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Abstract

Motivation: Genomic DNA replicates according to a reproducible spatiotemporal program, with some loci replicat-
ing early in S phase while others replicate late. Despite being a central cellular process, DNA replication timing stud-
ies have been limited in scale due to technical challenges.

Results: We present TIGER (Timing Inferred from Genome Replication), a computational approach for extracting
DNA replication timing information from whole genome sequence data obtained from proliferating cell samples.
The presence of replicating cells in a biological specimen leads to non-uniform representation of genomic DNA that
depends on the timing of replication of different genomic loci. Replication dynamics can hence be observed in gen-
ome sequence data by analyzing DNA copy number along chromosomes while accounting for other sources of se-
quence coverage variation. TIGER is applicable to any species with a contiguous genome assembly and rivals the
quality of experimental measurements of DNA replication timing. It provides a straightforward approach for measur-
ing replication timing and can readily be applied at scale.

Availability and implementation: TIGER is available at https://github.com/TheKorenLab/TIGER.

Contact: koren@cornell.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput DNA sequencing has become a central technique
in biomedicine. It can be applied for whole genome sequencing or
targeted sequencing of genomic DNA, as well as coupled to a variety
of biochemical techniques, such as ChIP-seq, ATAC-seq and others
in order to study the epigenome. Many assays that utilize DNA
sequencing, in particular, the genotyping of copy number variations
(CNVs) or alterations (CNAs), as well as many epigenomic assays,
rely on binning read counts along chromosomes as a measure of gen-
etic or epigenetic spatial heterogeneity. Non-uniform read coverage
is thus used to measure variable DNA copy number or the preferen-
tial presence of open chromatin, DNA-bound proteins or other epi-
genetic marks at different locations across chromosomes.

Another, less appreciated factor that influences sequencing read
coverage along chromosomes is DNA replication timing. During the
S phase of the cell cycle, DNA is replicated according to a defined
spatiotemporal program in which replication initiates at specific sites
along chromosomes (replication origins) and at specific times
(Fragkos et al., 2015). The locations and activation times of origins
along chromosomes, together with the rate of replication fork pro-
gression, define a non-uniform landscape of genome replication with
different chromosomal regions replicating at different times along S
phase. DNA replication timing is highly reproducible among cells

and samples, and conserved in evolution. Early replication timing is
strongly correlated with high gene density, active gene expression,
open chromatin and activating histone marks (Aladjem, 2007). On
the other hand, late-replication is correlated with a higher mutation
rate in both somatic and germline cells, and replication timing in
general has been shown to interface with various aspects of genome
stability (Gaboriaud and Wu, 2019; Koren, 2014). Taken together,
DNA replication timing is a central cellular process that bridges gen-
etic and epigenetic inheritance with important implications to evolu-
tion, development and disease.

Genomic measurements of DNA replication timing typically rely
on sequencing DNA from a population of cells enriched for cells in S
phase, in order to identify replicated DNA or an increase in the copy
number of certain genomic regions [reviewed in (Hulke et al.,
2020)]. While these experiments have been applied to various species
and cell types, they remain relatively difficult to implement in gen-
eral, and on large scales in particular, limiting progress in the DNA
replication field. However, we have previously shown that samples
containing a sufficient fraction of cells in S phase demonstrate meas-
urable imbalances in DNA copy number along chromosomes, allow-
ing the inference of replication timing profiles without cell labeling
or sorting. Specifically, by computationally generating pseudo-data
representing samples with 0-100% cells in S phase, we showed that
as little as 10% of cells being in S phase is sufficient in order to infer
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high-quality DNA replication timing profiles (Koren et al., 2014).

DNA replication in these S phase cells leads to an increased DNA

copy number in proportion to the replication timing of the respective

genomic regions. After parsing these signals from other influences on
DNA copy number (in particular, CNVs/CNAs, as well as technical

influences such as alignability and GC content effects), high-

resolution replication timing profiles can be derived directly from
these sequence data. These profiles are of equivalent quality to repli-

cation timing profiles measured using sorted cells, while avoiding

much of the associated experimental manipulations (Ding et al.,
2020; Koren et al., 2014).

