread of the virus, and containment policies.
Our paper contributes to this literature by disentangling empirically the causal linkages between these channels. Thus, our findings
provide a natural benchmark to evaluate the implications of quantitative macroeconomic-epidemiological models.

On the other hand, this study is closely related to a rapidly growing empirical literature that investigates the impact of
containment policies on virus spread and economic activity. This literature was sparked by Correia et al. (2020), who use U.S. data
from the 1918 flu pandemic to study the health and economic impact of non-pharmaceutical interventions (NPIs) implemented in the
U.S. and across countries during COVID-19. Several studies have now studied the joint linkages between virus spread, containment
policies, and economic outcomes across countries during COVID-19: Camehl and Rieth (2021), Zhuo et al. (2020), Demirguc-Kunt
et al. (2020), Caselli et al. (2022), Chen et al. (2020) and Deb et al. (2021), among others.3 We contribute to this growing empirical
literature by developing a novel identification approach to estimate a SVAR model of the joint dynamics of COVID-19 spread,
policies, and economic outcomes. Our approach exploits heterogeneity across U.S. states and relies on previous findings on the
timing among them as well as on rich disaggregate data on international trade to isolate their supply-side impact from fluctuations
in demand.

Methodologically, our paper builds on the estimation methods developed by Sims et al. (1986) and others. Variations of these
methods have been recently applied to answer questions on COVID-19 complementary to ours: Brinca et al. (2021), Yilmazkuday
(2022) and Beirne et al. (2020). We contribute to this literature by exploiting cross-state heterogeneity in COVID-19 spread,
containment policies, and economic activity to investigate and quantify their causal linkages.

The rest of the paper is structured as follows. Section 2 develops our empirical framework and methodology. Section 3 describes
the data that we use to estimate the model. Section 4 presents the main results. Section 5 presents additional findings. Section 6
investigates the implications for the dynamics of employment. Section 7 concludes.

2. Empirical methodology

In this section we develop our empirical framework and methodology. We present our model, discuss our identification
assumptions, and derive the implied orthogonalized system that we use to compute our findings.

2.1. Model

We model the joint dynamics of COVID-19 virus spread, health containment policies, and exports as jointly driven by the
following vector autoregression:
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(1)

where 𝑉 , 𝑃 , and 𝑋 denote the main variables of interest: COVID-19 spread, health and containment policies, and exports,
respectively. Subscripts 𝑠, 𝑡, and 𝑖 denote state, period, and an export-specific identifier, respectively. In our baseline empirical
application, 𝑖 denotes (product,destination) pairs and 𝑡 denotes (month,year) pairs. 𝐀 and Ω are 3 × 3 matrices. {𝑍𝑘

𝑠,𝑡,𝑖}
𝐾
𝑘=1 is a set

of 𝐾 control variables, and {𝐵𝑘
𝑉 , 𝐵

𝑘
𝑃 , 𝐵

𝑘
𝑋}

𝐾
𝑘=1 are their respective coefficients for each equation of the model.4 Finally, 𝜀𝑉 , 𝜀𝑃 , and

𝜀𝑋 are mean-zero innovations

1 Note that our findings are not only applicable to the period prior to the introduction of vaccines. To the extent that vaccines become less effective with
he emergence of new variants, our findings can also prove critical at advanced stages of a pandemic.

2 In particular, our analysis is silent on the role of more severe lockdown policies such as those implemented by several Asian countries.
3 Beyer et al. (2020) is a related study focused on India, while Mezencev and Klement (2021), Lai et al. (2020), and Flaxman et al. (2020) focus on the

ealth impact of containment policies. Padhan and Prabheesh (2021), Brodeur et al. (2021), and Perra (2021) provide detailed reviews of the related empirical
iterature.

4 𝑘
3

𝑍𝑠,𝑡,𝑖 ∈ R ∀𝑘. Note these controls can be used to estimate the model with fixed effects.
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hen, we have that the variance–covariance matrix of the shocks is given by:
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here the prime superscript denotes the transpose of a matrix. Let Σ𝛺 ∶= ΩΩ′.

2.2. Identification and orthogonalized SVAR

One of the main goals of the paper is to investigate the effects of shocks to COVID-19 spread and health containment policies
on economic activity. To do so requires that each shock of the model is identified as a shock to one of the three variables of the
model. Without further assumptions, however, the model laid out above features a standard identification problem: The matrix Ω

that controls the dynamics of the system is not identified. In particular, while Ω is a 3 × 3 matrix with 9 unknowns, we only have
6 equations to back them out from the empirical counterpart of the variance–covariance matrix Σ𝛺 due to its symmetry.

To make progress on this front, we make assumptions which introduce further restrictions that allow us to identify Ω. In
particular, we follow the approach of Sims et al. (1986) and others in making assumptions on the short-run relation between the
shocks and the endogenous variables of the model.

Given Σ𝛺 is a positive-definite matrix, there exists a Cholesky decomposition such that Σ𝛺 can be expressed as:

Σ𝛺 = 𝐋𝐋′,

where 𝐋 is a lower triangular matrix with real and positive diagonal entries.
Next, we pre-multiply the model by 𝐋−𝟏, the inverse of 𝐋, which is also lower triangular:
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. (2)

This reformulation of the reduced-form model (Eq. (1)) has two desirable features. First, the variance–covariance matrix of the
shocks is now equal to the identity matrix:
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which follows directly from the observation that
(

𝐋−𝟏)′ =
(

𝐋′)−1. That is, the shocks are now orthogonal to each other. Then, they
can only contemporaneously impact other endogenous variables of the system through the effect of 𝐋−𝟏 on the dependent variables
(that is, through the left-hand side of Eq. (2)).

This leads us to the second desirable feature of the reformulated model. Notice that the left-hand side of Eq. (2) can be expressed
as:
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The above expressions along with the reformulated model imply that (𝑖) COVID-19 spread in period 𝑡 is only affected by 𝜀𝑉𝑠,𝑡,𝑖 and is
not a function of health containment policies or exports, (𝑖𝑖) health containment policies in period 𝑡 are only affected by 𝜀𝑃𝑠,𝑡,𝑖 and
contemporaneous COVID-19 spread 𝑉𝑠,𝑡 but not by exports in that period, (𝑖𝑖𝑖) exports in period 𝑡 are affected by 𝜀𝑋𝑠,𝑡,𝑖 as well as by
contemporaneous fluctuations in COVID-19 spread and health containment policies.

