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A B S T R A C T

Because of COVID-19's effect on pulmonary tissues, Chest X-ray(CXR) and Computed Tomography (CT) images
have become the preferred imaging modality for detecting COVID-19 infections at the early diagnosis stages,
particularly when the symptoms are not specific. A significant fraction of individuals with COVID-19 have
negative polymerase chain reaction (PCR) test results; therefore, imaging studies coupled with epidemiological,
clinical, and laboratory data assist in the decision making. With the newer variants of COVID-19 emerging, the
burden on diagnostic laboratories has increased manifold. Therefore, it is important to employ beyond laboratory
measures to solve complex CXR image classification problems. One such tool is Convolutional Neural Network
(CNN), one of the most dominant Deep Learning (DL) architectures. DL entails training a CNN for a task such as
classification using extensive datasets. However, the labelled data for COVID-19 is scarce, proving to be a prime
impediment to applying DL-assisted analysis. The available datasets are either scarce or too diversified to learn
effective feature representations; therefore Transfer Learning (TL) approach is utilized. TL-based ResNet archi-
tecture has a powerful representational ability, making it popular in Computer Vision. The aim of this study is
two-fold- firstly, to assess the performance of ResNet models for classifying Pneumonia cases from CXR images
and secondly, to build a customized ResNet model and evaluate its contribution to the performance improvement.
The global accuracies achieved by the five models i.e., ResNet18_v1, ResNet34_v1, ResNet50_v1, ResNet101_v1,
ResNet152_v1 are 91.35%, 90.87%, 92.63%, 92.95%, and 92.95% respectively. ResNet50_v1 displayed the
highest sensitivity of 97.18%, ResNet101_v1 showed the specificity of 94.02%, and ResNet18_v1 had the highest
precision of 93.53%. The findings are encouraging, demonstrating the effectiveness of ResNet in the automatic
detection of Pneumonia for COVID-19 diagnosis. The customized ResNet model presented in this study achieved
95% global accuracy, 95.65% precision, 92.74% specificity, and 95.9% sensitivity, thereby allowing a reliable
analysis of CXR images to facilitate the clinical decision-making process. All simulations were carried in PyTorch
utilizing Quadro 4000 GPU with Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz processor and 63.9 GB useable
RAM.
1. Section I

1.1. Introduction

SARS-CoV-2(Severe Acute Respiratory Syndrome Corona Virus-2), a
novel coronavirus,was discovered inWuhan, China, inDecember2019 [1].
Commonly referred to as COVID-19, theWorld HealthOrganisation(WHO)
declared it a global pandemic in March 2020. After more than 1.5 years,
newer variants of COVID-19 are emerging, burdening the healthcare sys-
tems globally [2]. The usual clinical presentation for COVID-19 includes
cough,dyspnoea, fever, and radiological abnormalities [3].Themeasuresof
COVID-19 testing globally are swab tests from the nose and throat for
howkat), shaima@nitsri.net (S. Q
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reverse-transcribed polymerase chain reaction (RT-PCR) and rapid antigen
test (RAT) [4].However, RT-PCR tests have low sensitivity (69%), resulting
in an aberration in various inspections; therefore, numerous studies have
given a pivotal role to imaging techniques in the initial diagnosis and
management of the disease with CXR imaging as a front-line technique to
confirm the presence of infection [5,6].

Community-acquired coronavirus linked with SARS causes atypical
Pneumonia [7]. The “American Thoracic Society” (ATS) guidelines
recommend a chest radiograph to confirm the diagnosis in all cases with
suspected Community-acquired Pneumonia [7]. The “Canadian Society
of Thoracic Radiology and the Canadian Association of Radiologists” has
provided a detailed account of the role of CXR and CT imaging in
ureshi).
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Fig. 1. Role of CT/CXR imaging in COVID-19 diagnosis.
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complementing COVID-19 management in their article [8]. The study
reveals that CT/CXR is ideal for determining COVID-19 infection in pa-
tients with worsening symptoms, immunocompromised individuals and
if RT-PCR tests are unavailable. CT/CXR imaging is also essential for
monitoring the disease progression, especially in high-risk patients.
However, although standard CXR scans can aid in the early detection of
suspected instances, the imaging of diverse viral pneumonia cases is
comparable and overlaps with other infectious and inflammatory lung
disorders. Fig. 1 represents the potential role of CT/CXR imaging in
COVID-19 diagnosis based on studies in Refs. [6,8].