The ability to infer DNA replication timing from whole-genome
sequence data provides an incredibly powerful approach for advanc-

ing the replication timing field. It provides a means of easily measur-

ing replication timing in various samples, and is highly scalable. In
addition to the utility of this approach for investigating replication

timing, the influences of DNA replication on sequence read coverage

is a potential confounder in numerous genetic and epigenetic studies

that rely on coverage analysis and/or read counting applications.
The ability to extract replication timing signals from these data ena-

bles their identification, and hence separation, from the other bio-

logical factors being studied.
Here, we introduce TIGER (Timing Inferred from Genome

Replication), a unified computational pipeline for extracting DNA
replication timing information from whole-genome sequence data.

TIGER analyzes DNA copy number, corrects for alignability, GC

bias and CNVs/CNAs, filters outliers and smoothes and normalizes
the copy number data to obtain high-resolution replication timing

profiles. TIGER is applicable to samples containing proliferating

cells of any species with a contiguous reference genome assembly.

2 Materials and methods

2.1 Whole genome sequence data
Whole genome sequence data for mouse embryonic fibroblasts

(MEFs) were obtained from Yang et al. (2019) (SRA accession num-
ber PRJNA554729; 38–42� coverage). Whole genome sequence

data for two mouse embryonic stem cells (mESC) and four induced

pluripotent stem (iPS) cell lines were obtained from Sugiura et al.
(2014) (SRA accession number DRP000548; 14–27� coverage).

Data for the human ESC line CHB1 was obtained from Ding et al.
(2020) (dbGaP accession number: phs001957; 17� coverage), for

the human ESC line HUES63 from Merkle et al. (2020) (30� cover-
age) and for the human LCL GM12878 from Eberle et al. (2017)

(dbGap accession number: phs001224.v1.p1; 50� coverage).

2.2 Whole genome sequencing
The GM12878 lymphoblastoid cell line (Coriell Institute) was

grown in RPMI 1640 medium (Corning) supplemented with 15%

FBS at 37�C in a 5% CO2 atmosphere. DNA was isolated using the

MasterPureTM DNA Purification Kit (Epicentre) and libraries were
prepared with the TruSeq DNA PCR-Free Library Prep Kit

(Illumina). Paired-end sequencing was performed for 150 cycles with

the Illumina HiSeq X Ten.

2.3 Alignability filter
Sequence fastq files were aligned using BWA-MEM to either the

human hg19 reference genome or the mouse mm10 reference gen-

ome. The reference genomes were used to generate short fragments
of 100bps that correspond to each location in that genome. These

fragments were then aligned back to the same reference genome,

after which fragments that did not align to a single location were

flagged and added to a list of non-uniquely alignable loci. This was
defined as the alignability filter. Previous research suggested that

there is no benefit in using fragments larger than 100bps, even for

sequencing libraries with reads longer than 100bps (Handsaker
et al., 2015).

2.4 ‘Read number windows’
The alignability filter was used to define genomic windows of equal
number of uniquely alignable base pairs, which were used for all
subsequent analyses. Since non-uniquely alignable loci are not uni-
formly distributed across the genome, the resulting windows vary
with respect to their physical length. We recommend a window size
of 10Kb of uniquely alignable base pairs by default, although shorter
or longer windows can also be considered depending on data quality
and/or sequence coverage. Windows that span gaps in the reference
genome (�0.1% of the human genome version hg19 and �0.2% of
the mouse genome version mm10) were removed from further
consideration.

2.5 Counting reads in read number windows
The locations of all sequence reads were extracted from BAM files
using SAMtools after quality filters for sequence reads that were not
primary alignments, were PCR duplicates or had MAPQ scores
lower than 10. Only the first reads in read pairs were used. Using the
alignability filter, non-uniquely alignable reads were removed from
further analysis.

2.6 GC content normalization
We corrected for GC effects at the level of sequencing library frag-
ments by calculating the relationship between read coverage and the
GC content of DNA sequences corresponding to typical sequencing
fragment lengths (400 bp). This was implicated in four steps.

The first step (implicated in the script ‘TIGER_generate_ proces-
sing_files’ and performed once for a given genome and window size)
calculates the GC content of all 401 bp (200 bp on each side of each
considered base pair) fragments in the genome. It saves all the gen-
omic positions belonging to each GC content bin (401 total bins),
excluding positions falling within the alignability filter.
Subsequently, for each read number window (defined above), the
number of base pairs belonging to each GC content bin are counted.

The second step (implicated in the script ‘TIGER_ generate_repli-
cation_profiles’) was performed separately for each sample. It
assigns each autosomal sequence read in the sample to a GC content
bin and then calculates the relationship between GC content and
read coverage (as fraction of autosomal reads divided by fraction of
autosomal base pairs) in that sample.