These implications result from the ordering of the variables that we specified in Eq. (1) for the endogenous variables of the
model. Thus, our ordering choice is equivalent to our choice of assumptions on the contemporaneous relation across the endogenous
variables of the model. Below we describe in more detail and provide our rationale for each of the identification assumptions
4

underlying the orthogonalized SVAR presented in Eq. (2).
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The validity of our identification assumptions is necessarily linked to some details of our empirical implementation, such as the
requency of the data or the variables that we use to estimate the model. The empirical implication is described in detail in the next
ection, but we discuss any such details here wherever necessary.

dentification Assumption 1. Virus spread 𝑉𝑠,𝑡 is not affected by contemporaneous shocks to either policies or exports but only
y shocks to virus spread itself.

In the next sections, we estimate the model using monthly data and measure COVID-19 spread using data on deaths due to
OVID-19 as reported by the Centers for Disease Control and Prevention (CDC). Then, Identification Assumption 1 implies that
eaths due to COVID-19 in a given month are not affected by contemporaneous shocks to either policies or exports but only by
hocks to virus spread itself.

We argue that this assumption is consistent with salient features of the nature of deaths due to COVID-19. According to estimates
rom the CDC, the typical number of days from exposure to COVID-19 to death is between 22 and 25 days. This results from an
verage time from exposure to symptom onset of approximately 6 days (McAloon et al., 2020) combined with a median number of
ays from symptom onset to death of 16–19 days (Faes et al., 2020).5

Therefore, we interpret deaths due to COVID-19 measured in a given month 𝑡 as the result of contagion that took place in period
𝑡 − 1 rather than 𝑡; thus, our assumption that virus spread in 𝑡 is not affected by contemporaneous shocks to policies or economic
activity. Note that this assumption is strictly about the contemporaneous relation across these variables: Shocks to policies and
economic activity can affect virus spread but only with a lag.

Identification Assumption 2. Policies 𝑃𝑠,𝑡 are not affected by contemporaneous shocks to exports but only by shocks to virus
spread and policies.

Our second identification assumption consists of the contemporaneous determinants of health and containment policies 𝑃𝑠,𝑡. We
assume that these policies are contemporaneously determined by shocks to both COVID-19 spread and policies themselves, but not
by shocks to exports, our measure of economic activity.

Note that we model health containment policies as responding asymmetrically to contemporaneous developments: they are al-
lowed to respond contemporaneously to changes in virus spread but not to changes in exports. We believe this asymmetry accurately
captures the information available to policymakers when making policy decisions. While COVID-19 led to the development of
infrastructure to track the evolution of the pandemic in real time, economic data are typically only available with a lag.6 Yet,
note that, while health containment policies are assumed not to respond to contemporaneous changes in economic activity, they
can do so with a lag.

Identification Assumption 3. Exports 𝑋𝑠,𝑡,𝑖 are affected contemporaneously by shocks to virus spread, policies, and exports.

Our last identification assumption is that exports can be affected contemporaneously by either shocks to virus spread, policies,
or exports. This assumption is less strict than the previous assumptions, as it does not constrain the contemporaneous determinants
of economic activity, but instead lets the relative importance of those determinants to be estimated directly from the data.

2.3. Impulse response functions

After estimating the orthogonalized SVAR model described in Eq. (2), we evaluate the implications of the estimated model by
computing impulse response functions.

To do so, we assume all variables are at their long-run average values in period 𝑡 = 0 and investigate their changes in response
to one-time shocks in period 𝑡 = 1 to each of the endogenous variables of our model. We let {𝜼𝒕}∞𝑡=1 denote the sequence of 3 × 1
shocks and let it be equal to the zero vector in all periods except in period 𝑡 = 1. In our empirical implementation we only consider
shocks to each of the variables one at a time; here we illustrate our approach for the general case of shocks to potentially all the
endogenous variables.

Let {𝑥𝑡}∞𝑡=1 denote the sequence of 3 × 1 vectors of changes for each of the endogenous variables of the model after shock 𝜂1 is
realized in period 𝑡 = 1; these are the impulse response functions to the given shock. That is, 𝑥𝑡 ∶= 𝑦Shock

𝑡 − 𝑦No shock
𝑡 , where 𝑦Shock

𝑡
and 𝑦No shock

𝑡 denote the dynamics of the 3 × 1 vectors of endogenous variables in period 𝑡 with and without the shock, respectively.
The vector of impulse response functions is given by:

𝑥𝑡 = 𝐀𝑡−1 × 𝐋 × 𝜂1. (3)

A key difference between our model and standard vector auto-regression models are our control variables {𝑍𝑘
𝑠,𝑡,𝑖}

𝐾
𝑘=1. This makes

the computation of impulse response functions non-standard, since assumptions need to be made about the path of the control

5 See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html for details, updated as of March 19, 2021.
6 For instance, the schedule of data releases from the Bureau of Labor Statistics shows that data are released with a one-month lag at best (https:

/www.bls.gov/schedule).
5
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variables when comparing the endogenous variables with and without the shocks. Our assumption is that the path of the control
variables is independent of the shocks; that is, the values of the control variables are assumed to be identical in both scenarios.

2.3.1. Confidence intervals
In our empirical implementation we compute confidence intervals for the impulse response functions via Monte Carlo simulation.
Our estimated Eq. (1) delivers a matrix of estimated coefficients 𝐀 along with its respective variance–covariance matrix Σ𝐴.7 We

draw 𝑁 matrices of estimated coefficients {𝐀𝑛}𝑁𝑛=1 from a multivariate Normal distribution with mean 𝐀 and variance–covariance
atrix Σ𝐴. For each 𝐀𝑛, we compute impulse response functions following Eq. (3). The 90% confidence intervals of the impulse

esponse functions in period 𝑡 are given by percentiles 5 and 95 across the 𝑁 period-𝑡 impulse response functions; we set 𝑁 = 10,000
n our empirical implementation.

.4. Variance decomposition

We evaluate the role of each shock on the endogenous variables of the model by decomposing their variance via Monte Carlo
imulation. This allows us to compute the share of the overall variance of each variable accounted by each of the shocks.