Two critical parameters of COVID-19 diagnosis are accuracy and
timeliness. In the current situation, when COVID-19 has had a significant
impact on clinical diagnostic laboratories [9] and the side symptoms of
COVID-19 are similar to viral Pneumonia, the possibility of late or
incorrect diagnosis increases. Experts are harnessing beyond laboratory
measures such as DL, especially CNNs, for CXR/CT image classification.
DL techniques contribute to automatic mass feature extraction using
convolution operation on the input images at the lower layers and
amplify the distinguishing characteristics at the higher level [10].
Traditional DL technology has found a place in numerous practical ap-
plications [11], but it has certain limitations in real-world domains. So-
phisticated models such as CNNs require large-scale datasets to
accomplish effective feature extraction and classification. Furthermore,
DL ideally requires labelled training examples with the same distribution
2

as the test data. However, gathering enough training data is sometimes
prohibitively expensive, time-consuming, or impossible.

The application of DL for analysis of COVID-19 data also faces sig-
nificant hindrances, including lack of a standard global dataset, mis-
labelled data, class imbalance, ambiguity, noise, sparsity, and
redundancy in the available data [12,13]. A preferred method to counter
the problem of the limited size of the samples connected to COVID-19 is
utilizing pre-trained models using TL. TL is an approach in which a CNN's
knowledge extracted from one dataset solves a second but similar task
needing new data, usually due to the under-availability of data and the
high computational cost of training a new CNN from scratch [14,15]. TL
aims to improve performance on the target domains by reutilizing and
transferring learned information from correlated source domains [16].

The success of TL is attributed to feature reuse, and the authors of
[17] confirm in their research that the performance gains occur even for
the most remote target domains. The authors of [18] demonstrate that a
fine-tuned pre-trained CNN can outperform or perform equally well as a
fully trained CNN in medical imaging applications. TL has found space in
various applications such as drug discovery [19], plant disease identifi-
cation [20], plant species classification [21], medical imaging [22], fault
diagnosis [23], natural language processing [24], and many domains
with underrepresented data. Various Deep Transfer Learning (DTL) based
pre-trained models are utilized for image classification, key point
detection, segmentation, and object detection.



Fig. 2. CXR images corresponding to (I)-‘Not Pneumonia’ and (II)-‘Pneumonia’ clinical category.
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TL is commonly expressed in computer vision through the usage of
pre-trained models. Popular pre-trained models for feature extraction in
images include AlexNet [25], VGG [26], SqueezeNet [27], DenseNet
[28], MobileNet [29], Inception [30], GoogLeNet [31], Xception [32],
ResNet [33], and EfficientNet [34] with architectural variations existing
in model versions. ImageNet is predominantly used as a transferred
source [35]. Researchers have widely used these models in CXR/CT
imaging on different datasets to detect COVID-19 Pneumonia. The au-
thors of [36] employ ResNet32 as their DTL model with a top-2 smooth
loss function with cost-sensitive attributes to deal with noisy and
imbalanced data. The dataset taken is small with 852 images (413 Covid
positives and 439 of Normal Pneumonia) and obtained a precision of
0.95 with 0.91 sensitivity, 0.95 specificity, and 0.93 validation accuracy.
The authors of [37] have gathered 1065 CT images of
pathogen-confirmed COVID-19 cases and modified the Inception TL for
their model. The external testing dataset demonstrates total sensitivity of
0.67, specificity of 0.83, and accuracy of 0.79.

