
Vol.:(0123456789)1 3

Mammalian Genome (2022) 33:123–134 
https://doi.org/10.1007/s00335-021-09905-0

Progress towards completing the mutant mouse null resource

Kevin A. Peterson1   · Stephen A. Murray1 

Received: 1 July 2021 / Accepted: 10 August 2021 / Published online: 26 October 2021 
© The Author(s) 2021

Abstract
The generation of a comprehensive catalog of null alleles covering all protein-coding genes is the goal of the International 
Mouse Phenotyping Consortium. Over the past 20 years, significant progress has been made towards achieving this goal 
through the combined efforts of many large-scale programs that built an embryonic stem cell resource to generate knockout 
mice and more recently employed CRISPR/Cas9-based mutagenesis to delete critical regions predicted to result in frameshift 
mutations, thus, ablating gene function. The IMPC initiative builds on prior and ongoing work by individual research groups 
creating gene knockouts in the mouse. Here, we analyze the collective efforts focusing on the combined null allele resource 
resulting from strains developed by the research community and large-scale production programs. Based upon this pooled 
analysis, we examine the remaining fraction of protein-coding genes focusing on clearly defined mouse–human orthologs 
as the highest priority for completing the mutant mouse null resource. In summary, we find that there are less than 3400 
mouse–human orthologs remaining in the genome without a targeted null allele that can be further prioritized to achieve our 
overall goal of the complete functional annotation of the protein-coding portion of a mammalian genome.

Introduction

Animal models, including mouse knockouts, play an instru-
mental role in advancing our understanding of how dis-
ruption of normal gene function relates to human disease. 
Traditionally, much of this work focuses on a relatively 
small number of conserved genes and pathways, reflect-
ing a common tendency for investigators to incrementally 
build upon existing knowledge. Often these advancements 
reflect the critical importance of specific genes to human 
disease (Dolgin 2017); however, the “lamppost effect” 
greatly limits the opportunity for novel discoveries of gene 
function (Stoeger et al. 2018), and ultimately restricts the 
development of new therapeutic avenues (Oprea et al. 2018). 
This effect is strongly driven by the availability of tools to 
interrogate gene/pathway functions (Edwards et al. 2011), 
including mouse mutants (Stoeger et al. 2018). Further, this 
problem is compounded by poor public availability and/or 
limited phenotypic characterization of many of these mutant 
mouse lines. Herein, we summarize our progress towards 

completion of the mutant mouse null resource that promises 
to advance our understanding of novel genes and pathways, 
while reducing the research barriers to entry for individual 
investigators.

Over the past 20 years, tremendous progress has been 
made in generating a complete mutant mouse resource 
covering the roughly 23,000 protein-coding genes in the 
mouse genome. These efforts, spurred by the publication 
of the draft sequence of the mouse genome in 2002 (Mouse 
Genome Sequencing et al. 2002), reflect the consensus view 
that the mouse is the premier model of mammalian biology 
and the accumulation of technological innovations in mouse 
genetics presented a viable path towards functional annota-
tion of the entire mouse genome (Fig. 1; Austin et al. 2004; 
Auwerx et al. 2004; Birling et al. 2021; Capecchi 1989; de 
Angelis et al. 2015; International Mouse Knockout et al. 
2007; Jinek et al. 2012; Wang et al. 2013). This technologi-
cal convergence includes the widespread adoption of mouse 
embryonic stem cells (mESCs) as a platform for gene target-
ing and innovations in molecular cloning that allowed for 
high-throughput generation of complex targeting constructs 
(Angrand et al. 1999; Copeland et al. 2001; Lee et al. 2001; 
Valenzuela et al. 2003). Early proposals for a more system-
atic strategy advocated for a hybrid approach of chemical 
mutagenesis (e.g., ENU), gene trapping, and gene targeting 
for complete genome coverage and emphasized the need for 
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adopting systematic phenotyping protocols, the development 
of databases to provide easy access to functional data, and 
animal repositories to ensure broad access to models and 
other key resources (Battey et al. 1999; Hrabe de Angelis 
et al. 2000; Nadeau et al. 2001; Nolan et al. 2000; Skarnes 
et al. 2004).

