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miR‑378 affects metabolic 
disturbances in the mdx model 
of Duchenne muscular dystrophy
Paulina Podkalicka1, Olga Mucha1, Katarzyna Kaziród1, Krzysztof Szade1, 
Jacek Stępniewski1, Liudmyla Ivanishchuk1, Hirofumi Hirao2, Ewelina Pośpiech3, 
Alicja Józkowicz1, Jerzy W. Kupiec‑Weglinski2, Józef Dulak1,4 & Agnieszka Łoboda1,4*

Although Duchenne muscular dystrophy (DMD) primarily affects muscle tissues, the alterations to 
systemic metabolism manifested in DMD patients contribute to the severe phenotype of this fatal 
disorder. We propose that microRNA-378a (miR-378) alters carbohydrate and lipid metabolism in 
dystrophic mdx mice. In our study, we utilized double knockout animals which lacked both dystrophin 
and miR-378 (mdx/miR-378−/−). RNA sequencing of the liver identified 561 and 194 differentially 
expressed genes that distinguished mdx versus wild-type (WT) and mdx/miR-378−/− versus mdx 
counterparts, respectively. Bioinformatics analysis predicted, among others, carbohydrate 
metabolism disorder in dystrophic mice, as functionally proven by impaired glucose tolerance and 
insulin sensitivity. The lack of miR-378 in mdx animals mitigated those effects with a faster glucose 
clearance in a glucose tolerance test (GTT) and normalization of liver glycogen levels. The absence of 
miR-378 also restored the expression of genes regulating lipid homeostasis, such as Acly, Fasn, Gpam, 
Pnpla3, and Scd1. In conclusion, we report for the first time that miR-378 loss results in increased 
systemic metabolism of mdx mice. Together with our previous finding, demonstrating alleviation of 
the muscle-related symptoms of DMD, we propose that the inhibition of miR-378 may represent a new 
strategy to attenuate the multifaceted symptoms of DMD.

The lack of functional dystrophin is the primary cause of Duchenne muscular dystrophy (DMD) and is responsi-
ble for irreversible muscle weakening, with cardio-respiratory failure being the most common cause of premature 
death. However, the secondary consequences of dystrophin loss, though much less understood, significantly 
contribute to the severity of the disease. Accordingly, DMD should be recognized as a multi-systemic disorder 
and interdisciplinary care is recommended for the optimal management of DMD-associated complications1.

Disturbances in angiogenesis2,3 and brain4, renal, and bladder dysfunctions5,6, as well as bone-health issues7 
and gastrointestinal problems8, reflect the range of pathological changes observed in DMD. Finally, systemic 
alterations in the metabolism of carbohydrates and lipids accompanied by cases of impaired glucose tolerance 
and insulin sensitivity are manifested by DMD patients and mouse models of the disease, including mdx mice 
and golden retriever muscular dystrophy (GRMD) dogs9–13.

Though a few mutation-specific compounds are used in clinical settings and other cell and gene therapy-
based approaches are under extensive investigation, drugs that act mostly as anti-inflammatory agents, such as 
glucocorticoids (GCs), still serve as the gold standard of care for all patients suffering from DMD14. Apart from 
their indisputable beneficial effects in prolonging ambulation and improving the quality of the patient’s life, they, 
unfortunately, entail a list of multi-organ side effects15. This emphasizes the persistent need to evaluate novel 
targets to ameliorate disease symptoms, which could also potentially be applicable in the emerging concept of 
combined therapies for DMD patients16.

Given all of the above, factors that influence both muscular and systemic perturbations might be of special 
interest. One candidate might be short, noncoding microRNAs (miRs), due to their potential to modulate a wide 
range of physiological and pathological processes17. We have recently studied miR-378a (miR-378), embedded 
in the first intron of the peroxisome proliferator-activated receptor-gamma coactivator 1β (Ppargc1b) gene 
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encoding PGC1β, a factor that has been implicated in energy metabolism18. miR-378 plays a multifaceted role 
in metabolism, angiogenesis, and muscle biology18. In the context of the latter, we and others have demon-
strated that miR-378 is abundantly expressed in skeletal and cardiac tissues19,20 and that its deficiency influences 
vascularization of skeletal muscles19 as well as the functional properties and size of cardiomyocytes21, whereas 
overexpression of miR-378 attenuates muscle regeneration22. Notably, we previously demonstrated that the lack of 
miR-378 mitigates muscle dystrophy by reducing inflammation, decreasing fibrosis, and affecting the properties 
of satellite cells, the bona fide muscle stem cells. Most importantly, this was associated with increased physical 
performance and enhanced contractile properties of a single muscle. Surprisingly, RNA sequencing (RNA-seq) 
analysis of the gastrocnemius muscle revealed no profound transcriptional changes between mdx/miR-378−/− and 
mdx mice. On the other hand, the analysis of muscle fiber type composition pointed toward the influence of 
miR-378 on metabolism23. Accordingly, as miR-378 has been recognized as a potent modulator of lipid and 
carbohydrate homeostasis19 and was proposed as a biomarker of insulin resistance24, we examined whether 
the higher muscle functionality of mdx mice lacking miR-378 might be accompanied by improved systemic 
metabolism. Carrer et al. demonstrated previously that the loss of miR-378 diminished liver fat deposition while 
facilitating the response to glucose administration during a glucose tolerance test (GTT) in mice fed a high-fat 
diet25. Others reported that miR-378 regulates hepatic insulin signaling by targeting the p110α catalytic subunit 
of PI3K26,27, providing evidence for a hepatic-related function of miR-378. Though the incidence of hepatitis28, 
non-alcoholic fatty liver disease29, drug-induced hepatotoxicity30, or even acute liver failure secondary to dilated 
cardiomyopathy31 have been observed in DMD patients, these hepatic alterations are not well understood. Mur-
phy et al.32 evaluated the liver proteome of the mdx-4Cv model of DMD and found dysregulated levels of the 
factors implicated in fatty acid and carbohydrate metabolism, among other findings. However, no studies have 
examined any candidate factors that would mediate those effects.

Higher levels of miR-378 in the serum/plasma of dystrophic animals and DMD patients, most likely a result 
of its leaking from damaged muscles, was reported previously by us23 and others33. Circulating miRNAs are often 
bound to lipoproteins, especially high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol. 
In such complexes, they might be delivered to the liver34, which could also be the case regarding miR-378. In 
light of the above, in the current study, we sought to uncover liver pathology driven by dystrophin loss in an mdx 
model of DMD and to verify the hypothesis that a loss of miR-378 improves disturbed carbohydrate and lipid 
homeostasis in dystrophic animals. This, together with our previous findings23, sheds light on how the absence 
of miR-378 improves the dystrophic phenotype.