Our approach consists of simulating 𝑁 time series over 𝑇 periods for each of the endogenous variables of the model. To do so,
or each time series 𝑛 we draw 𝑇 vectors of shocks from the identity matrix. We initialize the lagged vector of endogenous variables
n period 𝑡 = 0 to zero and set the control variables to zero for all time series 𝑛 = 1,… , 𝑁 and periods 𝑡 = 1,… , 𝑇 . We then use

Eq. (2) to simulate the endogenous variables of the model given the shocks and our estimates of 𝐀, Ω, and 𝐋−𝟏. For each simulated
time series 𝑛, we compute the overall variance of each endogenous variable.

To compute the share of the overall variance accounted by shocks to variable 𝑗, we consider the same set of shocks drawn above.
The key difference is we restrict attention to shocks to variable 𝑗 when simulating the endogenous variables of the model. For each
simulated time series 𝑛, we then compute the variance of each endogenous variable in response to shocks to variable 𝑗 while setting
all other shocks to zero. The share of the overall variance of each endogenous variable 𝑘 accounted by shocks to variable 𝑗 is the
ratio between the variance of variable 𝑘 when only subject to shocks to 𝑗 relative to the overall variance of variable 𝑘.

3. Data

In this section we describe the data that we use to implement the estimation approach described in Section 2. Our focus
throughout is on the period prior to the introduction of vaccines, from March 2020 to January 2021. We begin by describing
the variables used throughout the paper. We then present summary statistics and additional details of our approach to estimating
the model in the context of these data.

3.1. Key variables

The key variables of our model are our measures of COVID-19 spread, health and containment policies, and exports. We now
describe our data sources for each in turn.

3.1.1. COVID-19 spread
Our baseline measure of COVID-19 spread is given by the number of deaths due to COVID-19. These data are available across

states at a daily frequency from the Centers for Disease Control and Prevention (CDC). Given we conduct the empirical analysis
at a monthly frequency, we aggregate daily data to a monthly frequency by computing the number of persons that died due to
COVID-19 in each month. Moreover, to study differences in COVID-19 spread across states with different populations, we express
deaths in each state relative to population. To do so, we use state-level population data for 2019 from the Bureau of Economic
Analysis. The units of our COVID-19 spread variable are then expressed as the number of persons that died due to COVID-19 per
million inhabitants in each month.

We focus on deaths due to COVID-19 rather than hospitalizations or cases given that it allows us to capture both the spread of
COVID-19 as well as a key outcome of interest to both individuals and policymakers during the pandemic. Indeed, in the Online
Appendix we document that the number of deaths is a key determinant of health and containment policies across U.S. states during
COVID-19. Moreover, our focus on deaths ensures the validity of our identification assumptions: Identification Assumption 1 would
be violated at a monthly frequency if we used data on hospitalizations since the CDC estimates that the time from exposure to
hospitalization is around 12 days (McAloon et al., 2020; Faes et al., 2020).8

7 We estimate the variance–covariance matrix Σ𝐴 clustering standard errors by state–period pairs.
8 We conduct the analysis at a monthly frequency due to the lack of higher frequency exports data.
6
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3.1.2. Health and containment policies
We measure the health and containment policies introduced to combat COVID-19 across U.S. states using indices computed by

he Oxford COVID-19 Government Response Tracker (OxCGRT; Hale et al., 2020). The goal of these indices is to quantify the policy
esponses to COVID-19 across U.S. states, capturing differences in the types of policies implemented as well as in their intensity.
e use their ‘‘containment and health’’ index as our baseline measure of health and containment policies.
The index of health and containment policies is designed to aggregate variation across states in the following set of policies: school

losings, workplace closings, cancellation of public events, limits on gatherings, closing of public transportation, ‘‘shelter-in-place’’
rders, restrictions on internal movement, restrictions on international travel, public information campaigns, government policies
n testing access, government policies on contact tracing, and requirements of mask use.

For each type of government policy 𝑗 from the above list, the OxCGRT team quantifies the strength of the policy measure in each
period 𝑡 using an ordinal scale ranging from 0 (weak policy response) to 100 (strong policy response), obtaining a sub-index 𝐼𝑗,𝑡.9 ,10

The health and containment policy index is obtained by computing a simple average across each of the policy-specific sub-indices.
While this index is available at a daily frequency, we aggregate it to a monthly frequency by computing its average value for each
month. The monthly level health and containment policy index ranges from 0 (weak policy response) to 100 (strong policy response).

Our use of these data as our baseline measure of health containment policies is motivated by the richness of the data available
(high frequency and disaggregated across states) as well as by the transparency of its collection, methodology, and construction. It
is nevertheless important to note that these data have some limitations. On the one hand, while OxCGRT has clear guidelines on
the quantification process to map policies into indices, parts of this process can turn out to be somewhat subjective. On the other
hand, the data are designed to capture the government responses but not necessarily the take-up rate or enforcement of the policies
among the general population.

3.1.3. Exports
We study the monthly dynamics of exports during COVID-19 by state (plus Washington D.C.), 4-digit harmonized system (HS)

product categories, and destination country. We focus on exports of manufactures and control for seasonality by computing the
log-change of exports in a given month over the period March 2020–January 2021 relative to the same month in the previous year.
These data are collected by, and obtained from, the U.S. Census Bureau.

3.2. Additional variables

Economic support policies During COVID-19, U.S. state governments implemented both health containment policies and economic
policies designed to alleviate the economic problems raised by the pandemic. Excluding the latter policies from our baseline
specification could bias our estimates since they might be potentially correlated with economic activity (e.g., exports) as well as
with the dynamics of COVID-19 spread (e.g., more economic support could have helped to keep people at home, preventing virus
spread).

Our baseline specification thus controls for cross-state differences in the economic policy response to COVID-19. We measure
the relative strength of these policies across U.S. states using the Economic Support Index constructed by OxCGRT. This index is
designed to quantify the relative strength of state-level policies to support individuals by providing direct cash transfers related
to unemployment, as well as policies for alleviating financial obligations on contracts such as student loans and rent. This index
ranges from 0 (weak policy response) to 100 (strong policy response). The methodology is analogous to the one used to construct
the health containment index.

Contact intensity States might have also experienced differential dynamics during COVID-19 due to differences in the types of
industries and occupations prevalent under their jurisdiction. For instance, to the extent that a state is more specialized in industries
requiring closer physical contact, they might have been more likely to experience an economic downturn during the pandemic
regardless of the health containment policies and degree of COVID-19 spread.