The authors of [38] have worked on a collection of two datasets, one
with 1428 X-ray photos(224 with COVID-19 illness, 700 with typical
bacterial Pneumonia, and 504 of healthy images) and the other with
1422 images(224 with COVID-19 condition, 714 with bacterial and viral
Pneumonia with typical bacterial Pneumonia, and 504 Healthy images)
and show a comparative analysis on CNNmodels using TL. The authors of
[39] propose a Deep CNN-based Inception V3 model to detect Covid
Pneumonia infected patients using CXR imaging. The dataset contains
3550 images (864 Covid positive, 1345 viral pneumonia, and 1341
Healthy images), and the authors have attained a validation accuracy of
0.93. The authors of [40] have divided the dataset with 1616 CXR images
into three classes(728 Normal, 648 Pathological but non-Covid, and 240
Covid positives). In their experiment, the authors have adopted a Den-
seNet based architecture to distinguish between Healthy and
3

Pathological/Covid positives through binary classification and attained a
global accuracy of 0.7962.

Our research aims to assess the effectiveness of ResNet architectures
for Pneumonia classification on CXR images in the early stages of Covid
diagnosis for determining the efficacy of raise in pre-test probability. Our
findings reveal that TL with ResNet variants for Pneumonia detection to
assist COVID-19 diagnosis is effective, has stable performance, and is
simple to implement. The rest of the paper is organized as follows.

� Section II presents the description of the dataset, pre-processing
methods, models, and statistical analysis done in this study. A
detailed background of architectural tweaks on ResNet variants car-
ried before simulation, training details, hyperparameter tuning, and
architecture of our customized ResNet model are presented.

� Section III presents two sets of experimental results. Firstly a
comprehensive comparative analysis of the performance of ResNet
architectures for classifying Pneumonia from CXR images and sec-
ondly, the evaluation of customized ResNet18 model.

� Lastly, in Section IV, we present the limitations of the study and the
conclusion.

2. Section II

2.1. Materials and methods

A) Dataset Preparation and training

Due to geographical bias, non-uniformity, construction methods, and
data imbalance, there is currently no dataset that can serve as a bench-
mark for COVID-19. We have compiled the data used in our study from
the public database ‘CoronaHack-Chest X-Ray-Dataset’ on Kaggle,



Fig. 3. Residual learning.
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consisting of 5910 unique CXR images corresponding to 2 clinical cate-
gories- Pneumonia (4334 images)and ‘Not Pneumonia’ (1576 images).
Fig. 2 displays representative samples of CXR images corresponding to
the two classes. The dataset was split into two mutually exclusive sets-
89% for training/validation and 11% for testing. The 5286 images
constituting the training set contain 1342 images belonging to the ‘Not
Pneumonia’ class and 3944 to ‘Pneumonia’ class, while in the test set
containing 624 images, 234 correspond to the ‘Not Pneumonia’ class and
390 to the ‘Pneumonia’ class. All images were rescaled to a size of 224 �
224, and data augmentation was performed before every simulation to
prevent overfitting and improve the network's generalization. Generative
adversarial networks (GANs) have recently gained popularity as a new
method of data augmentation. Through GANs, it is possible to synthesize
images from scratch. However, GANs achieve adequate results when
combined with other methods, computation time is very high, face
problems with counting, lack comprehension of the perspective, and
difficulty coordinating global structures. For faster results, we have used
the traditional data augmentation method based on a combination of
affine changes and color modification. This method is relatively fast and
straightforward to implement and has effectively expanded the training
dataset.

In our model, TL was used for the training procedure, and the model
weights from the ImageNet dataset were used as the initialization
weights for the ResNet architecture. The utilization of a pre-trained
model reduces the number of labelled examples needed for an accept-
able training model, as is the case in our study. During training, model
checkpoints were employed to save the best model weights for further
analysis. Since a higher number of epochs does not necessarily lead to a
substantial increase in classification accuracy, we have performed each
Table 1
Architectural variation in different ResNet models [33].