Results
RNA‑seq revealed notable alterations in the hepatic transcriptome of mdx and mdx/miR‑378−/− 
mice.  Undetectable levels of mature strands of miR-378, miR-378-3p, and miR-378-5p, were confirmed in 
both the liver (Fig. 1A) and isolated hepatocytes (Supplementary Fig. 1A) of mdx/miR-378−/− mice, along with 
no apparent differences in miR-378 expression between the mdx and WT cohorts.

Higher relative liver weight was noticed in dystrophic mice without further changes driven by miR-378 loss 
(Fig. 1B), whereas the serum level of a typical marker of liver injury, bilirubin, did not differ between genotypes 
(Fig. 1C). On the contrary, both aspartate aminotransferase (AST, Fig. 1D) and alanine aminotransferase (ALT, 
Fig. 1E), whose levels increase as a result of both liver and muscle damage—as in the case of DMD—were mark-
edly elevated in the mdx mice under normal fed conditions and after fasting overnight. This was also reflected 
by the substantially higher de Ritis ratio, which was not further escalated in the mdx/miR-378−/− mice (Fig. 1F).

Simultaneously, the histological assessment did not reveal severe liver injury, collagen deposition abnormali-
ties (Fig. 1G), or lipid deposition (Supplementary Fig. 2) in any of the cohorts. Despite that, RNA-seq analysis 
showed profound changes in the liver transcriptome. The 1000 most variable genes separated the WT, mdx, 
and mdx/miR-378−/− mice by the first and second principal components (PC1 and PC2, respectively) (Fig. 2A). 
Accordingly, the mdx and mdx/miR-378−/− mice clustered together, while the WT mice formed the second main 
cluster, indicating that the lack of dystrophin had the strongest impact on the gene expression profile in the liver 
(Fig. 2A). Of note, DESeq2 analysis identified 561 differentially expressed genes (DEGs) that distinguished mdx 
against WT and 194 DEGs that differentiated mdx/miR-378−/− from mdx livers (Fig. 2B, C), by hierarchical 
clustering and principal component analysis (PCA).

Gene ontology (GO) analysis pointed toward metabolism-related pathways, which were placed among 
the most significantly affected GO terms (Fig. 3A). Reduced basal respiration of dystrophic hepatocytes was 
revealed, without any apparent effect of miR-378 loss (Supplementary Fig. 1B), which is in line with the metabolic 
impairment observed in dystrophic liver mitochondria35. Moreover, the altered expression of cytochrome P450 

Figure 1.   The global lack of miR-378 in mdx mice (mdx/miR-378−/−) does not profoundly affect liver histology 
and injury markers. (A) The level of both mature strands of miR-378, namely miR-378-3p and miR-378-5p 
assessed with the use of locked nucleic acid (LNA) technology; n = 5–8/group. (B) The liver weight was 
presented as g/kg BW; n = 15–16/group. (C) Bilirubin concentration determined in the serum by biochemical 
analyzer SPOTCHEM; n = 14–15/group. The level of (D) aspartate transaminase (AST) and (E) alanine 
transaminase (ALT) together with (F) calculated De Ritis ratio of AST/ALT in the serum collected from mice 
under non-fasting conditions (fed) and after overnight fasting (fasted); measurements performed with the use 
of biochemical analyzer SPOTCHEM; n = 5–6/group. (G) Liver histology was assessed by hematoxylin and eosin 
(H&E) and Masson’s Trichrome staining on paraffin-embedded sections, visualized with the use of Leica DMi8 
microscope with CMOS Leica MC170 HD camera, and analyzed semiquantitatively (H&E) and quantitatively 
(Masson’s Trichrome); n = 4–6/group. Scale bars represent 1 mm (black) and 100 μm (white). Data are presented 
as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 by one-way ANOVA with Tukey’s post-hoc test.
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Figure 2.   Alterations in the liver transcriptome of mdx mice are affected by the additional lack of miR-378. (A) 
Transcriptome profiling by RNA-seq in the mdx vs. WT mice and mice lacking both dystrophin and miR-378 
(mdx/miR-378−/−) vs. mdx segregates the investigated groups into 3 distinct clusters based on 1000 most variable 
genes, n = 4/group. (B) RNA-seq analysis revealed 561 DEGs between mdx vs. WT livers, and (C) 194 DEGs 
between mdx/miR-378−/− vs. mdx that distinguish the analyzed groups by principal component analysis (PCA) 
and hierarchical clustering.
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(CYP450) enzymes—key players in xenobiotic and steroid metabolism36—was observed as a result of dystrophin 
deficiency and in mdx/miR-378−/− mice (Fig. 3B). The molecular and cellular functions identified by Ingenuity 
Pathway Analysis (IPA) also confirmed that DEGs were associated with metabolic processes, particularly related 
to lipids and carbohydrates (Fig. 3C).

The impaired glucose tolerance and insulin sensitivity displayed by mdx mice are affected by 
the loss of miR‑378.  Further analysis revealed that the vast majority of genes regulating glucose metabolism 
(Fig. 4A) were elevated in the dystrophic mice (except for Adipor2), whereas factors related to lipid metabolism 
disorder displayed both upregulated and downregulated patterns (Fig. 4B). Additionally, the serum profile of 
miRNAs known predominantly as muscle-specific miRs (myomiR)37—but also reported as potential biomarkers 
of pre-diabetic/diabetic states and associated with glucose intolerance and insulin resistance38,39—was altered in 
the mdx and mdx/miR-378−/− animals. Accordingly, miR-1 (Fig. 4C) and miR-133 (Fig. 4D) levels were elevated 
in the mdx mice in comparison with the WT mice and were lower as a result of the additional lack of miR-378.

To further study the possible role of miR-378 in disturbed carbohydrate homeostasis in dystrophic mice, we 
utilized the functional GTT and the insulin tolerance test (ITT). A slightly lower glucose level was observed 
among the mdx/miR-378−/− mice even under fed conditions (random glucose), without apparent changes in the 
dystrophic animals (Fig. 5A). When the mice underwent a GTT, mild glucose intolerance was found in the mdx 
individuals, as indicated by an elevated glucose level 120 min after i.p. injection of glucose (Fig. 5B). Importantly, 
the mdx/miR-378−/− mice rapidly cleared the glucose, since diminished concentrations were visible even 30 min 
after injection and were sustained at a lower level than in the dystrophic animals in each subsequent time-point 
(Fig. 5B). This was accompanied by markedly reduced glycogen content in the mdx livers than in WT livers, 
restored to the level of the WT groups in mdx/miR-378−/− mice (Fig. 5C). Additionally, the lack of miR-378 
decreased the level of hepatic interleukin 6 (IL6, Supplementary Fig. 3A), tumor necrosis factor (TNFα, Sup-
plementary Fig. 3B), and its receptor (TNFR1, Supplementary Fig. 3C); these factors are positively correlated 
with glycogen degradation and insulin resistance40–42.