The Banbury meeting in 2003 further refined this concept 
to set forth a goal of creating a null, reporter allele for every 
gene as a foundational starting point for functional annota-
tion (Austin et al. 2004). Despite deliberately flexible in the 
exact approach, the group adopted several key principles, 
including the use of a single inbred genetic background, 
and the open availability of cell, animal, and data resources 
to the scientific community. Generation of mice from these 
resources would follow at a pace that reflected both the com-
munity demand and capacity for centralized production, ulti-
mately supporting individual investigator research programs. 
The concept aligned with European efforts, which empha-
sized the value of generating a conditional version of each 
allele (Auwerx et al. 2004). Together, these concepts were 
put into action as the NIH funded Knockout Mouse Pro-
ject (KOMP), the European Conditional Mouse Mutagen-
esis Program (EUCOMM), and the Canadian-funded North 
American Conditional Mouse Mutagenesis Program (Nor-
COMM), which joined to form a singular effort as the Inter-
national Knockout Mouse Consortium (IKMC) (Gondo 
2008; International Mouse Knockout et al. 2007).

The bold IKMC mission of generating a null or condi-
tional null allele for every gene in the mouse genome was 
complemented by the more modest goal of turning a small 
subset of these alleles into mouse strains for systematic char-
acterization (Bradley et al. 2012; Skarnes et al. 2011). Fur-
ther refinement of standard protocols for mouse phenotyping 
and the demonstration of the feasibility of large-scale mouse 
generation and phenotyping (de Angelis et al. 2015; White 
et al. 2013) underpin the current efforts of the International 
Mouse Phenotyping Consortium, which are now expand-
ing on the initial vision first proposed at Banbury (Lloyd 
et al. 2020). The IMPC has generated over 5000 knockout 
lines from IKMC ES resources (Birling et al. 2021), and 
the advent of CRISPR/Cas9 technology has further aug-
mented capacity for the generation of mutant mice. To date, 
the IMPC has generated knockout lines for 7590 genes 
(Data Release 14, May 7, 2021) and established a robust 
infrastructure sufficient for completing the draft functional 
annotation of a mammalian genome. This effort has had an 
enormous impact on our understanding mammalian biology 
and human disease (Brown et al. 2018; Meehan et al. 2017). 
The IMPC has continued to expand the catalog of mam-
malian essential genes, which are highly enriched in human 
disease (Cacheiro et al. 2020; Dickinson et al. 2016), while 
providing novel insights into developmental mechanisms 
through detailed embryonic phenotyping (Dickinson et al. 
2016). The IMPC pipeline has revealed numerous novel 
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Fig. 1   Timeline highlighting major milestones enabling complete 
functional annotation of the protein-coding fraction of the mouse 
genome. Technological advances that made possible the large-scale 
generation of mutant mouse resources are shown in black. Multi-
institutional collaborative programs (e.g., European Mouse Disease 
Clinic; EUMODIC, and Knockout Mouse Phenotyping Program; 

KOMP2) implemented these advancements to perform high-through-
put animal model production and systematic broad-based phenotyp-
ing. This collective work has grown to include additional interna-
tional sites that have been centralized under the International Mouse 
Phenotyping Consortium (IMPC) to coordinate animal production, 
phenotyping, and data dissemination
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gene associations with disease-relevant traits (Bowl et al. 
2017; Rozman et al. 2018; Swan et al. 2020), and systematic 
phenotyping of both sexes reveals widespread sexual dimor-
phism (Karp et al. 2017).

What was once a long-term aspirational goal of the mouse 
genetics community is now an achievable milestone? This 
raises several interesting and important questions: How 
many more genes remain to be knocked out? How should 
these genes be prioritized for systematic mutagenesis? Are 
there other features in the genome (e.g., noncoding RNAs) 
that merit further consideration as mutagenesis targets? 
Here, we explore the collective catalog of mutant mouse 
null alleles generated by the IMPC and the broader scientific 
community to address these questions and chart a course 
towards finalizing a blueprint for understanding the activity 
of the protein-coding fraction of the mammalian genome.

Results

Current state of the mutant mouse null allele 
catalog to assess protein‑coding gene function

To focus on defining the community-wide effort to mutagen-
ize the mouse genome, we include all null alleles, irrespec-
tive of their relationship to systematic production efforts or 
public availability. We define “IMPC” as all mouse model 
generation activities of the IKMC or IMPC, and “commu-
nity” for all other alleles (individual investigator, non-IMPC 
programs, etc.). For curating null alleles, we used the Mou-
seMine query tool to obtain annotation information detailing 
the target gene, allele symbol, methodology, and associated 
publications (Motenko et al. 2015). These queries identified 
29,341 unique null alleles corresponding to 13,973 protein-
coding genes with the majority of community-derived alleles 
generated using an ES-based resource and IMPC alleles a 
mixture of both ES and Cas9 derived. In addition to these 
targeted null mutations, we identified an additional 265 
unique genes as having an annotated null allele resulting 
from random mutagenesis (spontaneous, ENU or gene trap). 
While our emphasis here is on the null resource, there are 
currently over 67,000 mutant mouse alleles documented 
by Mouse Genome Informatics (http://​www.​infor​matics.​
jax.​org) that represent a diverse set of alleles ranging from 
hypomorphs to dominant negative, and humanized regions 
as well as others. This set of curated null alleles covers ~ 62% 
(14,238/23,000) of the protein-coding genes currently cat-
aloged in the mouse genome. A detailed look at the time 
course for animal model generation highlights community 
production of null alleles rapidly accelerating in the mid-
1990s as the technology spread and was implemented in 
core facilities to provide stable production of 400–500 new 
alleles published each year peaking in 2011 (Fig. 2a). About 