Only genomic regions with a copy number consistent with the
sample’s ploidy were considered for calculating the GC content bias.
To implement this, a segmentation algorithm (implicated in
‘TIGER_segment_filt’; see section ‘Removal of copy number out-
liers’ below) was used to identify genomic regions with outlier copy
numbers. This process is particularly important for samples that har-
bor aneuploidies or segmental copy number alterations; not remov-
ing these from the GC content correction may introduce biases
affecting the entire genome.

In a third step, the GC content distribution of each read number
window was used to calculate the expected number of reads in each
window given the GC effects, the total coverage of the library and
the ploidy of the sample (assumed here to be 2 by default).
Specifically, in each window, the number of bps that fall into each
GC bin was multiplied by the GC bias factor for that bin. This was
applied only to bins of 20–80% GC (i.e. bins 81 to 321 of the 401
bins). These numbers were then summed, multiplied by the mean
number of reads per window (which effectively normalizes for the
overall sequencing coverage of the sample), and divided by 2 (to
make the genome diploid after normalization).

Finally, the actual read counts per window (second step) were
divided by the expected read count (third step) to derive a ‘normal-
ized’ DNA copy number profile.

2.7 Removal of copy number outliers
DNA replication timing leads to continuous, low-amplitude changes
in DNA copy number rather than larger, stepwise changes character-
istic of CNVs/CNAs and other outlier copy number measurements
(e.g. segmental duplications or other regions with problematic map-
ping). To separate replication timing from these other factors, we
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use a segmentation algorithm. Specifically, we used the Matlab func-
tion segment with an ARX model with parameters [0 1 1] and a de-
fault R2 (assumed variance of the innovations in the model) value of
0.04. Segmentation was applied on contiguous genomic regions be-
tween gaps in the reference genome. Data points within segments
that have copy number values more than a given number of standard
deviations (set by default to 1.5) from the autosomal data point
mean values were removed. Subsequently, the same standard devi-
ation threshold was applied within each individual chromosome.
The former removes chromosomes or large chromosomal regions
(e.g. chromosome arms) that have an abnormal copy number com-
pared to the remainder of the genome (e.g. trisomies), while the lat-
ter more effectively removes short segments with outlier copy
number compared to their chromosomal vicinity. Segmentation-
based filtering is optimal for replication timing data because it mini-
mizes the removal of real replication timing peaks and valleys (the
segments corresponding to them receive values close to the genome
average despite data points close to peaks and valleys being relative-
ly diverged from the average); and because it removes data points
that are not copy number outliers by themselves but belong to longer
segments that are outliers.

2.8 Filtering, smoothing and normalization
To generate the final replication timing profiles, the raw data (read
number windows after GC correction) was subjected to several add-
itional steps. First, CNVs/CNAs and copy number outliers were
removed using TIGER_segment_filt. This is similar to the GC filter-
ing, applied once again on the GC-corrected data.

Second, the profiles were smoothed with a cubic smoothing
spline using the Matlab function csaps with a default parameter of
10�17. Smoothing of MEF data was repeated because the raw data
was more noisy (consistent with MEFs being less proliferative). We
independently smoothed contiguous chromosome regions, defined
as segments without a reference genome gap greater than 50Kb and
without a data gap greater than 100Kb. Smoothing is the fundamen-
tal step that generates continuous replication timing profiles.

Last, the data were normalized to units of standard deviation.

2.9 DNA replication timing data
For comparison of TIGER results to reference replication timing
data, we used S/G1 or Repli-seq data for the same cell types. S/G1
replication profiles for the human cell line GM12878 were obtained
from Massey et al. (2019) (SRA accession number PRJNA419407)
and re-aligned to the human reference genome hg19, while Repli-seq
data for mESCs (D3, 46 C and TT2), iPS and MEF cell lines, aligned
to the mouse reference genome mm10, were obtained from
ReplicationDomain.com (Weddington et al., 2008). Mouse Repli-
seq data were further smoothed (Matlab csaps function with param-
eter 10�17) in order to match the smoothing scales with the TIGER
data.