Layer name Output Size 18 layer 34 layer

Convol_1 112 � 112 7 � 7,64,stride ¼ 2
Convol_2 56 � 56 3 � 3, Max pool, stride ¼ 2�

3x3;64
3x3;64

�
x 2

�
3x3; 64
3x3; 64

�
x 3

Convol_3 28 � 28
�
3x3; 128
3x3; 128

�
x 2

�
3x3; 128
3x3; 128

�
x 4

Convol_4 14 � 14
�
3x3; 256
3x3;256

�
x 2

�
3x3; 256
3x3; 256

�
x 6

Convol_5 7 � 7
�
3x3; 512
3x3; 512

�
x 2

�
3x3; 512
3x3; 512

�
x 3

1 � 1 Average Pooling 1000, Softmax function
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training process with the ‘Early stopping’ concept for regularization and
preventing overfitting. In early stopping, a large number of training
epochs are specified, and training is stopped once the model's perfor-
mance no longer improves on a specific metric in the validation dataset.

B) ResNet Network Architecture

ResNet was introduced to address the problem of vanishing gradients
[41,42]. ResNets alleviate this issue through shortcut connections,
enabling the gradient to flow along an additional shortcut channel. The
authors of [33] suggest optimizing residual mapping is simpler than
optimizing and can be achieved in feed-forward neural networks through
shortcut connections. The primary working principle is that if the addi-
tional layers are built as identity mappings, a deeper model should have
nomore training error than the corresponding shallower equivalent [33].
Instead of directly stacking layers to meet a particular underlying map-
ping, the layers are stacked to fit a residual mapping. Let HðxÞ represent
the required underlying mapping, the nonlinear layers are designed to
match a different mapping such that

FðxÞ ¼ HðxÞ � x (1)

→ HðxÞ ¼ FðxÞ þ x (2)

Through shortcut connections, layer(s) are skipped. In Residual
learning, backpropagation is done through the identity function using
only vector addition, as depicted in Fig. 3. Identity mappings do not
contribute any extra parameters [43].

The different variations of ResNet architecture work on the same
principle but differ in the number of layers. The architecture of 18-layer
and 34-layer, 50-layer, 101-layer, and 152-layer ResNet is depicted in
Table 1.

C) Layer Freezing

Two popular approaches exist for utilizing a pre-trained CNN's abil-
ities. In the first approach, the pre-trained CNN model retains its basic
architecture and learned weights and is only used for feature extraction,
which is then introduced into the network performing the classification
task. The second approach involves specific modifications to the pre-
trained model to get optimal results, such as architectural tuning and
parameter optimization. Only specific information from the previous task
is kept while new trainable parameters are added to the network. The
second approach is complex, while the first avoids the computational
overheads of fully training a deep network.

Deep networks typically perform poorly on test data when trained on
a small dataset, causing the model to overfit and can be alleviated by
eliminating some feature detectors during each epoch [44]. The top
layers of a deep network may have the fewest parameters but are the
50 layer 101 layer 152 layer

2
41x1;64
3x3;64
1x1;256

3
5x 3

2
4 1x1;64
3x3;64
1x1;256

3
5x 3

2
4 1x1;64
3x3;64
1x1;256

3
5x 3

2
41x1;128
3x3;128
1x1;512

3
5x 4

2
4 1x1;128
3x3;128
1x1;512

3
5x 4

2
4 1x1;128
3x3;128
1x1;512

3
5x 8

2
41x1;256
3x3;256
1x1;1024

3
5x 6

2
4 1x1;256
3x3;256
1x1;1024

3
5x 23

2
4 1x1;256
3x3;256
1x1;1024

3
5x 36

2
41x1;512
3x3;512
1x1;2048

3
5x 3

2
4 1x1;512
3x3;512
1x1;2048

3
5x 3

2
4 1x1;512
3x3;512
1x1;2048

3
5x 3



Fig. 4. Concept of Layer Freezing.
Strategy I is followed when the dataset is dissimilar to the dataset in the pre-trained model.
Strategy II is followed when the dataset is similar to the dataset in the pre-trained model.