Figure 3.   Metabolic pathways are predominantly changed in the livers of both mdx and mdx/miR-378−/− mice. 
(A) Analysis of gene ontology (GO) terms of affected pathways. (B) The graph showing higher and lower 
expression of cytochrome P450 (CYP450) isoforms based on RNA-seq results, presented as the fold change. 
(C) Affected pathways associated with molecular and cellular functions were determined by ingenuity pathway 
analysis (IPA) and arranged according to the p-value range.
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Insulin concentration in the serum was higher in the mdx/miR-378−/− mice under fed conditions with no 
changes between the groups after overnight fasting (Fig. 5D). The dystrophic animals failed to respond to insulin 
in the ITT test, which resulted in markedly higher glucose levels in comparison to the WT mice 90 min after 

Figure 4.   Disorder of glucose and lipid metabolism in the mdx mice is accompanied by higher expression of 
miR-1 and miR-133, further diminished as the result of the miR-378 loss. (A, B) Heat maps were created based 
on the list of genes indicated by ingenuity pathway analysis (IPA) that were attributed to the disorder of glucose 
(p-value = 1.04 × 10–12) and lipid metabolism (p-value = 1.31 × 10–6) in the liver of mdx mice. Blue color indicates 
downregulation, whereas orange upregulation. The expression of (C) miR-1-3p, (D) miR-133-3p, and miR-
133-5p in the serum as assessed by locked nucleic acid (LNA) technology; n = 5–7/group. Data are presented as 
mean ± SEM. *p < 0.05; **p < 0.01; ****p < 0.0001 by one-way ANOVA with Tukey’s post-hoc test.
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insulin administration, suggesting impaired insulin sensitivity in those animals (Fig. 5E). On the contrary, 
glucose concentration in the mdx/miR-378−/− animals was already at a low level before insulin injection; thus, 
the further drop following insulin administration was rather subtle (Fig. 5E). Starting from 15 min, the glucose 
concentration was similar to that of the WT mice, remaining markedly lower in comparison to the dystrophic 
animals following the next measurements (Fig. 5E). Taking all of the above into consideration, we suspected an 
altered expression of glucose transporter type 4 (GLUT4) in the muscles as the cause of impaired glucose uptake 
from the bloodstream. Lower levels of Glut4 mRNA were observed in the mdx animals as compared to the WT 
ones with no effect of miR-378 loss (Supplementary Fig. 4A). At the protein level, no alterations between geno-
types were noticed in Western Blot (Supplementary Fig. 4B), whereas immunofluorescent staining revealed the 
presence of cytoplasmic aggregates of GLUT4 in the mdx animals and not the WT ones, without further changes 
resulting from an additional lack of miR-378 (Supplementary Fig. 4C).

Complex regulation of factors influencing glucose and lipid homeostasis in the liver of mdx 
and mdx/miR‑378−/− mice.  Given that miR-378 was already reported to affect energy metabolism, for 
example, by targeting p110α25–27 and insulin-like growth factor 1 receptor (IGF1R)20, we aimed to check the 
levels of those markers in our experimental settings, together with glycogen synthase kinase 3 beta (GSK-3β) 
and pAKT/AKT kinase, due to their well-established role in glucose homeostasis and insulin action43. Nonethe-
less, the hepatic level of p110α was even lower in the mdx/miR-378−/− mice (Supplementary Fig. 5A,B). GSK-3β 
appeared to be potently upregulated in the mdx animals, without any further changes driven by the lack of 
miR-378 (Supplementary Fig. 5A,C), whereas IGF1R (Supplementary Fig. 5D) and pAKT/AKT (Supplementary 
Fig.  5E) displayed no differences between genotypes. We also analyzed the level of peroxisome proliferator-
activated receptor alpha (PPARα), which plays a role not only in carbohydrate homeostasis44,45 but predomi-

Figure 5.   Disturbed systemic glucose homeostasis in the mdx mice is affected by the miR-378 loss. (A) The 
glucose level under non-fasting conditions was measured with a glucometer in the blood from the tail tip; 
n = 7–8/group. (B) A glucose tolerance test (GTT) was performed after overnight fasting. Glucose concentration 
was assessed in the blood from the tail tip before (0 min) and 15, 30, 60, and 120 min after i.p. injection of 
glucose solution; n = 7–8/group. (C) Liver glycogen content was evaluated after overnight fasting with the use of 
a biochemical assay; n = 4–6/group. (D) Serum insulin concentration was determined both under non-fasting 
conditions (fed) and after overnight fasting (fasted) by ELISA; n = 4–7/group. (E) Insulin tolerance test (ITT) 
was performed after 4 h of fasting. Glucose concentration was measured in the blood from the tail tip before 
(0 min) and 15, 30, 60, 90 min after intraperitoneal injection of insulin; n = 7–8/group. Data are presented as 
mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 by (A, C, D) one-way ANOVA with Tukey’s post-hoc test or (B, 
E) by two-way ANOVA for repeated measures with Tukey’s post-hoc test. (A) #p < 0.05 additionally tested by 
Student’s t-test for comparison of mdx/miR-378−/− vs. mdx only.
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nantly in fatty acid metabolism as well46. Despite the lack of changes in mRNA (Supplementary Fig. 5F), strong 
upregulation in the hepatic protein level of PPARα in the dystrophic mice with a concomitant decrease caused 
by miR-378 deficiency (Supplementary Fig. 5G) indicated altered lipid homeostasis.

Factors related to lipid homeostasis as the candidate mediators of miR‑378 action in the 
liver.  The IPA-based analysis predicted the opposite regulation of lipolysis in mdx and mdx/miR-378−/− liv-
ers – upregulation in the dystrophic animals and downregulation in the mice which additionally lacked miR-378 
(Fig. 6A). Simultaneously, the incorporation of lipids was lower in the mdx mice, whereas the concentration of 
lipids was elevated in the mdx/miR-378−/− animals (Fig. 6B). Since triglycerides are hydrolyzed in the process 
of lipolysis, we aimed to measure their levels in the serum and liver. Despite the lack of changes in the serum 
(Fig. 6C), hepatic triglycerides appeared to accumulate under fasting conditions in the WT and mdx/miR-378−/− 
mice, which was not observed in the case of the dystrophic animals (Fig. 6D). No increase was noticed in the 
serum levels of total cholesterol (Supplementary Fig. 6A) and HDL (Supplementary Fig. 6B), under either fed or 
fasting conditions in any of the groups.