3 Results

DNA replication timing has previously been measured on a genomic
scale either by labeling (e.g. using BrdU), isolating and sequencing
replicated DNA, or by sorting replicating (S phase) cells and
sequencing their genome in comparison to the sequences of non-
replicating (G1 phase) cell DNA. The need to enrich for replicating
cells (as well as the labeling of cells in the former approach) is a lim-
iting factor for the routine and large-scale application of these tech-
niques. An alternative is to avoid cell sorting, and instead, rely on
proliferating cell samples in order to detect the low-amplitude fluc-
tuations in DNA copy number along chromosomes that occur as a
result of DNA replication in a subset of cells. Given the highly quan-
titative nature of next-generation DNA sequencing, even small
changes in DNA copy number caused by DNA replication in a sub-
set of cells could potentially be detected. There are two main chal-
lenges in inferring replication timing from unsorted rather than
sorted cells. First, the replication timing signal is weaker: instead of
a 2-fold difference in DNA copy number between replicated and

non-replicated genomic regions in pure S phase cell samples (or an
even larger fold-difference in labeled DNA), in unsorted samples the
fold-difference would theoretically equal the fraction of S phase cells
in the sample (for example, if 20% of the cells are in S phase, a 1.2-
fold difference in copy number along chromosomes is expected).
Second, lack of sorting also means that control, G1 cells, are not
sorted. Typically, concomitantly sorted G1 cells serve as ideal con-
trols for CNVs/CNAs, alignability and GC content effects on
sequencing read coverage. These factors represent biological and
technical influences on DNA copy number measurements independ-
ently of DNA replication.

We previously showed that accurate DNA replication timing
data can be inferred from the whole-genome DNA sequences of pro-
liferating cell cultures (Ding et al., 2020; Koren et al., 2014). To
achieve this, broad-scale DNA copy number (i.e. sequence read
depth) fluctuations across chromosomes are calculated from the se-
quence data, while the reference genome and the sequence data itself
(analyzed at a narrower spatial scale) are used to calculate alignabil-
ity and GC content effects. These, in turn, are used as the equivalent
of in silico generated G1 cell DNA sequence data with which the
read depth data (approximating S phase sequence data) is normal-
ized. Following additional steps of outlier filtering, smoothing and
normalization, DNA replication timing profiles are obtained. These
replication timing profiles are highly reproducible and highly con-
sistent with replication timing profiles measured by sorting and
sequencing S and G1 phase cells (or following BrdU labeling).
Moreover, the replication profiles obtained directly from sequence
data typically have sharper peaks and valleys than those obtained
using other methods (Ding et al., 2020; Koren et al., 2014) (also see
Fig. 3 below). This may be related to the avoidance of technical
manipulations of cells and DNA. The approach of inferring replica-
tion timing from sequence data provides the most effective and scal-
able way so far to study DNA replication timing.

Previously, we inferred replication timing from sequence data by
using the pre-processing step of Genome STRiP (software to infer
DNA copy number from population-scale sequence data) followed
by several custom steps of filtering and smoothing. Here, we intro-
duce TIGER (Timing Inferred from Genome Replication), a dedi-
cated pipeline for inference of replication timing from sequence data
that performs all required steps in one package, is optimized for rep-
lication timing analysis, and can be applied to any genome for which
a contiguous reference sequence is available.

Extracting DNA replication timing information from sequence
data involves the analysis of subtle DNA copy number fluctuations
along chromosomes. Fundamentally, this is achieved by counting the
number of reads in genomic intervals, or windows, across chromo-
somes. The two main factors that confound the estimation of DNA
copy number based on sequence read counts are the alignability of
short sequences, which are not uniform across many genomes, with
some sequences (e.g. repeats) aligning to more than one genomic lo-
cation; and GC content, which is also not uniform across the gen-
ome and is well-known to influence the efficacy of sequencing and
hence the inference of DNA copy number (Aird et al., 2011;
Benjamini and Speed, 2012; Chen et al., 2013; Ekblom et al., 2014).

To measure DNA copy number while minimizing the effects of
these confounding factors, TIGER defines variable-size genomic
windows with uniform alignability based on a reference genome,
and counts filtered sequence reads from a BAM file in those win-
dows. It then corrects for GC content effects on read coverage in
each particular sequencing library. TIGER subsequently filters
CNVs/CNAs and other regions with outlier copy number measure-
ments (e.g. repetitive regions in the genome, reference sequence gaps
and other technical artifacts). Last, it smoothes and normalizes the
data to produce final replication timing profiles. TIGER is imple-
mented in two scripts. The first, ‘TIGER_generate_processing_files’,
is run once per reference genome, read length and desired read win-
dow size. This script generates an alignability filter, read number
windows and files used for GC correction. The second script,
‘TIGER_generate_replication_profiles’, is run on each individual
sequenced sample (or group of samples) and generates DNA replica-
tion profiles from the sequence data (Fig. 1).
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TIGER consists of two scripts, the first run once for a given refer-
ence genome and window size, and the second applied per sequenced
sample. TIGER extracts read locations from a sequencing library, fil-
ters reads for alignability, counts reads in genomic windows of uni-
form alignability, calculates a GC bias factor and uses it to correct
the window read counts, filters for CNVs and outliers and smoothes
and normalizes the data to derive the final DNA replication timing
profiles.