Fig. 5. Comparison of the number of parameters in different ResNet models with Layer Freezing.
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most computationally intensive [45]. All CNNs share some
hyper-parameters, and saving the relevant feature extractors learned
during the initial step avoids additional computational complexity. The
top layers in the convolutional base that perform feature extraction are
frozen and made untrainable, while the late convolutional layers, closer
to the output features, are made trainable to allow for better extraction of
information. Based on the large variety of contexts in which the network
must operate, the goal is to detect the features that are generally helpful
for producing the correct classification result.

The goal of layer freezing is to control how weights are updated; the
weights cannot be changed further by freezing a layer. This accelerates
the training process, prevents complex co-adaptations, and reduces the
computational time required for training without compromising accu-
racy. Two prime strategies are available for TL with smaller datasets; the
choice is dictated by the similarity to the dataset in which the pre-trained
model was trained, as depicted in Fig. 4. In strategy I, only the first few
layers are frozen while the end layers are made trainable. Additional
trainable layers can be added to the model if the dataset is comparatively
5

larger. In strategy II, the previously trained model is run as a fixed feature
extractor, and then the features are then used to train a new classifier.

D) Model Configuration

We have tested a range of ImageNet pre-trained ResNet models,
including a) ResNet18, b) ResNet34, c) ResNet50, d) ResNet101, e)
ResNet152, and a customized ResNet model. We have followed Strategy I
during training; the first few layers were frozen, and only the last layers
were trained. The modified trainable parameters are displayed in Fig. 5:
the models with parameter reduction are named ResNet18_v1,
ResNet34_v1, ResNet50_v1, ResNet101_v1, and ResNet152_v1. The
hyperparameters were determined after multiple experiments in each
model. ResNet18 utilized lesser parameters and showed at par perfor-
mance with the others; therefore, we chose it as the base for the
customized model.

Customized ResNet model: The architecture of the customized
ResNet employed in this investigation is shown in Fig. 6. ResNet18 has



Fig. 6. Architecture of the customized ResNet model.
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been taken as the base for our customized model. The dropout layer was
appended to the fully connected (FC) layer to alleviate model overfitting
difficulties by lowering model sensitivity to the peculiarities of the
training input. Dropout forces neurons to rely on population behavior
rather than an individual activity to prevent overfitting and co-
adaptation of feature detectors, increasing generalization accuracy
[46]. Dropouts in CNNs regularize the networks through the addition of
noise to each layer's output feature maps, resulting in robustness for
varying images [47]. Taking a cue from the authors of [48], who pro-
posed that adding batch normalization(BN) results in robust training and
is a prerequisite for achieving convergence in many cases, we have added
a BN to the FC layer. With BN, gradients behave more predictably and are
more stable, resulting in faster training [49].

E) Metrics

Specific metrics were documented to evaluate the classification task
performance: These include (a) correctly characterized Pneumonia im-
ages (True Positives, TP), (b) correctly characterized ‘Not-Pneumonia’
images (True Negatives, TN), c) incorrectly characterized Pneumonia
images (False Negatives, FN), and (d) incorrectly characterized ‘Not-
Pneumonia’ images (False Positives, FP). The statistical measures
calculated for the classification report include [50].
Fig. 7. Training process of ResNet variants; Training Vs Validation loss. ResNet18_v
56, 92, 50, 56 epochs respectively.
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Sensitivity ¼ TP
TPþ FN

(3)
Specificity ¼ TN
FPþ TN

(4)

Precision ¼ TP
TPþ FP

(5)

Negative Predictive ValueðNPVÞ ¼ TN
TN þ FN

(6)

False Positive Rate ðFPRÞ ¼ FP
FPþ TN

(7)

False Discovery RateðFDRÞ ¼ FP
FPþ TP

(8)

False Negative RateðFNRÞ ¼ FN
TPþ FN

(9)

Accuracy ¼ TPþ TN
TPþ TN þ FPþ FN

(10)
1, ResNet34_v1, ResNet50_v1, ResNet101_v1, ResNet152_v1 converged after 40,



Fig. 8. Comparison of Precision, Specificity, and Sensitivity achieved
by models.