To indicate potential mediators of miR-378 action in the liver, we examined the expression pattern of all 561 
DEGs in mdx vs. WT and 194 DEGs in mdx/miR-378−/− vs. mdx mice (Fig. 7). Among them, 67 DEGs were 
identified as being changed in both comparisons, with 53 DEGs exhibiting the opposite expression pattern 
(Fig. 7). Accordingly, 20 of these DEGs had lower expression in mdx vs. WT mice and concomitantly higher 
expression in the mdx/miR-378−/− vs. mdx animals, pointing toward those factors being directly regulated by 
miR-378. More than half of them (11 out of 20) were found to be predicted targets of miR-378 with the miRmap 
database47 (Fig. 7). On the other hand, an indirect regulation might be proposed in the case of 33 DEGs which 
had higher expression in mdx vs. WT and lower expression in mdx/miR-378−/− vs. mdx livers, with 12 DEGs 
being indicated as predicted targets of miR-378 (Fig. 7). When we analyzed 20 DEGs that were downregulated 
in mdx in comparison with WT and were upregulated in mdx/miR-378−/− over mdx using the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING), 7 of them were found to have multi-level interaction 
(Fig. 8A). We further validated the lower level of all of these DEGs in the mdx when compared with the WT mice 
and higher expression in mdx/miR-378−/− than the mdx animals (though to a lesser extent in the case of perilipin 
2; Plin2 and glycerol-3-phosphate acyltransferase 3; Agpat9) by qRT-PCR analysis (Fig. 8B). Five out of 7 DEGs 
were identified as predicted targets of miR-378: ATP citrate synthase (Acly), glycerol-3-phosphate acyltransferase, 
mitochondrial (Gpam), Patatin-like phospholipase domain-containing protein 3 (Pnpla3), stearoyl-CoA desatu-
rase-1 (Scd1), and fatty acid synthase (Fasn) (Figs. 7, 8A). GO term analysis indicated that all interacting genes 
were implicated in processes related to lipid homeostasis (Fig. 8C). On the other hand, only 2 DEGs, complement 
factor properdin (Cfp) and hemolytic complement (Hc)—related to complement/protein activation pathways, 
elevated in dystrophic animals, and downregulated by the additional lack of miR-378 (Fig. 7, Fig. 8D)—were 
revealed by STRING to interact with each other (Fig. 8E). Notably, IPA indicated activation of the complement 
system in mdx vs. WT counterparts (data not shown).

Implications for metabolic alterations associated with by‑product generation in mdx and mdx/
miR‑378−/− mice.  Additionally, we implemented the metabolic cages approach to examine potential changes 
in the total energy expenditure48. After a 3 day acclimation period, mice were kept in metabolic cages for an 
additional 24 h to assess food and water consumption, as well as feces and urine excretion. Though no differ-
ences in food intake were noticed (Supplementary Fig. 7A), the dystrophic animals displayed intensified defeca-
tion (Supplementary Fig. 7B) and mdx/miR-378−/− mice showed increased water consumption (Supplementary 
Fig. 7C). Furthermore, it appeared that the urine volume excreted by the WT and dystrophic mice lacking miR-
378−/− was at a comparable level with significantly lower amounts in the mdx animals (Supplementary Fig. 7D). 
These effects were also associated with changes in urinary uric acid concentration, which was elevated in the 
dystrophic animals and diminished as a consequence of miR-378 loss (Supplementary Fig. 7E). Interestingly, 
based on the RNA-seq, IPA suggested increased levels of blood urea nitrogen and creatinine, indicators of kidney 
injury (Supplementary Fig. 7F). All of the above strengthens multi-organ perturbations in dystrophic animals, 
modeling human pathology which is not solely restricted to muscle tissues.

Discussion
In this study, we comprehensively described the secondary consequences of dystrophin loss associated with 
alterations in systemic metabolism and we proposed the inhibition of miR-378 as a novel approach to mitigating 
those abnormalities, at least partially.

We functionally proved disturbed systemic carbohydrate metabolism by demonstrating a delayed glucose 
clearance from the bloodstream after a GTT and a completely blunted response following insulin administration 
in ITT in mdx mice, constituting the most commonly utilized model in DMD research. To the best of our knowl-
edge, impaired insulin sensitivity in dystrophic males has not yet been reported, although insulin resistance has 
been revealed in female mdx mice49. Similar observations to our results regarding GTT in male dystrophic mice 
have been published by Stapleton et al.9 and Swiderski et al.50, although contradictory reports also exist10,51. It is 
known that the status of carbohydrate homeostasis may largely depend on the disease stage, as impaired glucose 
tolerance was observed only in severely immobilized DMD patients13, though the molecular mechanisms respon-
sible for such abnormalities are not well understood. The vast majority of studies focused on skeletal muscles as 
the major players in glucose transport and homeostasis52. In our analysis, the protein level of GLUT4, a pivotal 
glucose transporter, was not affected in the dystrophic gastrocnemius muscle. However, Rodríguez-Cruz et al.11 
found that GLUT4 forms cytoplasmic aggregates in muscle biopsies from DMD patients, which we also noticed 
in mdx mice, suggesting diminished glucose incorporation into the muscles. Moreover, altered insulin receptor 
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Figure 6.   Disturbances in lipid metabolism in the liver of the mdx mice are affected by the additional lack 
of miR-378. (A) Ingenuity pathway analysis (IPA) revealed increased and decreased lipolysis in mdx vs. WT 
(p-value = 1.54 × 10–4) and mdx/miR-378−/− vs. mdx (p-value = 1.28 × 10−5) livers, respectively. (B) Incorporation 
of lipids was shown to be lower in the liver of mdx mice (p-value = 6.33 × 10–5) whereas the concentration of 
lipids was higher in mdx/miR-378−/− vs. mdx livers (p-value = 6.44 × 10–5). Triglyceride levels were assessed 
under non-fasting (fed) conditions and after overnight fasting (fasted) in (C) the serum; n = 5–6/group and (D) 
in the liver; 4–6/group. Data are presented as mean ± SEM. ***p < 0.001; ****p < 0.0001 by one-way ANOVA with 
Tukey’s post-hoc test.
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Figure 7.   The analysis of oppositely expressed genes in the liver of the mdx vs. WT and mdx/miR-378−/− vs. 
mdx mice. Based on RNA-seq analysis, 67 genes were found to be differentially expressed in both comparisons. 
53 of them exhibited opposite expression patterns: 20 genes were downregulated in mdx and upregulated in 
mdx/miR-378−/− livers, whereas 33 were elevated in mdx and downregulated in mdx/miR-378−/− livers. The 
expression pattern and gene names are presented on heat maps. Orange color indicates upregulation whereas 
blue color downregulation. Asterisks indicate genes predicted to be miR-378 targets according to the miRmap 
database.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3945  | https://doi.org/10.1038/s41598-022-07868-z

www.nature.com/scientificreports/

affinity13,53 and GCs treatment54 were thought to trigger those complications. On the other hand, impaired insulin 
sensitivity, independent of GCs administration, was also observed in DMD boys11 and by us in non-treated mdx 
mice, pointing toward rather intrinsic causes of carbohydrate abnormalities in DMD. Accordingly, it appears 
that alterations in the dystrophin-glycoprotein complex (DGC) may facilitate the development of insulin resist-
ance due to the impaired assembly of insulin receptors via DGC components55. DGC also binds neuronal nitric 
oxide synthase (nNOS), which facilitates glucose uptake into the muscles56. Thus, it might be suspected that 
the reduction of the nNOS pool in the absence of dystrophin contributes, at least partially, to the dysfunctional 
carbohydrate metabolism in DMD57. Importantly, apart from changes within dystrophic muscles, we and others9 
found lower glycogen content and altered expression of genes implicated in glucose homeostasis in the liver. In 
the latter case, delta 4-desaturase, sphingolipid 1 (Degs1)—the most significantly upregulated factor in mdx livers 
compared with WT livers (padj = 5.68 × 10–171, fold change = 30.51)—could be proposed as one of the key players 
of the effects observed in dystrophic animals. Its deletion in the liver was reported to resolve insulin resistance 
in mice caused by leptin deficiency or an obesogenic diet58, among other effects.