this time, IMPC production of null alleles ramped up sig-
nificantly (Birling et al. 2021), which has been accompanied 
by a decline in community production of ESC-based alleles. 
This reduction may reflect the uptake of IKMC- and IMPC-
generated resources by individual investigators, obviating 
the need to produce their own knockout. In 2015, the IMPC 
pivoted to the use of CRISPR/Cas9 to generate knockout 
alleles, which quickly replaced ESC-based animal produc-
tion resulting in the establishment of ~ 4000 new lines within 
this 5-year window from 2015 to 2020 (Fig. 2a). Concur-
rently, there is a lower, but growing rate of community 
produced null alleles utilizing CRISPR/Cas9. Reflecting 
challenges in public availability of resources and parallel 
research aims, multiple null alleles are frequently generated 
for genes (Fig. 2b), including 150 genes with more than 10 
null alleles. Most of community-generated null alleles are 
ESC based, while the vast majority of Cas9-generated null 
alleles reported in MGI were generated by the IMPC, due 
to rapid adoption of the technology as a core mutagenesis 
method to reduce cost and increase throughput (Fig. 2c).

Given the current efforts for complete functional annota-
tion of the mammalian genome, with an overarching goal 
to understand human biology and disease, we examined 
how many mouse knockout alleles corresponded to pro-
tein-coding genes with high-confidence human orthologs 
defined by having multiple independent lines of support-
ing evidence from different resources (Munoz-Fuentes et al. 
2018), and how many of these genes remain to be targeted. 
Of the 14,238 mouse genes that have a null allele, 94% 
(13,466) have a human ortholog while the remaining 772 
lack a clearly identifiable ortholog or are mouse specific 
(Fig. 2d). Therefore, of the total 16,847 mouse genes with 
a high-confidence human ortholog, 79.9% have a reported 
null allele, leaving 3381 genes to complete the mutant mouse 
null resource.

To further develop a prioritization framework, we ana-
lyzed the remaining 3381 genes to determine if there were 
any gene families that were over-represented or if there was 
evidence of functional constraint on these genes lacking 
null alleles. Within this set of non-targeted genes, olfac-
tory receptors were the most highly represented class of 
genes followed by zinc finger domain containing genes 
and RIKEN cDNA clones (Fig. 3a). This is consistent with 
large size of these gene families and highlights the barriers 
to research on genes for which there is little existing func-
tional data (Stoeger et al. 2018). In addition, it is impor-
tant to consider whether the information generated from 
knockout mice for a class of genes such as olfactory recep-
tors is merited given the phenotyping tests included in the 
IMPC, and the expected impact of single gene mutation. 
Conversely, transmembrane proteins and solute carriers are 
more likely to be druggable and, thus, could be prioritized 
as gene families warranting completion. There are also many 
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ribosome-related genes left to be characterized, and ribo-
somopathies are an emerging disease class that displays a 
wide range of phenotypes (Kampen et al. 2020). Addition-
ally, genes essential for life are highly enriched for human 
disease genes (Bartha et al. 2018; Cacheiro et al. 2020; Dick-
inson et al. 2016; Georgi et al. 2013). Of the 3381 remaining 
genes, 15% (507/3381) are classified as cell essential based 
upon CRISPR/Cas9 screens in human cell lines (Cacheiro 
et al. 2020; Tsherniak et al. 2017). To determine if these 
genes were under constraint against mutation in the human 
population, we used the human orthologs to obtain the prob-
ability of loss-of-intolerance (pLI) score from the gnomAD 
database (Karczewski et al. 2020). pLI scores range from 
0 to 1 with values closer to 1 indicative of significant con-
straint in the human genome (Lek et al. 2016). Of the cell 
essential genes, 144/507 have a human ortholog associated 
with a pLI score greater than 0.8 further supporting the idea 

that this set of cell essential genes is under functional con-
straint. In total, 11% (378/3381) of the genes without a null 
allele have a pLI score greater than 0.8 (Fig. 3b). Genes that 
are nonessential in cell lines but have high pLI scores have 
previously been shown to be enriched for critical develop-
mental regulators that are also associated with human dis-
ease (Cacheiro et al. 2020).