We therefore control for cross-state differences in the contact-intensity of the industries and occupations prevalent in each state.
To do so, we follow the methodology of Leibovici, Santacreu, and Famiglietti (2020a, 2020b) to construct a state-level measure
of contact-intensity. In particular, we assign an index of physical proximity (PPIO) from O*NET (an occupational database) to
each individual in the 2017 American Community Survey (ACS) based on their occupation. We then compute the average physical
proximity index across all individuals in each state; this is our measure of state-level contact-intensity prior to the pandemic.

State partisan composition State-level differences in political preferences might have also affected the degree of non-mandated
precautions taken by individuals as well as the extent to which enacted policies were actually implemented in practice. These
differences could affect the measured effectiveness of health and containment policies as well as their economic impact.

We isolate the role of policies from cross-state differences in political leanings by controlling for states’ partisan composition.
To do so, we use data on the composition of state legislatures in April 2020, at the beginning of the pandemic, from the National
Conference of State Legislatures.

9 These sub-indexes include policies set by the federal government where those are more stringent than state-level ones.
10 See https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/index_methodology.md for further details on OxCGRT’s approach to

omputing these policy-specific sub-indices.
7
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Table 1
Summary statistics — March 2020 to January 2021.

Panel A: State averages

Mean Std. Dev. 10th percentile Median 90th percentile

Deaths 119.99 48.26 47.21 120.04 182.69
Log deaths 4.12 0.56 3.34 4.30 4.60
Health and Containment policy index 51.13 8.36 42.65 49.95 62.04
Economic support policy index 41.26 19.75 17.78 40.76 65.03
Exports (log-change) −0.13 0.13 −0.27 −0.13 0.01

Panel B: State maximums

Mean Std. Dev. 10th percentile Median 90th percentile

Deaths 363.97 181.69 133.94 358.33 575.87
Log deaths 5.78 0.52 4.90 5.88 6.36
Health and Containment policy index 62.09 7.85 53.36 61.25 71.31
Economic support policy index 56.19 18.88 37.50 62.50 87.50
Log change exports −0.50 0.27 −0.78 −0.43 −0.24

Panel C: Disaggregated exports

Mean Std. Dev. 10th percentile Median 90th percentile

Exports (log-change) −0.03 1.09 −1.31 −0.07 1.30

Notes: The first panel shows summary statistics for the averages of each variable across states. The second panel shows summary
statistics for the maximum values (minimum value of change in exports) of the variables across states. Panel C displays summary
statistics for exports disaggregated by destination country, HS-4 product categories, and time periods. Log-changes are year-to-year
changes of the logged variable.

.3 Summary statistics

Our analysis is designed to estimate the role of COVID-19 spread and health containment policies on each other as well as
n economic activity by exploiting cross-state variation over time along these dimensions. We now provide summary statistics to
llustrate the degree of cross-state variation featured by our data.

Table 1 reports summary statistics on the distribution across states for each of the variables. Panel A reports the distribution of
tate-level averages while Panel B reports the distribution of state-level maximum values for each of the variables.11

Panel A shows that there is significant variation across states in COVID-19 spread, policy responses (the health containment and
economic policy indices), and our measure of economic activity. In particular, we observe significant variation in the COVID-19
spread variable (std. dev. of deaths equals 48 per million inhabitants), as well as in the policy indices (std. dev. higher than 8
for both, for an index ranging from 0 to 100). While the average change of exports across states has been negative, we observe
significant variation, ranging from a 27% decline at the 10th percentile to a 1% increase at the 90th percentile.

Panel B shows that the significant variation of our variables of interest across state-level averages are also observed across
state-level maximum values. In contrast to Panel A, however, the extent of COVID-19 spread and policy responses are naturally
larger when focusing on maximum values. The significant difference in the absolute values between averages and maximum values
reveals the severity of the pandemic at its peak. For instance, the maximum decline of exports was 50% on average across states
while the maximum number of deaths was 364 on average per million inhabitants.

Finally, in Panel C of Table 1 we provide summary statistics on exports disaggregated by 4-digit HS product, state of origin, and
destination country. This variable features a high level of variation as evidenced by a standard deviation that is substantially larger
than the mean and median. This is not surprising as demand for some products increased drastically during the pandemic, such as
medical equipment (Leibovici and Santacreu, 2021), while decreasing drastically for others. Moreover, changes of exports at such
a high level of disaggregation are likely to capture the pervasiveness of idiosyncratic shocks beyond the aggregate impact of the
pandemic.

3.4 Empirical implementation

We now describe additional details of our implementation of the estimation approach described in Section 2, ranging from the
dataset construction and cleaning to details of the estimation.

The vector of endogenous variables of the SVAR model that we consider throughout the paper is given by:

⎡

⎢

⎢

⎣

𝑉𝑠,𝑡
𝑃𝑠,𝑡
𝑋𝑠,𝑡,𝑖

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

lnDeaths𝑠,𝑡
Health and containment policy index𝑠,𝑡
𝛥 lnExports𝑠,𝑡,𝑖

⎤

⎥

⎥

⎦

(4)

11 For all variables, average and maximum values corresponding to each state are computed across time.
8
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where deaths are per million inhabitants, the health and containment policy index, and exports are measured as described above.
The log-change of exports is computed relative to the same month of the previous year.

The set of control variables for each of the endogenous variables consists of: (𝑖) state-level physical proximity index, (𝑖𝑖) state-
evel economic support index, (𝑖𝑖𝑖) Republican majority indicator, and (𝑖𝑣) difference between Republicans and Democrats in their
raction of the state legislature. These variables allow us to control for differences across states that might spuriously affect the
stimated relation between COVID-19 spread, health and containment policies, and economic activity. For instance, differences
n the state-level physical proximity or economic support indexes might affect the extent to which contact-intensive occupations
utside of manufacturing remain active during the pandemic, thus affecting the observed dynamics following shocks to policies or
OVID-19 outbreaks. Similarly, differences in state-level political leanings might impact the extent to which enacted policies are

mplemented and the prevalence of broader precautionary actions such as mask use.
We estimate the model described in Section 2 with fixed effects at the product-destination-period level in the exports equation.

his allows us to isolate the supply-side impact of COVID-19 spread and policies by controlling for fluctuations in demand at the
roduct-destination level that might be common across states. Individual observations are weighted by the total nominal export
alue of the state, product, destination triple in 2019. This allows us to interpret the implications of our model as informative about
he state-level dynamics of exports.