Likewise, we provided some important insight into abnormalities in lipid homeostasis mediators which could 
be important for the development of dyslipidemia, recently described in DMD patients and animal models of 
the disease59. In the livers of mdx mice, we observed a dysregulated expression of genes affecting the level of 
circulating triglycerides, cholesterol, LDL, and HDL—such as Apoa1, Abca1, Lpl (normally not expressed in the 
liver under physiological conditions), Pltp, and Pparg60. Nonetheless, despite this molecular signature, we did 
not notice any significant abnormalities in the levels of triglycerides, total cholesterol, or HDL in the serum, 
under either fed or fasting conditions. No pathological accumulation of lipids in the liver was found either, in 
contrast to Murphy et al.32, who observed hepatic fat deposition in older, 6-month-old mdx-4Cv animals. On 
the other hand, Milad et al.61 did not find differences in the levels of total cholesterol, HDL, and triglycerides in 
the same model of the disease, namely 7-month-old mdx-4Cv mice fed a normal chow diet. However, because 
White et al.59 suggested that the elevation of lipids in DMD dogs progresses with age, it would be of particular 
importance for future studies to further investigate dyslipidemia features in older dystrophic mice, not only 
under normal conditions but also when animals are kept on an obesogenic diet. Importantly, lipid-lowering 
agents such as statins, have already been proposed to exert beneficial effects in DMD62,63; however, our64 and 
other studies65 did not confirm the rationale to utilize simvastatin, at least, to ameliorate muscle-related DMD 
symptoms. Our study indicated reduced hepatic expression of the key lipogenic factors, Scd1 and Fasn, simi-
larly to the results obtained in skeletal muscles of mdx animals66. In the latter study, Paran et al. reported that a 
reduction of approx. 50% in de novo lipogenesis contributes to the dysfunction of sarco/endoplasmic reticulum 
Ca2+-ATPase (SERCA) activity, whereas the recovery of this pathway through the overexpression of lipogenic fac-
tors mitigates SERCA function by affecting the composition of the sarcoplasmic reticulum membrane66. Of note, 
pharmacological activation of SERCA was recently demonstrated to provide a promising therapeutic strategy 
for DMD67. Moreover, apart from lipogenic genes, we observed decreased expression of the gene encoding lipid 
droplet coat protein perilipin 2 (Plin2) in dystrophic livers, similarly to the findings reported by Murphy et al.32 
on protein level, further emphasizing the perturbations in lipid homeostasis displayed by dystrophic animals.

Finally, the most important finding is that we identified miR-378 as a factor that regulates not only muscle-
related dysfunctions, as we showed previously23, but also metabolic disturbances in the mdx model of DMD, as 
reported in the current study. Though miR-378 is a well-documented mediator of metabolism18, this is the first 
report on its relevance to metabolic alterations under dystrophic conditions. Mdx mice devoid of miR-378 exhib-
ited improved glucose tolerance, which is in line with studies performed not only in miR-378 knockout25, 26,68 
but also in miR-378 overexpressing animals, which manifest impaired glucose and/or insulin tolerance26,27,69.

At the same time, we did not observe higher levels of the verified targets of miR-378, p110α26 and IGF1R in 
the livers of dystrophic mice lacking miR-378. This indicates that the molecular outcome of miR-378 loss might 
largely depend on the pathological conditions and the existence of factors that mask miR-378-specific effects. 
The analysis of potential mediators in the whole tissue is also associated with limitations, as the relevance of cell 
type-specific alterations might be overlooked in such experimental settings. On the other hand, we unravel the 
restoration of hepatic glycogen content in dystrophic mice devoid of miR-378. Importantly, in agreement with 
our findings, Liu et al.26 reported diminished glycogen content in the livers of miR-378 overexpressing mice.

miR-378 loss restored the expression of genes implicated in lipogenesis and lipid storage, such as Fasn and 
Scd1, which were diminished in the dystrophic mice. Of note, they were already reported to have higher levels 
in miR-378 knockout mice26, whereas Scd1 was additionally verified as a direct target of miR-37869. Interest-
ingly, bioinformatics analysis predicted intensified and decreased lipolysis in mdx and mdx/miR-378−/− mice, 
respectively. We link this with the pattern of hepatic triglyceride content after a fasting period. However, no 
accumulation of triglycerides in mdx livers under food deprivation could be also explained by reduced lipogen-
esis, whereas their elevation in mdx/miR-378−/− animals would reflect restored lipogenesis. In line with such an 
assumption, we propose that Gpam, a factor involved in the glycerophosphate pathway of de novo triglyceride 
synthesis in mammals, might serve as an important player in the observed effects. Although further studies are 
warranted, it was reported that knockout of Gpam results in a profound reduction of triglyceride biosynthesis70, 
among other things.

Lastly, PPARα was validated as a target of miR-37868; therefore, the drastic reduction of PPARα levels in the 
mdx/miR-378−/− mice observed in the current study is likely the result of indirect regulation of this transcription 
factor by miR-378 loss under dystrophic conditions. We previously made similar findings concerning fibroblast 
growth factor 1 (FGF1), a predicted target of miR-378, which was significantly lower in mdx/miR-378−/− than 
mdx mice23. Although the role of PPARα in DMD is poorly understood, its agonist, fenofibrate, is known to 
exert beneficial effects in mdx mice related to muscle pathology and fatty acid metabolism71. Moreover, PPARα 
inducers were proposed as factors that prevent insulin resistance72, but other results showed that PPARα knockout 
mice were protected from insulin resistance induced by a high-fat diet73. In light of the above, the use of PPARα 
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antagonist would be important to resolve its potential to mimic the effect of miR-378 loss in dystrophic animals. 
Also, the evaluation of the potential link between PPARα, increased liver mass, and cardiac complications74,75 in 
dystrophic mice seems to be an interesting aspect of further studies.