We first demonstrated the TIGER pipeline on a published 17�
coverage whole-genome sequence dataset from the human embryonic
stem cell (hESC) line CHB1 (Ding et al., 2020). Following alignment,
the locations of sequence reads were extracted, counted in 10Kb win-
dows of uniquely alignable base pairs, corrected for GC content
effects, filtered for copy number outliers and smoothed and normal-
ized. While read depth fluctuations are evident from the very first step
of visualizing reads along chromosomes, each step further distills
DNA replication timing patterns from other factors. The final profiles
show the expected ‘wave’ patterns of DNA replication timing grad-
ually alternating between early and late along chromosomes (Fig. 2)
and are consistent with replication profiles measured with more trad-
itional methods [(Ding et al., 2020) and see further below].

Whole-genome sequence data from the CHB1 hESC cell line
(Ding et al., 2020) were used. While the number of individual reads
mapping to specific locations along chromosomes is not uniform (top
inset), counting reads in larger genomic windows (here, 10Kb of
uniquely alignable sequence) already reveals the characteristic replica-
tion timing wave patterns often observed in sequence data (yellow).
GC correction (green) is an important step for removing potential
technical influences on sequencing read depth (which are minimal
when using PCR-free library preparation as in this example), while
removing copy number outliers (red) is necessary to prevent them
from confounding the analysis of replication timing. Smoothing then
reveals the final DNA replication timing profiles (blue), in which
height represents replication timing from early to late, and peaks cor-
respond to the locations at which replication initiates.

We then evaluated the performance of TIGER by comparing its
output with previously generated replication timing profiles. We
whole-genome-sequenced (without any cell sorting; 16.2� coverage)
the human lymphoblastoid cell line (LCL) GM12878, applied
TIGER to infer replication timing profiles, and compared them to
replication profiles we previously generated for the same cell line by
sorting and sequencing S and G1-phase cells (Massey et al., 2019).
We further applied TIGER to published whole-genome sequence
data of mouse pluripotent stem cell lines (PSCs, including both
mouse embryonic stem cells lines and induced pluripotent stem cells;
Sugiura et al., 2014) and of mouse embryonic fibroblasts (MEFs;
Yang et al., 2019) and compared them to replication timing profiles
obtained by Repli-seq (using BrdU-labeling, sorting and sequencing
of late-versus-early S phase cells) for the same cell types

(Weddington et al., 2008). In all cases, TIGER achieved results com-
parable (or superior) to previous experimental methods (Fig. 3).
TIGER profiles also appear to have comparable resolution to
16-fraction, ‘high resolution’ Repli-seq for identification of replica-
tion initiation sites (Supplementary Fig. S1), although the latter

Fig. 1. TIGER pipeline overview. TIGER consists of two scripts, the first run once

for a given reference genome and window size, and the second applied per sequenced

sample. TIGER extracts read locations from a sequencing library, filters reads for

alignability, counts reads in genomic windows of uniform alignability, calculates a

GC bias factor and uses it to correct the window read counts, filters for CNVs and

outliers, and smoothes and normalizes the data to derive the final DNA replication

timing profiles

Fig. 2. Overview of the TIGER pipeline from sequence reads to replication profiles.

Whole-genome sequence data from the CHB1 hESC cell line (Ding et al., 2020) were

used. While the number of individual reads mapping to specific locations along chro-

mosomes is not uniform (top inset), counting reads in larger genomic windows (here,

10Kb of uniquely alignable sequence) already reveals the characteristic replication tim-

ing wave patterns often observed in sequence data (yellow). GC correction (green) is an

important step for removing potential technical influences on sequencing read depth

(which are minimal when using PCR-free library preparation as in this example), while

removing copy number outliers (red) is necessary to prevent them from confounding

the analysis of replication timing. Smoothing then reveals the final DNA replication

timing profiles (blue), in which height represents replication timing from early to late,

and peaks correspond to the locations at which replication initiates (Color version of

this figure is available at Bioinformatics online.)