To determine the extent that genes without knockout 
alleles are related to human disease genes, we examined the 
overlap with ORPHANET (http://​www.​orpha.​net) and Tier 
1 (solved cases) and Tier 2 (unsolved cases) gene lists from 
the Centers for Mendelian Genomics (CMG; http://​mende​
lian.​org/​pheno​types-​genes) (Posey et al. 2019). This analysis 
highlighted 358 genes with support from ORPHANET-only 
or had additional evidence from the CMG (Fig. 4a). While 
these genes were identified as lacking a knockout mouse, the 
ongoing production efforts of the IMPC have made progress 
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towards establishing knockouts for 54 genes and begun phe-
notyping on another 15 genes (Fig. 4b). Production attempts 
have failed for 134 genes with the remaining 106 yet to be 

targeted by the IMPC. It will be important to emphasize this 
set of human disease related genes for generation of mouse 
knockouts.

Fig. 3   Analysis of gene family 
representation and constraint 
for the 3381 mouse–human 
orthologs that currently lack a 
null allele in mouse. a The set 
of remaining genes is spe-
cifically enriched for large gene 
families and the RIKEN cDNA 
collections. Olfactory receptors 
and zinc finger proteins are the 
most highly represented gene 
families. b Classification of the 
remaining genes using human 
orthologs to assess cell essen-
tiality based upon CRISPR/
Cas9 screens in cancer cell lines 
and functional constraint using 
probability of loss-of-intoler-
ance (pLI) scores that range 
from 0 to 1 with values closer to 
1 associated with higher level of 
constraint
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Next, we performed Gene Ontology (GO) term enrich-
ment (Fig. 5a–c) and KEGG pathway analysis (Fig. 5d) 
on the previously defined cell essential and nonessential 
gene sets using WebGestalt (Liao et al. 2019). Strikingly, 
these analyses revealed a stark distinction in the biologi-
cal processes and pathways associated with these two 
groups of genes. Cell essential genes were significantly 
enriched (FDR < 0.05) for terms associated with pathways 
for mRNA splicing (spliceosome), translation (ribosome), 
and protein degradation (proteasome; Fig. 5a–d). In con-
trast, nonessential genes showed enrichment for olfactory 
transduction and metabolic pathways (Fig.  5d). These 
findings indicate a clear distinction between core biologi-
cal functions required for cell survival versus potentially 
tissue-specific differences in energy requirements or activ-
ity of certain cell types. In support of these differences, we 
used the human orthologs for the remaining genes to iden-
tify potential human disease associations within OMIM 
and observed an enrichment for Mitochondrial Complex 
I Deficiency (P-value = 2.0673e−11), Alcohol Depend-
ence (P-value = 6.5255e−4), and Mitochondrial Complex 
IV Deficiency (P-value = 4.4197e−5).

Overview of noncoding transcripts annotated 
in the mouse genome

Despite the intense focus on the protein-coding portion of 
the genome, there has been a long-standing appreciation for 
the role of noncoding transcripts for regulating diverse cel-
lular events such as modulating chromatin structure (e.g., 
Xist), targeting genes to regulate expression (e.g., miRNA), 
and building the translational machinery (e.g., rRNA and 
tRNA). While these functions are known, the number of 
annotated noncoding transcripts continues to grow and now 
exceeds the number of protein-coding genes with the vast 
majority generically referred to as long noncoding RNA’s 
(lncRNAs) with unknown function (Fig. 6). To gain a greater 
understanding of how noncoding transcripts impact biol-
ogy, we will need to invest and explore in alternative tar-
geting strategies to determine if the noncoding transcript 
itself is functional or if it is merely the act of transcription 
that is required. Functional testing of the transcripts can be 
achieved using whole gene ablation strategies with CRISPR/
Cas9; however, while large deletions (> 10 kb) are feasible 
with CRISPR/Cas9 these are often accompanied with other 