In conclusion, we provided an insightful report on metabolic disturbances accompanied by the global, 
hepatic-specific changes displayed by the mdx model of DMD. Importantly, we uncovered for the first time that 
the lack of miR-378 in dystrophic mice can, at least partially, reverse those alterations. Although more mechanis-
tic studies are warranted, we believe that the downregulation of miR-378 might serve as a promising therapeutic 
approach to mitigate the multifaceted symptoms of DMD.

Materials and methods
Animals.  Animal procedures were performed after approval by the 2nd Institutional Animal Care and Use 
Committee (IACUC) in Kraków, Poland (approval numbers: 230/2018, 200/2019, 237/2019), following Polish 
and European legislation and according to the ARRIVE guidelines. Mice were housed under specific pathogen-
free (SPF) conditions in individually ventilated cages with a 14  h/10  h light/dark cycle and were kept on a 
normal, chow diet with water and food available ad  libitum (fed conditions). Under fasting conditions, mice 
were placed in a new cage with no food for 4 (in the morning) or 16 (overnight) hours, water ad libitum. Con-
trol (C57BL/10ScSnJ) and mdx (C57BL/10ScSn-Dmdmdx/J) mice were purchased from Jackson Laboratory (Bar 
Harbor, ME, USA, stock nos. 000476 and 001,801, respectively), whereas miR-378−/− mice (129SvEv/C57BL/6) 
were kindly provided by Dr. Eric Olson (Department of Molecular Biology, University of Texas Southwestern 
Medical Center, Dallas, TX, USA)25. Mice globally lacking both dystrophin and miR-378 (mdx/miR-378−/−) 
were generated as described previously23. Wild-type (WT), mdx, and mdx/miR-378−/− mice were bred at mixed 
C57BL/10ScSn x 129SvEv/C57BL/6 background23. For all experiments only male, 3-month-old animals were 
used.

Tolerance tests.  GTT and ITT were conducted according to the published protocols with minor 
modifications76. Briefly, GTT and ITT were performed in mice after an overnight (16 h) or 4 h fasting period, 
respectively. At first, fasting blood glucose was measured (indicated as 0 min timepoint) followed by intraperi-
toneal (i.p.) administration of 20% D-( +)-Glucose solution (Sigma-Aldrich, St. Louis, MO, USA) of a final dose 
of 2 g/kg body weight (BW) (GTT) or 1 U/mL insulin (Humulin® R, Lilly, Warsaw, Poland) in a dose of 0.5 U/
kg BW (ITT). Next, the measurement of blood glucose concentration was repeated after 15, 30, 60, and 120 min 
(GTT) or after 15, 30, 60, and 90 min (ITT). Additionally, the random glucose level under non-fasting condi-
tions (random glucose) and insulin under both non-fasting (random insulin) and after overnight (16 h) fasting 
conditions were measured. In any case, the blood glucose level was estimated from the tail tip using a glucometer 
(Diagnosis S.A., Białystok, Poland), whereas insulin level was assessed by Ultra Sensitive Mouse Insulin ELISA 
Kit (Crystal Chem, Elk Grove Village, IL, USA) in serum prepared from the blood collected from vena cava, 
after allowing the blood to clot at room temperature for 30 min and centrifugation at 2000 × g for 10 min at 4 °C.

Metabolic cages.  For the assessment of total energy expenditure, we utilized metabolic cages. Mice were 
housed individually in cages and acclimatized to standard animal house conditions for 3 days. Water and food 
were precisely measured to enable the determination of the food and water intake, feces, and urine excretion after 
consecutive 24 h. Upon collection, feces were dried for 1 h at 37 °C, whereas urine was centrifuged (2000 × g for 
10 min at 4 °C). All results were calculated per kg BW.

RNA isolation, reverse transcription, and quantitative real‑time PCR (qRT‑PCR).  For RNA 
isolation, tissues (a piece of a right lobe of the liver and gastrocnemius muscle) were collected, preserved in 
RNAlater solution (Sigma-Aldrich, St. Louis, MO, USA), snap-frozen in liquid nitrogen, and stored at −80 °C. 
Tissues were homogenized using TissueLyser in 1 mL of QIAzol Lysis Reagent (all from QIAGEN, Hilden, Ger-
many) followed by RNA isolation that was performed according to our previous expertise using the standard 
Chomczynski-Sacchi method77. For the reverse transcription, 1 µg of total RNA was transcribed to cDNA in a 
mix containing recombinant M-MuLV reverse transcriptase (Thermo Fisher Scientific, Waltham, MA, USA), 

Figure 8.   Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)—based analysis uncovered 
possible mediators of miR-378 action in the liver. The STRING analysis was performed on differentially 
expressed genes that were oppositely regulated in mdx vs. WT and mdx/miR-378−/− vs. mdx livers. (A) 7 out of 
20 genes that were downregulated in mdx vs. WT and upregulated in mdx/miR-378−/− vs. mdx mice were found 
by STRING to interact with each other and exhibit co-expression patterns. Five of them indicated by asterisks 
were predicted by miRmap database to be direct targets of miR-378. (B) Verification of RNA sequencing 
results by qRT-PCR analysis of ATP citrate synthase (Acly), fatty acid synthase (Fasn), glycerol-3-phosphate 
acyltransferase, mitochondrial (Gpam), patatin-like phospholipase domain-containing protein 3 (Pnpla3), and 
stearoyl-CoA desaturase-1 (Scd1) predicted as miR-378 targets along with perilipin 2 (Plin2) and glycerol-3-
phosphate acyltransferase 3 (Agpat9); n = 4–8/group, together with (C) gene ontology (GO) terms indicating 
pathways affected by interacting genes. (D) The expression of 2 out of 22 genes, hemolytic complement (Hc) 
and complement factor properdin (Cfp), that were higher in mdx vs. WT and lower in mdx/miR-378−/− vs. mdx 
liver based on RNA-seq data, was verified by qRT-PCR analysis; n = 4–8/group. (E) Those genes, presented 
together with the affected GO terms, were shown by STRING to interact with each other. Data are presented 
as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 by one-way ANOVA with Tukey’s post-hoc test; #p < 0.05 
additionally tested by Student’s t-test for comparison of mdx vs. WT and mdx/miR-378−/− vs. mdx only.
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dNTPs, oligodT (both from Genomed, Warsaw, Poland), and water, or was conducted according to the miR-
CURY LNA RT Kit (QIAGEN, Hilden, Germany) in the case of miRNAs expression analysis. qRT-PCR was 
performed using StepOne Plus Real-Time PCR (Applied Biosystems—Thermo Fisher Scientific, Waltham, MA, 
USA) on obtained cDNA with SYBR Green PCR Master Mix, and specific primers (all from Sigma-Aldrich, 
St. Louis, MO, USA) which sequences are listed in Table 1. Eukaryotic elongation factor 2 (Eef2), with a stable 
expression between analyzed groups, served as a housekeeping gene. In the case of miRNA level assessment, 
qRT-PCR was conducted according to the miRCURY LNA SYBR PCR Kit with specific primers (miRCURY 
LNA™ miRNA PCR Assays, all from QIAGEN, Hilden, Germany). Normalization of miRNAs expression was 
done based on the small nucleolar RNA, C/D box 68 (Snord68) which level was not affected by mice genotype. 
Relative gene expression was calculated based on the comparative Ct method according to the 2−ΔCt formula, 
where (ΔCt = Ct gene of interest − Ct Eef2/Snord68). Primer specificity was monitored based on the melting curves.