We focus on exports to a subset of all possible trade partners in order to exclude bilateral relations that are small or infrequent.
o do so, we restrict the set of trade partners to consist of the 35 countries with the highest demand for U.S. exports, accounting for
ver 90% of aggregate U.S. exports.12 In addition, we mitigate the impact of outliers by (𝑖) restricting our sample to observations with
xports larger than $10,000, (𝑖𝑖) Winsorizing the top and bottom 1% of export log-changes. Finally, we require each (state,product)
air to have data available for at least four months, and each (product,destination,period) triple to have data available for at least
0 states. Our findings are robust to alternative data cleaning approaches along each of these dimensions.

The effect of health and economic policies on COVID-19 spread and economic activity

We now investigate the effects of health and economic policies implemented across U.S. states in response to COVID-19 on the
pread of the virus as well as on economic activity.

.1 Health and containment policies

We begin by examining the effects of health and containment policies implemented during the COVID-19 pandemic in order to
urb the spread of the virus. To do so, we proceed as follows.

First, we estimate the reduced-form VAR model from Eq. (1) with the set of control variables described in Section 3.4. Second,
e orthogonalize the estimated model and express it as in Eq. (2). Finally, we consider shocks to each of the variables of the model
nd compute impulse response functions for each variable in response to each of the shocks. The set of shocks that we consider is
esigned to evaluate the impact of large shocks to either COVID-19 spread or health containment policies.

hock to COVID-19 spread We first investigate the impact of a shock to COVID-19 spread, as proxied by an increase in the number
f deaths due to COVID-19. In particular, we consider the impact of a shock leading to a 1 log-point change in the number of deaths

that is, an almost tripling of the number of deaths. The panels in the top row of Fig. 1 plot the dynamics of deaths, health and
ontainment policies, and exports following the shock.

The top-left panel plots the dynamics of the variable being shocked, deaths, following a shock that increases it by 1 log-point. We
ind the shock is relatively short-lived, with the number of deaths due to COVID-19 back to half its peak level after approximately
months.

Interestingly, we find that this sizable increase in COVID-19 spread only leads to a modest change of health containment policies
top-middle panel). In particular, as deaths increase by 1 log-point, the health containment policy index is estimated to decrease by
pproximately 2.5 points (out of its 0 to 100 range). This finding implies a measured governmental response to curb the virus via
ealth containment policies in response to a shock that almost triples the number of deaths.13

Not surprisingly, we find that the shock leads to a transitory decline of economic activity, as proxied by the dynamics of exports
elative to the previous year (top-right panel). In particular, exports decline by around 5% on impact in response to a shock that
lmost triples the number of deaths due to COVID-19.

This transitory decline might result from the impact of higher COVID-19 spread leading individuals to stop going to work
nd firms to shut down temporarily. While dead individuals cannot go back to work, healthy individuals might additionally opt
or be encouraged) to avoid going to work to prevent further infections. Note that our empirical analysis does not allow us to
istinguish between these direct and indirect effects of COVID-19 spread on economic activity — thus, our estimated effects should
e interpreted as capturing the combination of both direct and indirect effects.

12 Our findings are robust to restricting attention to the largest 90% product-destination pairs.
13 This finding may capture the observation that the stringency of health containment policies across U.S. states peaked early in the pandemic, featuring an
verall downward trend through most of the period; see Fig. 3.
9
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Fig. 1. Impulse response functions — Model with health policies. Notes: Deaths are measured per million inhabitants in logs, health containment policies are
easured using OxCGRT’s index, and exports are measured as year-to-year log-changes. The y-axes denote changes relative to pre-shock values of the respective

ariables. Dashed lines are 90% confidence intervals.

hock to health and containment policies Next, we investigate the impact of a shock that leads to a tightening of health and
ontainment policies. In particular, we consider the impact of a shock that increases the health and containment policy index by
0 points, approximately one standard deviation of the average cross-state variation. The bottom panels of Fig. 1 plot the impulse
esponse functions corresponding to each of the variables of our model.

The bottom-middle panel plots the dynamics of the variable being shocked, the health and containment policy index, following
10-point increase in its value. We find the shock is relatively short-lived, with the health containment policy index declining to

alf of its peak value after 3–4 months.
We find that health and containment policies are very effective at achieving their primary goal: curbing COVID-19 spread. In

articular, the bottom-left panel of Fig. 1 shows that a 10-point increase in the health and containment policy index leads to a 1.45
og-point decline in the number of deaths; that is, deaths are significantly reduced soon after the policies are implemented.

However, we find that the success of health and containment policies at curbing the spread of COVID-19 comes at the cost
f reduced economic activity. In particular, the bottom-right panel of Fig. 1 shows that a 10-point increase in the health and
ontainment policy index leads to an immediate 5% decline of exports relative to the previous year. This significant reduction
f economic activity is nevertheless estimated to be transitory, with effects fully reverted after around 4 months.

These findings provide a compelling case for the efficacy of health and containment policies that states undertook in response
o the pandemic. Our model implies that a shock to the health and containment policy index reduces the spread of COVID-19
ignificantly and for an extended period of time. In the short-run, the shock lowers exports relative to the year prior, but there is a
apid recovery and no negative effect in the medium run, implying no persistent damage to economic activity as a result of a shock
o health policies.

.2 Economic support policies

The analysis above highlights the effectiveness of health and containment policies to curb the spread of COVID-19. One ‘‘side-
10

ffect’’ of these policies has been their negative impact on economic activity, as implied by our estimated impulse response functions.
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Fig. 2. Impulse response functions — Model with economic policies. Notes: Deaths are measured per million inhabitants in logs, economic support policies are
measured using OxCGRT’s index, and exports are measured as year-to-year log-changes. The y-axes denote changes relative to pre-shock values of the respective
variables. Dashed lines are 95% confidence intervals.

We now investigate the impact of economic support policies implemented in the U.S. during the outbreak of COVID-19 to alleviate
the direct negative impact of the pandemic on economic activity as well as its indirect impact via health and containment policies.