Fig. 4   Potential human disease 
relevance for genes without a 
mouse null allele. a Human 
orthologs were used to query 
the Orphanet database (https://​
www.​orpha.​net/) and the Cent-
ers for Mendelian Genomics 
(CMG) gene lists (http://​mende​
lian.​org/​pheno​types-​genes). 
CMG genes are classified 
into Tier 1 and Tier 2 based 
upon the supporting level of 
evidence. Tier 1 genes have the 
highest-level of confidence with 
multiple levels of supporting 
evidence and Tier 2 genes are 
strong candidates but do not 
meet stringency criteria set for 
Tier 1. Currently, ~ 10% of the 
remaining mouse genes are 
related to human disease genes. 
b IMPC progress towards mak-
ing knockouts for genes relevant 
to human disease. Of these 358 
genes, 252 genes have either 
been previously attempted and 
failed (Inactive/aborted) or are 
currently assigned or in pro-
gress through the IMPC produc-
tion and phenotyping pipeline
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structural variants such as inversions and duplications which 
would require additional screening (Birling et al. 2017). 
Additionally, the removal of large genomic regions has the 
potential to impact the expression of neighboring genes 
by altering the cis-regulatory landscape. An alternative 
approach is to introduce a poly-adenylation sequence to ter-
minate transcription (Engreitz et al. 2016) or knockdown the 
target the transcript by introducing a degradation sequence 
or using Cas13a (Gao et al. 2020). These approaches would 
keep the locus intact but prevent the transcript from accumu-
lating; and thereby, determine if the transcript itself is func-
tional or is it merely the engagement of RNA polymerase II 

that is required. There is also a pre-existing set of ESC-based 
resources available for studying noncoding RNA function 
(Hansen et al. 2021). Our current animal production meth-
odologies are well suited to be scaled to address these ques-
tions and can readily implement all of these approaches.

Conclusions

In summary, extraordinary progress has been made towards 
generating the first complete functional annotation of the 
protein-coding fraction of the mammalian genome. This 
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celebratory milestone is rapidly approaching thanks to the 
combined efforts of the research community and the ongoing 
IMPC initiative. For the remaining genes, strategic imple-
mentation of different prioritization strategies will allow us 
to focus on sets of genes that have the potential to inform 
on human disease, increase our understanding of the broad 
biological function of large gene families, and shed light 
on the darkest parts of the genome. Thus far, in IMPC-
generated strains, the rate of gene essentiality has remained 
constant at ~ 35% where 25% of lines are classified as lethal 
and an additional 10% are classified as subviable (Cacheiro 
et al. 2020; Dickinson et al. 2016). It will be informative 
to determine whether these rates will remain stable for this 
gene set given the relative dearth of functional information 
available for these genes. Elucidating the full spectrum of 
gene essentiality within mammals has the potential to further 
support ongoing human disease gene discovery efforts and 
to provide new insights into the underlying mechanisms of 
congenital birth defects and later onset diseases that have a 
developmental etiology. Our initial characterization of the 
production attempts for these remaining genes suggests that 
some may be refractory to our current methodologies pos-
sibly due to gene essentiality or haploinsufficiency and, thus, 
may require a more nuanced approach. Conditional alleles 
could provide a means to circumvent production challenges 
and would provide useful tools for further mechanistic 
investigation of essential gene function. Alternatively, novel 
approaches such as the implementation of auxin-induci-
ble protein degradation may help to overcome null allele 

production efforts (Yesbolatova et al. 2020). Further, the 
classification of a null allele is based upon the assumption 
that frameshift mutations will result in mRNA degradation 
via the nonsense-mediated decay (NMD) pathway. While 
the IMPC design principles adhere to well-established rules 
of NMD, recent work has shown that there are a number 
of exceptions to the canonical rules, and that roughly 25% 
of the variance from expected NMD remains unexplained 
(Lindeboom et al. 2016). Moreover, there are reported cases 
of exon skipping as well as the use of alternate downstream 
translation start sites that allow for some level of activity 
(Makino et al. 2016). The extent to which these apply to 
the current catalog will require further bioinformatic and 
experimental determination. As mentioned above, the rate of 
gene essentiality has remained constant for IMPC-generated 
lines regardless of the technology used to generate the allele. 
Thus, as the foundation for a phenotype-driven screen, the 
mutant alleles characterized to date significantly disrupt 
gene function.

In addition, the generation of alleles for precision 
medicine corresponding to patient-specific mutations will 
undoubtedly be a critical next step to further our understand-
ing of the molecular basis of human disease. Beyond the 
coding genome, the vast majority of noncoding RNAs have 
yet to be characterized in mutant mice. The collective effort 
to generate a complete null resource will provide a strong 
foundation to support these future initiatives, expanding our 
understanding of genome function, which holds great prom-
ise for improving human health and personalized medicine.

Fig. 6   Top 10 noncoding RNA 
sequence features annotated in 
the mouse genome. The number 
of known long noncoding 
RNA’s (lncRNAs) currently 
exceeds the number of protein-
coding genes and the vast 
majority remain to be studied 
in depth
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