Liver transcriptome sequencing.  For RNA-seq, mice were euthanized, perfused immediately with saline 
containing 0.5 U/ml heparin (Polfa, Warsaw, Poland) through the left ventricle, and a piece of the liver (left 
lateral lobe) was collected to tubes containing RNAlater (Sigma-Aldrich, St. Louis, MO, USA). Samples were 
immediately snap-frozen in liquid nitrogen and stored at -80 °C before RNA isolation which was performed as 
described above according to the standard Chomczynski-Sacchi method78.

High-throughput gene expression profiling was conducted using next-generation sequencing and a highly 
multiplexed amplification method provided by Ion AmpliSeq™ technology and Ion Proton™ machine (Thermo 
Fisher Scientific, Waltham, MA, USA). Libraries for 16 samples were prepared using Ion AmpliSeq™ Transcrip-
tome Mouse Gene Expression Kit covering > 20,000 mouse RefSeq genes in a single assay. Before the library 
preparation step, integrity and concentrations of RNA samples were determined using an Agilent 2100 Bio-
analyzer with RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA). Libraries were prepared according to the 
manufacturer’s protocol using 100 ng of total RNA as the input material. Emulsion PCR, templating and chip 
loading was conducted manually. Sequencing was performed using Ion PI Hi-Q Sequencing 200 chemistry. Two 
Ion PI Chip v3 chips were used with 8 barcoded and pooled in equimolar concentrations samples sequenced per 
single chip. The primary bioinformatics analyses including mapping were carried out using Torrent Suite Server 
v5.10.0. Transcripts were counted with the HTSeq Python package (https://​htseq.​readt​hedocs.​io/​en/​relea​se_0.​
10.0/) while read-count normalization and differential gene expression analysis (DGE) was carried out using 
DESeq2 package implemented in R version 3.3.3 software. P-values for differentially expressed genes were cor-
rected for multiple comparisons using the Benjamini–Hochberg approach and the results with the corrected 
P-adjusted < 0.05 were considered significant if not otherwise stated. Heatmaps were generated using ggplot2 R 
package79 or were created in GraphPad Prism 8 Software. Gene set enrichment analysis (GSEA) was conducted 
with the GSEA method using the Java GSEA implementation. GSEA pre-ranked module and log2 fold change 
values were used as the input values (http://​softw​are.​broad​insti​tute.​org/​gsea/​index.​jsp). Mapping to Gene Ontol-
ogy terms (GO) was conducted using the “GOstats” package implemented in R version 3.3.3 software80. Data 
were analyzed through the use of IPA (QIAGEN, Hidden, Germany, https://​www.​QIAGE​Nbioi​nform​atics.​com/​

Table 1.   The sequences of forward (F) and reverse (R) primers used in qRT-PCR.

Gene Sequence 5′–3′

Acly F:CTC​CAA​GAA​GCC​AAA​TCT​TATC​
R:ATA​TTC​ATC​AGC​TTC​CTC​CC

Agpat9 F:CAG​AAG​GTA​CTT​GCA​TCA​AC
R:GAA​CTG​GGG​GTT​ATA​CTT​TATG​

Cfp F:TCG​ACA​CTG​CTA​TAA​CAT​CC
R:GAA​GGT​AAC​ATT​CTT​CTC​ACC​

Eef2 F:AGA​ACA​TAT​TAT​TGC​TGG​CG
R:AAC​AGG​GTC​AGA​TTT​CTT​G

Fasn F:GAT​TCA​GGG​AGT​GGA​TAT​TG
R:CAT​TCA​GAA​TCG​TGG​CAT​AG

Glut4 F:GTA​ACT​TCA​TTG​TCG​GCA​TGG​
R:AGC​TGA​GAT​CTG​GTC​AAA​CG

Gpam F:CAT​TCA​GAT​TCA​CAA​GGG​TC
R:GTG​AAT​CAA​GGT​ACT​GAA​GAC​

Hc F:ATC​TTC​AGG​TGG​ATT​TTC​AG
R:CTC​GAG​TGA​ATC​TTT​AAC​CTG​

Plin2 F:ATA​AGC​TCT​ATG​TCT​CGT​GG
R:GCC​TGA​TCT​TGA​ATG​TTC​TG

Pnpla3 F:GTG​AAT​ATC​ACC​AAC​CTC​AG
R:TTA​CAG​ATG​CCA​TTC​TCC​TC

Ppara F:ACT​ACG​GAG​TTC​ACG​CAT​GTG​
R:TTG​TCG​TAC​ACC​AGC​TTC​AGC​

Scd1 F:GTG​GGG​TAA​TTA​TTT​GTG​ACC​
R:TTT​TTC​CCA​GAC​AGT​ACA​AC

https://htseq.readthedocs.io/en/release_0.10.0/
https://htseq.readthedocs.io/en/release_0.10.0/
http://software.broadinstitute.org/gsea/index.jsp
https://www.QIAGENbioinformatics.com/products/ingenuitypathway-analysis
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produ​cts/​ingen​uityp​athway-​analy​sis)81 and STRING database for known and predicted interactions82. miRmap 
database with the default parameters was recruited to predict miR-378 targets47.

Biochemical assays.  The measurements of ALT, AST, total cholesterol, HDL, triglycerides, and bilirubin 
level in serum were performed using biochemical analyzer SPOTCHEM EZ SP-4430 (ARKRAY, Kyoto, Japan) 
according to the vendor’s instructions. Triglyceride content in the liver was assessed by Triglyceride Quantifica-
tion Colorimetric/Fluorometric Kit (Sigma-Aldrich, St. Louis, MO, USA), whereas glycogen level was analyzed 
using Glycogen Colorimetric/Fluorometric Assay Kit (BioVision, Milpitas,  CA, USA). The urinary uric acid 
concentration was tested according to the vendor’s instruction (CORMAY, Warsaw, Poland).

Protein isolation.  For protein isolation, collected tissues were homogenized using TissueLyser (QIAGEN, 
Hilden, Germany) in PBS containing 1% Triton X-100 (BioShop, Burlington, ON, Canada) and protease inhibi-
tors (cOmplete™, Mini Protease Inhibitor Cocktail; Roche Diagnostic, Basel, Switzerland). After centrifugation 
(14,000 × g for 10 min at 4 °C), supernatants were collected and total protein content was assessed by the bicin-
choninic acid assay (BCA) method (Sigma-Aldrich, Saint Louis, MO, USA).