Table 2
Comparative Analysis of the performance of ResNet variants for classifying
Pneumonia from CXR images.

Metric 18_v1 34_v1 50_v1 101_v1 152_v1

NPV 0.8782 0.9194 0.9476 0.88 0.9358
FPR 0.1068 0.1709 0.1496 0.0598 0.1282
FDR 0.0648 0.0969 0.0845 0.0374 0.0739
FNR 0.0744 0.0436 0.0282 0.0769 0.0359
Accuracy 0.9135 0.9087 0.9263 0.9295 0.9295
F1 Score 0.9304 0.929 0.9428 0.9424 0.9447
MCC 0.8161 0.8038 0.8424 0.8528 0.8488

ROC curves: The ROC curve graphs (1 – Specificity) Vs. Sensitivity.
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F1 Score ¼ 2TP
2TPþ FPþ FN

(11)
Matthews Correlation CoefficientðMCCÞ

¼ ðTP X TN – FP X FNÞ
√ððTP þ FPÞ ðTP þ FNÞ ðTN þ FPÞ ðTN þ FNÞ Þ (12)

3. Section III

3.1. Experimental results

We have carried out multiple sets of experiments in this investigation;
the results of each are detailed in this section. We have carried out in-
dividual experiments on the fine-tuned ResNet architectures and the
customized ResNet18 model, tested them on the same metrics and
recorded the detailed comparisons of their performance.

A) Performance comparison of ResNet Architectures

We present a comparative analysis of the performances of ResNet
configurations on different metrics in this section. We have trained all
finetuned pre-trained ResNet models- ResNet18_v1, ResNet34_v1,
ResNet50_v1, ResNet101_v1, and ResNet152_v1 separately on the same
dataset. Each model was end-end trained with binary cross-entropy
(BCE)loss function, and the optimization during the training stage was
performed through Adam. The training was carried with a holdout factor
of 35 epochs for each model depicted in Fig. 7. The models were trained
with different learning rates and batch sizes to determine the optimal
hyperparameters. The final results have been recorded after multiple
simulations. Fig. 8 depicts the comparison of the models on sensitivity,
specificity, and precision performance metrics. The performance com-
parison on the remaining metrics has been recorded in Table 2. The
receiver operating characteristic (ROC) curve analysis graph displaying
the performance of the models at different classification thresholds is
presented in Fig. 9.
7

B) Customized DTL ResNet18

The customized ResNet model was trained with BCE as the loss
function, a learning rate of 0.0001, Adam optimizer, and batch size of 64.
The final parameters were defined after multiple experiments, but many
other options can be studied in the future to see if they contribute to
performance improvement. Data augmentation was carried out to obtain
a stable model. The model was trained with a holdout factor of 35 and
trained for 77 epochs, displayed in Fig. 10. The model achieved 0.959
sensitivity, 0.9274 specificity, 0.9565 precision, 0.9577 F1 score, 0.9313
NPV, 0.0726 FPR, 0.0435 FDR and 0.041 FNR. The confusion matrix and
classification report are recorded in Table 3 and Fig. 11. The custom
ResNet model displays significant improvement in the global accuracy
compared to base ResNet models; a contrast of the same is shown in
Fig. 13. The AUC-ROC value recorded with the finalized parameters is
presented in Fig. 12.