To do so, we re-estimate our model with the economic support index described in Section 3.2 as our policy response variable
instead of the health and containment index. We refer to the model examined in this section as the ‘‘model with economic policies’’;
the model examined in Section 4.1 is referred to as the ‘‘model with health policies’’. Analogous to our approach above, we control
for the index of health and containment policies to isolate the role of economic-related policies relative to health-related ones.14

All other controls are as described above. We then orthogonalize the estimated model and compute impulse response functions
following the approach of Section 2. These dynamic responses are displayed in Fig. 2.

The top panels of this figure report the impact of a 1 log-point increase in the number of deaths due to COVID-19 per million
inhabitants on the endogenous variables of our model. Unsurprisingly, we find that this shock to deaths leads to very similar
dynamics of policies and exports as the analysis above with data on the health and containment policy index.

Shock to economic support policies We now study the impact of a shock to economic support policies. As in Section 4.1, we examine
the impact of a 10-point increase in the economic support policy index; this is approximately equal to half of the standard deviation
of the average state-level index (Panel A in Table 1). The bottom panels of Fig. 2 plot the impulse response functions corresponding
to each of the variables of our model.

We find that increases in the economic support provided by U.S. state governments to households and firms leads to a significant
reduction in the number of deaths due to COVID-19, as observed in the bottom-left panel of Fig. 2. Thus, the provision of economic
support to offset income losses and to freeze financial obligations during the pandemic might have encouraged individuals and
businesses in contact-intensive occupations to stay at home, thereby leading to a slowdown of COVID-19 spread.

On the other hand, the bottom-right panel of Fig. 2 shows that exports remain large unchanged in response to the introduction of
these policies. These findings suggest that the introduction of economic support policies during the pandemic simultaneously reduced

14 In Section 3 of the Online Appendix we report our findings for a model estimated using a comprehensive policy index that combines both health containment
11

nd economic support policies.
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Table 2
Variance decomposition.

Share of variance due to:

Death shocks Policy shocks

Panel A: Model with health policies

Deaths 0.77 0.23
Policies 0.30 0.70
Exports 0.51 0.49

Panel B: Model with economic policies

Deaths 0.90 0.10
Policies 0.12 0.88
Exports 0.81 0.19

Notes: Share of variance accounted by shocks to deaths or policies; we exclude shocks to exports
in computing these results. Based on 100 time series simulated for 12 periods, burning the initial
1000 periods. See Section 2.4 for further details.

he spread of COVID-19 while ensuring economic activity is unaffected. The economic support might have encouraged workers in
ontact-intensive occupations to stay home, leading to a decline of COVID-19, thereby allowing workers in non-contact-intensive
ccupations such as manufactures to continue working.

In summary, economic policies during the pandemic worked largely as intended — they slowed down the spread of COVID-19
hile allowing economic activity in non-contact intensive sectors to continue. Thus, these policies are likely to have mitigated the
egative short-run effects from the implementation of even more stringent health and containment policies. The dynamic response
f exports to both economic and health policies indicates that increased spread of COVID-19 harmed the economy during this period,
ut that government policies worked largely as intended and dramatically reduced the spread of COVID-19, facilitating economic
ecovery in the near term.

.3 Variance decomposition

Next, we investigate the relative importance of shocks to COVID-19 spread vs. shocks to policy responses (health containment
r economic) in accounting for the variance of the endogenous variables of our model. To do so, we follow the approach described
n Section 2.4. In particular, we use the model to simulate 100 time series of the endogenous variables over a 12-month period as
function of shocks to COVID-19 spread and the policy responses.15 ,16 We simulate the model separately for each shock at a time,

nd then simulate the model with both shocks jointly. We then compute the variance of the endogenous variables of the model for
ach of these simulations. Table 2 reports the relative contribution of each shock to the total variance of the endogenous variables.

Panel A reports the relative contribution of COVID-19 spread and policy shocks to the variance of the endogenous variables of the
odel with health policies. First, we observe that 23% of the variance of deaths is accounted for by shocks to health containment
olicies. While it shows that most of the variation in deaths is driven by the intrinsic epidemiological dynamics of the virus, it
evertheless implies that policies can have a non-trivial impact on these dynamics. Second, we find that approximately 30% of the
ariation in health containment policies is accounted by shocks to COVID-19 spread. This finding suggests that cross-state differences
n these policies might have not primarily responded to differences in COVID-19 spread, but rather to intrinsic differences across
tates in their propensity to introduce such policies. Finally, we find that economic activity, as proxied by our focus on manufacturing
xports, is evenly driven by shocks to health containment policies and COVID-19 spread.

Panel B reports the analogous findings for the model with economic policies. In contrast to the findings reported in Panel A, we
ind that shocks to COVID-19 spread have a smaller impact on the introduction of economic support policies: 12% of their variance
s accounted by such shocks. We also find a larger impact of shocks to COVID-19 spread on economic activity: 81% of the variance
f exports is accounted by such shocks relative to shocks to economic support policies.

Additional findings

In this section, we conduct a series of simple exercises designed to put our findings in context as well as to understand the
ole played by various features of our empirical approach. First, we investigate the extent to which the dynamics implied by our
tructurally estimated model are consistent with those implied by a simpler approach that simply contrasts the dynamics across U.S.
tates with weak vs. strong policy responses. Second, we investigate the role played by our reliance on international trade data (rather
han a more inward-oriented variable) as a potentially important component of our empirical approach. Finally, we investigate the
ensitivity of our findings to adjusting the timing of exports to account for potential production and exports measurement lags.17

15 Specifically, each time series is simulated for 1012 periods; the first 1000 periods are dropped.
16 We abstract from shocks to exports given our focus on isolating the relative importance of shocks to COVID-19 spread relative to shocks to policy responses.
17 See the Online Appendix for additional exercises to examine the sensitivity of our findings to the following alternatives: (𝑖) measuring policy responses
sing a comprehensive policy index, (𝑖𝑖) measuring economic activity using employment data, and (𝑖𝑖𝑖) controlling for cross-market reallocation.
12
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5.1 Contrast with empirical Dynamics Across States

We now contrast the implications of the estimated model relative to the data. For brevity, we focus on the effects of a health and
ontainment policy shock.18 To construct an empirical counterpart to such impulse response functions, we contrast the dynamics of
he endogenous variables of the model between the 5 states with the strictest health and containment policies vis-à-vis the 5 states
ith the weakest health and containment policies. Specifically, we identify these states based on the average monthly health and

ontainment index for each state between March 2020 and January 2021.
Fig. 3 plots the dynamics of health and containment policies, exports, deaths, and manufacturing employment for the 5 states

ith the strictest and weakest health containment policies, as well as for the aggregate. We compute the variables corresponding to
ach 5-state group in each period as population-weighted averages (using 2019 population data). We find significant differences in
he empirical dynamics of the endogenous variables of the model across states with strict vs. weak health and containment policies.
oreover, we find that these differences are consistent with the impulse response functions implied by our model.

