Skip to main content
. 2022 Feb 25;11:777070. doi: 10.3389/fcimb.2021.777070

Table 3.

Performance of classification models predicting severity of COVID-19 from laboratory findings (Abu Dhabi dataset) or individual risk factors (Dubai dataset) with and without age and sex.

 ML method Prediction of severity from Prediction of disease severity from
laboratory findings, age and sex individual risk factors inclusively age and sex
Precision Recall F1 AUC Acc Precision Recall F1 AUC Acc
AdaBoost w/o 0.63 0.64 0.62 0.6444 0.64 0.72 0.73 0.72 0.641 0.73
with 0.64 0.64 0.63 0.6585 0.64 0.72 0.74 0.73 0.7222 0.74
ExtraTrees w/o 0.68 0.68 0.65 0.6658 0.68 0.73 0.76 0.74 0.6824 0.76
with 0.71 0.69 0.67 0.6728 0.69 0.74 0.76 0.75 0.7452 0.76
Random forest w/o 0.72 0.69 0.66 0.6633 0.69 0.73 0.78 0.73 0.709 0.78
  with 0.72 0.69 0.66 0.6887 0.69 0.74 0.78 0.73 0.7998 0.78
NN w/o 0.70 0.71 0.70 0.7547 0.71 0.76 0.79 0.76 0.7208 0.79
with 0.79 0.77 0.76 0.7906 0.77 0.80 0.81 0.80 0.8134 0.81
SVM (linear) w/o 0.66 0.66 0.63 0.6465 0.66 0.68 0.76 0.69 0.6656 0.76
  with 0.67 0.67 0.64 0.6534 0.67 0.71 0.76 0.71 0.7806 0.76
LR w/o 0.65 0.66 0.64 0.655 0.66 0.74 0.78 0.74 0.7239 0.78
with 0.66 0.66 0.65 0.6643 0.66 0.74 0.78 0.74 0.7863 0.78
Gain after adding age and sex to predictors +3% +1.33% +1.83% +1.64% +1.33% +1.5% +0.5% +1.33% +8.41% +0.5%

Significant differences (p < 0.05) between models performance with and without such predictors as age and sex are marked in bold font.

AUC, area under the receiver operating characteristic curve; Acc, accuracy; LR, logistic regression; ML, machine learning; SVM, support vector machine; w/o, without.