4. Section IV

4.1. Discussions, limitations and conclusion

CNNs learn to extract essential features of an image; therefore, data
availability for initial training is the most important aspect of practical
training. Most of the datasets are small and suffer from the issue of class
imbalance. The uneven distribution of classes and lack of sufficient data
affects the robustness of the DL models. Some data samples may overlap,
resulting in the use of the same images multiple times during training.
Our study has countered these limitations through a combination of pre-
trained models with TL, parameter reduction and feature reuse through
layer freezing and data augmentation, providing faster training with
smaller datasets. Instead of training a more in-depth model from scratch
on a small database, our proposed model works in a transfer setting,
where a pre-trained ResNet 18 model is employed, and utilizing the
available dataset to refine the base model. This allows for parameter
reduction with data-specific customization-the top layers near the fully
connected layers finetune the model through data-specific training. A
comparison of customized ResNet18 and base ResNet18 is displayed in
Fig 14; the proposed customized model achieved better values on all
metrics.

Limitations: Although standard CXR scans can aid in the early
detection of suspected instances, the imaging of diverse viral pneumonia
cases is comparable and overlaps with other infectious and inflammatory
lung disorders. Thus, the classified Pneumonia cases may include sub-
jects with pathological conditions unrelated to the traits of COVID-19. To
address this problem, medical experts must be more involved in all stages
of DLmodel creation, assessment to integratemedical domain knowledge
into models [51]. The prediction accuracy and model transparency
would improve if indicators’ detection were included with the catego-
rization output [52].

Conclusion: The increase in the COVID-19 cases worldwide and the
limitations of the available diagnostic tools have enforced a big challenge
in handling the pandemic effectively. Radiologists have recorded a va-
riety of abnormalities found in the CXR/CT scans of COVID-19 affected
individuals, and many studies have confirmed that these images are
decisive for identifying high-risk patients who need immediate attention
and support. DL techniques, particularly CNNs, have significantly
improved image analysis performed in the medical imaging domain, but
face multiple challenges, with COVID-19 data not being an exception.
Thus, instead, we have applied the TL approach, which counters the
limitations of the dataset through feature reuse by transferring the
knowledge between domains. The initial layers are computationally
expensive to train in a deep network such as CNN. Furthermore, all CNNs
share some hyper-parameters in the initial feature extraction stages;
therefore, we have applied the layer freezing concept on the initial layers
in the convolutional base to avoid additional computational complexity.
This study has examined the effects of five versions of TL- based pre-



Fig. 9. ROC Curve Analysis of ResNet models.

Fig. 10. Training of Customized ResNet Model: Training and Validation loss Vs. Epochs.
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trained ResNet models for automated Pneumonia detection from CXR
images. We have performed a detailed experimental analysis evaluating
the performance of each of these five models in terms of sensitivity,
specificity, accuracy and AUC-ROC. The results showed that the pre-
trained ResNet models provide significant gains and display good clas-
sification reports even when trained on a limited-sized dataset. For faster
training, avoiding computational costs and timeliness, we have utilized
8

ResNet 18 as the base for the customized model and finetuned it through
additional layers such as BN, enabling faster and more stable training and
Dropout that regularizes the network. The customized model is light-
weight, with much lesser parameters than a Deep model, and attains
higher classification accuracy even when trained on a small dataset. The
performance achieved is encouraging, but there is still much room for
improvement. As a future study, we intend to test the potential of our



Table 3
Classification report and Confusion matrix recorded on customized ResNet.

Recall Precision F1-score Support

Not Pneumonia 0.93 0.93 0.93 234
Pneumonia 0.96 0.96 0.96 390
Accuracy 0.95 624
Macro Average 0.94 0.94 0.94 624
Weighted Average 0.95 0.95 0.95 624

Fig. 11. Classification report and confusion matrix recorded on customized
ResNet model.

Fig. 12. ROC curve of customized ResNet model.

Fig. 13. Comparison of Accuracy achieved by our customized model Vs.
ResNet variants.

Fig. 14. Performance comparison of proposed customized ResNet18 model
with ResNet18_v1.
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finetuned ResNet model on more diversified datasets to achieve a com-
plete validation of their potential for assisting COVID-19 diagnosis.
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