The top-left panel plots the dynamics of the health and containment policy index. We observe that both types of states tightened
heir policies early in the pandemic, gradually easing them thereafter until late 2020. Importantly, we observe a persistent gap
cross both types of states, reflecting the sharp differences in the health and containment policies implemented across U.S. states
uring the COVID-19 pandemic.

We now investigate the extent to which the differential dynamics across these two types of states for the rest of the endogenous
ariables are consistent with the impulse response functions in response to a shock to health and containment policies. On the one
and, the top-right panel shows that, while exports declined in both types of states, exports declined more sharply over the first
ew months in states with the strictest policies. Starting in July 2020, the dynamics of exports have been similar across both state
roups. The larger economic contraction observed in states with stricter health containment policies is consistent with the causal
ffects implied by our model.

On the other hand, the bottom-left panel shows that deaths increased sharply early in the pandemic regardless of the type of
olicy response. While the increase was larger initially in states with the strictest policy response, the spread of COVID-19 declined
apidly in these states while it continued to increase in states with weak health containment policies. The rapid and persistent
ecline of COVID-19 spread associated with stricter health containment policies is consistent with the causal effects implied by our
odel.

Finally, the bottom-right panel shows that manufacturing employment declined across all states regardless of the intensity of
heir response to COVID-19.19 States with the least stringent health and containment policies declined the least initially but also
xperienced minimal recovery throughout our sample. In contrast, the states that implemented the strictest policies experienced the
argest declines in manufacturing employment, but recovered more rapidly.

.2 Role of international trade data

We now investigate the role played by our reliance on international trade data for our findings. Our use of exports data provides
s with several ex-ante advantages relative to more inward-oriented variables. As discussed earlier, working with exports data allows
s to abstract from the impact of COVID-19 spread and policy responses on economic activity through their impact on domestic
emand — thus, allowing us to isolate the supply-side impact of COVID-19 spread and policy responses on economic activity.

Moreover, trade data allow us to conduct the analysis at a level of disaggregation that is not available for more inward-oriented
ariables like employment or output. In particular, we have access to exports disaggregated by (𝑖) destinations, (𝑖𝑖) 4-digit product
odes, and (𝑖𝑖𝑖) state of production. This allows us to identify the role of COVID-19 spread and policies within (𝑖) and (𝑖𝑖). In our
aseline model, we exploit these features by controlling for destination-product-time fixed effects. Thus, we contrast the effect of
OVID-19 spread and policies across U.S. states by comparing the dynamics of exports of the same products to the same destinations

thus allowing us to control for potential differences in the dynamics of foreign demand across U.S. states. We now evaluate the
xtent to which our findings rely on the degree of disaggregation of the exports data.

.2.1 Export sales disaggregated by destination
We begin by investigating the role of using exports data disaggregated by destination, which allows us to contrast the dynamics

f exports across states within both product categories and destinations.
To examine the role of exports disaggregation by destination, we contrast our findings reported in Section 4 with those

mplied by an alternative specification that abstracts from this dimension. In particular, we aggregate the exports variable
cross destinations such that each exports value in our dataset now corresponds to a (product,state,period) triple; as opposed to
product,state,destination,period) in our baseline. We use this alternative dataset to estimate the same specification as our baseline
ut without destination fixed effects.

Fig. 4 contrasts the impulse response functions implied by this alternative model vis-à-vis our baseline results. We find that
stimating our model without having access to data disaggregated by destination significantly affects some of its quantitative and
ualitative implications.

18 Our findings are robust to contrasting the effects of economic support policies with evidence from the data.
19 We use monthly data on manufacturing employment across states from the Bureau of Labor Statistics.
13
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Fig. 3. Empirical dynamics across states, by Health Containment Policies. Notes: Deaths are measured per million inhabitants and the health containment policy
index is from OxCGRT. Exports and manufacturing employment are measured as year-to-year log-changes.

A key difference arises in the impact of health and containment policies on exports. The model without disaggregation by
destination implies that the decline of economic activity on impact is smaller than implied by our baseline. Thus, without controlling
for differences in demand across destinations, one would then conclude that health containment policies lead to a milder economic
contraction than implied by our baseline. Similarly, the model without disaggregation by destination implies a milder decline of
economic activity in response to an increase of COVID spread than our baseline model.

In contrast, the effect of economic support policies is amplified if we abstract from export destinations. In particular, we find
that economic policies are much more effective at stimulating the economy when abstracting from the destination dimension; the
bottom right panel of Fig. 4 shows a shock to economic policies more than doubles their baseline positive effect.

5.2.2 Exports sales disaggregated by detailed product categories
Another salient feature of our baseline analysis is the use of exports data disaggregated by detailed product categories (at the

4-digit HS level). To evaluate the role of this feature on our findings, we recompute our analysis using data at the 3-digit NAICS
level, a coarser level of aggregation. The results are reported in Fig. 5.

We find that our use of disaggregated product-level data does not play a fundamental role in accounting for our findings. In
particular, recomputing the analysis at a coarser level of aggregation leads us to estimates that imply very similar impulse response
functions. The main exception is in the response of exports to changes in economic support policies: our baseline implies a smaller
response of economic activity. Thus, we conclude that demand fluctuations at the product-destination level may be largely captured
by fluctuations at the industry-destination level.

5.3 Alternative timing of exports

An implicit assumption in our baseline analysis is that exports measured and observed in period 𝑡 were produced in period 𝑡.
This implicit assumption motivates our assumption that exports are contemporaneously affected by shocks to COVID-19 spread or
government policies (Identification Assumption 3 in Section 2).
14
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Fig. 4. Impulse response functions — No export destinations.