Fig. 3. Comparison of TIGER with other experimental approaches for measuring

DNA replication timing. TIGER-generated replication timing profiles were com-

pared with S/G1 sequencing for a human LCL or Repli-seq for two mouse cell types.

Replication timing profiles were highly concordant between the methods. When

compared to Repli-seq, TIGER-generated profiles may even have a higher dynamic

range at the earliest and latest replicating regions. The TIGER-generated profiles for

MEFs, however, appear relatively noisier, likely due to lower cell proliferation com-

pared to LCLs or PSCs. Four Repli-seq profiles are shown for mouse PSCs and for

MEFs, while six TIGER profiles are shown for mouse PSCs and five for MEFs. PSCs

include both mESCs and iPS cell lines (for both TIGER and Repli-seq; the differences

between mESCs and iPS cells were insignificant). The indicated correlations refer to

comparisons between Repli-seq and TIGER profiles
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approach carries the advantage of identifying allelically asynchron-
ous replication regions (Zhao et al., 2020).

The above results, together with our previous analyses using
similar approaches (Ding et al., 2020; Koren et al., 2014), show that
TIGER is a proven approach for inferring high-quality replication
timing profiles from proliferating cell samples. Furthermore, these
results show that TIGER can be effectively applied to different spe-
cies and cell types. We note, however, that TIGER is currently not
applicable to highly rearranged genomes with numerous DNA copy
number alterations, such as the genomes of many solid tumors. It
can be effectively applied to euploid samples with no or limited an-
euploidy and with copy number variations spanning <20% of the
genome.

TIGER-generated replication timing profiles were compared
with S/G1 sequencing for a human LCL or Repli-seq for two mouse
cell types. Replication timing profiles were highly concordant be-
tween the methods. When compared to Repli-seq, TIGER-generated
profiles may even have a higher dynamic range at the earliest and lat-
est replicating regions. The TIGER-generated profiles for MEFs,
however, appear relatively noisier, likely due to lower cell prolifer-
ation compared to LCLs or PSCs. Four Repli-seq profiles are shown
for mouse PSCs and for MEFs, while six TIGER profiles are shown
for mouse PSCs and five for MEFs. PSCs include both mESCs and
iPS cell lines (for both TIGER and Repli-seq; the differences between
mESCs and iPS cells were insignificant). The indicated correlations
refer to comparisons between Repli-seq and TIGER profiles.

4 Discussion

We present TIGER, a computational pipeline that infers DNA repli-
cation timing profiles from whole-genome sequence data. TIGER
can be applied to sequence data derived from proliferating biological
samples of various cell types and species, and provides replication
timing data of quality rivaling or exceeding previous experimental
approaches. TIGER provides an attractive approach for studies of
DNA replication timing, as it can generate replication profiles with
minimal experimental manipulations and resources. It can also be
applied to genome or epigenome sequence data that were generated
for reasons unrelated to DNA replication timing research; in these
cases, TIGER can reveal whether replication timing signals are pre-
sent in these data, which may both confound the original purpose of
the experiment, but also provides opportunities for deriving add-
itional replication timing information.

While TIGER is applicable (and likely optimal) for measuring rep-
lication timing in highly proliferating cell samples, it is more limited
for biological samples with a low fraction of replicating cells. For the
latter, more traditional approaches of labeling and/or isolating repli-
cating cells would perform better. Another consideration when using
TIGER is the overall sequencing coverage (or read depth). In contrast
to enrichment approaches, for which the signal quality saturates at
relatively modest sequencing depths, inferring replication timing from
whole genome sequence data benefits from deeper sequence coverage
(e.g. 10–30�). Thus, deriving optimal data quality may require
deeper sequencing compared to previous approaches, although it also
provides the opportunity to increase data resolution and study gen-
omic DNA replication at finer scales than possible before. As a gen-
eral guideline, for optimal results we recommend applying TIGER to
samples with at least 10% S phase cells and at least 10� sequence
coverage (assuming 150 bp paired-end reads), although sequence
coverage as low as 1� is acceptable for some applications
(Supplementary Fig. S2). Last, we note that other technical factors
related to DNA extraction, sequencing library preparation, sequenc-
ing platform and other potential variables could also affect the data
and should be kept as constant as possible.

Further modifications to TIGER would enable its application to
allele-specific replication profiling using phased SNP alleles (Koren

and McCarroll, 2014), aneuploid and highly rearranged genomes

such as cancer genomes, single cells, non-canonical replication

events such as re-replication, and more.
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