However, these assumptions might be violated if there is a mismatch between the measurement and production periods: that
s, if exports measured and observed in period 𝑡 (measurement period) were actually produced in period 𝑡 − 1 (production period).
nder such alternative timing, shocks to COVID-19 spread or government policies would not be able to impact measured exports
ontemporaneously. Given the limited guidance provided by our data to select across alternative timing assumptions for the
easurement of exports, we now examine the sensitivity of our findings under this alternative. In particular, we recompute the

nalysis with the timing of exports adjusted to capture the production of exports rather the measurement period. In practice, this
onsists of estimating the model assigning exports measured in 𝑡 + 1 to the vector in period 𝑡.20

Fig. 6 reports the impulse response functions implied under this alternative timing of exports. We find that most of our findings
re robust to this alternative timing assumption, both qualitatively and quantitatively. One exception is the response of exports
o an economic support policy shock: In contrast to the baseline, the alternative model implies a transitory economic contraction
ollowing an increase of economic support policies.21

Virus spread, containment policies, and employment

The analysis thus far has focused on the role of virus spread and government policies on economic activity as proxied by exports.
s we show throughout the paper, our use of exports data offers several advantages to identify the impact of these channels relative

20 For instance, the vector of variables corresponding to June 2020 consists of COVID-19 spread and policies for June 2020 and exports measured in July
020.
21 These effects are statistically insignificant in both the baseline and the alternative considered here.
15
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Fig. 5. Impulse response functions — 3-digit NAICS.

o inward-oriented variables like employment or output. One potential limitation for extrapolating our findings to the broader
conomy, however, is that exports are only a fraction of economic activity even within the manufacturing sector.

While data limitations prevent us from conducting the analysis using data on employment instead of exports, we now investigate
he potential implications of our findings for the role of virus spread and government policies on the dynamics of employment.

The analysis conducted in the previous sections provides causal estimates of the dynamics of exports conditional on the size of
hocks to COVID-19 spread and policies. We now use these estimates to evaluate their potential implications for employment based
n the comovement between exports and employment during the COVID-19 pandemic.22 Given our focus on manufacturing exports,
e evaluate the implications for manufacturing employment. As in the previous section, we use monthly data on manufacturing
mployment across states from the Bureau of Labor Statistics.

To do so, we consider a specification motivated by our baseline model. In particular, we assume manufacturing employment
n a given U.S. state and period is a function of contemporaneous virus spread, government policies, exports, and the same set of
ontrol variables as our baseline model. Thus, we estimate:

𝐸𝑠,𝑡 = 𝛽𝑉 𝑉𝑠,𝑡 + 𝛽𝑃𝑃𝑠,𝑡 + 𝛽𝑋𝑋𝑠,𝑡,𝑖 +
𝐾
∑

𝑘=1
𝛼𝑘𝑍

𝑘
𝑠,𝑡,𝑖 + 𝜀𝐸𝑠,𝑡,𝑖, (5)

where 𝑉𝑠,𝑡, 𝑃𝑠,𝑡, and 𝑋𝑠,𝑡 are defined and measured as in our baseline (Eq. (4)), while {𝑍𝑘
𝑠,𝑡,𝑖}

𝐾
𝑘=1 is also the same set of control

variables.23 In particular, virus spread is measured in logs while exports is measured as the log-change relative to the previous

22 See Section 4 of the Online Appendix for an alternative complementary approach to evaluate the implications for employment.
23 In contrast to the exports equation in the baseline, we do not include product-destination fixed effects since employment is observed at the (state,period)

evel.
16
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Fig. 6. Impulse response functions — Alternative timing of exports.

year. Similarly, we measure manufacturing employment as the log-change relative to the previous year in order to isolate the
potential impact of seasonality. Estimating Eq. (5) via OLS allows us to identify the pattern of comovement between manufacturing
employment and the variables in our SVAR model. Thus, they do not necessarily capture the causal impact on employment of the
channels under analysis.

Our goal is to investigate the dynamics of employment that we might observe following a shock to COVID-19 spread or health
containment policies. To do so, we proceed as follows. First, we estimate Eq. (5) via OLS. Second, we take the dynamics of COVID-
19 spread, health containment policies, and exports implied by our baseline model following each of the shocks considered in the
previous sections.24 Then, we feed the dynamics of these variables into the estimated version of Eq. (5) to obtain an implied path
of employment dynamics following each shock.25 The implied employment dynamics associated with a shock to COVID-19 spread
and health containment policies are plotted in Fig. 7. We interpret these implied employment dynamics as capturing the expected
comovement between employment and the variables in our model — not necessarily the causal impact of the latter on the former.

We find a smaller response of employment to COVID-19 spread and health containment policy shocks than their implied effects on
exports in Fig. 1. Increased COVID-19 spread is associated with a decline of employment that is one-fifth of the response of exports.
Similarly, shocks to health and containment policies are associated with a decline of employment lower than 1%, approximately
one-tenth of the decline in exports. While these findings do not establish a causal link between employment and the variables in
our baseline model, they do imply that the shocks we identify through our SVAR analysis are correlated with appreciable declines
of manufacturing employment.

24 Fig. 1 plots the dynamics of the variables that we focus on.
25 We assume the control variables remain unchanged, as we do to compute the impulse response functions in previous sections.
17
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Fig. 7. Implied employment dynamics. Notes: The implied dynamics of employment are estimated by taking the baseline impulse response functions from Fig. 1
and feeding them through the estimated version of Eq. (5).

7 Concluding remarks

In this paper, we investigate the causal linkages between COVID-19 virus spread, health containment policies, and economic
ctivity. Our findings show the effectiveness of health containment policies implemented during COVID-19 at curbing the spread of
he virus. While we find they lead to a contraction of economic activity, our findings imply that their impact is largely transitory. We
lso find that economic support policies can be complementary to health containment policies, ensuring the stability of economic
ctivity while aiding in the reduction of COVID-19 spread.

Our analysis is best suited to investigate the joint dynamics between COVID-19 spread, health containment policies, and economic
ctivity in the absence of vaccines; thus our focus on the pre-vaccine period up to January 2021. With the introduction of vaccines,
he analysis and identification strategy would need to be extended in a model in which vaccine take-up rates are modeled explicitly
long with non-vaccine health containment policies. These are important issues that remain for future research.

Thus, our analysis in this paper is informative about the design of health and economic policies during the early stages of a
andemic, when only non-pharmaceutical tools are available to combat it. To the extent that vaccines become less effective with
he emergence of new variants, our findings can also prove critical at advance stages of a pandemic.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.euroecorev.2022.104087.
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