Western Blot.  For the assessment of protein level of pAKT, AKT, p110α, GSK-3β, PPARα, GLUT4, GAPDH, 
and VINCULIN, 25 µg of protein lysates were subjected to SDS-PAGE electrophoresis, transferred to nitrocel-
lulose membrane (wet transfer, 100 V/1.5 h, 4 °C), blocked in 5% non-fat milk (in the case of p110α, GSK-3β, 
PPARα, GLUT4, GAPDH) or BSA (for pAKT, AKT, and VINCULIN) in TBS containing 0.1% Tween20 (1 h, 
room temperature), and incubated overnight with primary antibodies diluted in the appropriate blocking solu-
tion (Table 2). If needed, the membranes were cut before the incubation with the desired antibody. The next 
day, membranes were washed, incubated with secondary antibodies (diluted in the appropriate blocking solu-
tion) conjugated to horseradish peroxidase (HRP) (Table 2) for 1 h at room temperature, washed again, and 
the chemiluminescence was measured by ChemiDoc™ MP Imaging System (Bio-Rad, Hercules, CA, USA) after 
addition of the Immobilon® Western Chemiluminescent HRP Substrate (Millipore, Burlington, MA, USA). For 
stripping and reprobing, the membranes were washed thoroughly with TBS containing 0.1% Tween20 followed 
by the incubation with 0.5 M glycine solution (pH = 2.6), twice for 30 min with washing steps after each incuba-
tion (3 times per 5 min). Afterward, the membrane was blocked and subsequent steps were done as described 
above. Densitometric analysis was performed with the use of ImageJ software. Unedited Western Blot results 
from all experiments subjected to densitometric analysis are presented in Supplementary Fig. 8.

ELISA.  IL6, TNFα, TNFR1, and IGF1R levels in the liver were assessed by ELISA assay (R&D, Minneapolis, 
MN, USA, and Abbexa, Cambridge, UK, respectively) according to the vendor’s instruction using 100 µg of pro-
tein lysates as determined by the BCA method. The results were calculated per mg of the total protein.

Histological analyses.  A piece of the liver (right lobe) was collected directly to 10% formalin in PBS for 
48 h. Afterward, tissues were transferred to 70% ethanol and stored at 4 °C before further processing. Tissues 
were dehydrated, embedded in paraffin, and cut using a microtome (Thermo Fisher Scientific, Waltham, MA, 
USA) on 4.5 µm sections. After deparaffinization, sections were subjected to hematoxylin and eosin (H&E) and 
Masson’s Trichrome staining according to the vendor’s instructions (Sigma-Aldrich, St. Louis, MO, USA). The 
pictures were taken using the Leica DMi8 microscope with the CMOS Leica MC170 HD camera. The assessment 
of liver injury was conducted according to previous reports83 with modifications. Briefly, semiquantitative total 
scoring of necrosis, vacuolization, congestion, and leukocyte infiltration was performed, based on the following 
scale (for each parameter): 0—none, 1—minimal, 2—mild, 3—moderate, 4—severe. The liver fibrosis was cal-
culated using ImageJ software and presented as the percentage of Masson’s trichrome positive area of the whole 
liver biopsy/scan84.

Oil Red O (ORO) staining for the determination of lipid accumulation was performed on 5 μm thick frozen 
sections, which were cut after embedding the liver in an OCT medium and freezing in an isopentane-cooled 
liquid nitrogen bath. The sections were fixed in formalin, briefly washed with running tap water, rinsed with 60% 

Table 2.   The list of antibodies used in Western Blot analysis.

I° antibody/dilution Vendor/Cat. No II° antibody/dilution Vendor/Cat. No

Rabbit anti-mouse pAKT (Ser 
473)/1:1000 Cell Signaling Technology, Danvers, MA, USA/9271S Goat anti-rabbit/1:10000 Cell Signaling Technology, Danvers, MA, USA/7074

Rabbit anti-mouse AKT/1:1000 Cell Signaling Technology, Danvers, MA, USA/9272S Goat anti-rabbit/1:10000 Cell Signaling Technology, Danvers, MA, USA/7074

Mouse anti-porcine GAPDH/1:2000 Santa Cruz Biotechnology, Dallas TX, USA/sc-59540 Goat anti-mouse/1:20000 BD Pharmingen, San Diego, CA, USA/554002

Rabbit anti-rat GLUT4/1:1000 Abcam, Cambridge, UK/ab654 Goat anti-rabbit/1:10000 Cell Signaling Technology, Danvers, MA, USA/7074

Rabbit anti-human GSK-3β/1:500 Santa Cruz Biotechnology, Dallas TX, USA/sc-9166 Goat anti-rabbit/1:5000 Cell Signaling Technology, Danvers, MA, USA/7074

Goat anti-human PPARα/1:500 Santa Cruz Biotechnology, Dallas TX, USA/sc-1985 Donkey anti-goat/1:5000 Thermo Fisher Scientific, Waltham, MA, USA/PA1-
28664

Rabbit anti-human p110α/1:500 Cell Signaling Technology, Danvers, MA, USA/4249T Goat anti-rabbit/1:5000 Cell Signaling Technology, Danvers, MA, USA/7074

Mouse anti-human VINCULIN/1:400 Sigma-Aldrich, St. Louis, MO, USA/ V9131 Goat anti-mouse/1:10000 BD Pharmingen, San Diego, CA, USA/554002

https://www.QIAGENbioinformatics.com/products/ingenuitypathway-analysis
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isopropanol, and stained for 15 min with freshly prepared ORO (ICN Biomedicals, Inc., USA) working solution 
(0.5% of the stock solution prepared in isopropanol was diluted 1.6 times in water). Afterward, the sections were 
rinsed with 60% isopropanol, distilled water, and mounted with an aqueous mounting medium. The pictures 
were taken using the Nikon Eclipse Ti microscope.

Immunofluorescent staining of GLUT4 was performed on frozen sections according to the protocol described 
previously19, with the use of rabbit anti-rat GLUT4 antibody (Abcam, Cambridge, UK, ab654, 1:200) and Alexa 
Fluor 488 donkey anti-rabbit IgG (H + L) secondary antibody (Thermo Fisher Scientific, Waltham, MA, USA, 
A21206, 1:500). The pictures were taken using the Leica DMi8 microscope with Leica DFC7000 GT fluorescent 
camera.

Isolation of primary hepatocytes.  Isolation of primary hepatocytes was performed according to the 
established protocol85 with a modified digestion step in which 200 U/mL of collagenase IV (Thermo Fisher 
Scientific, Waltham, MA, USA) was used. For RNA isolation, cells were seeded at a density of 2 × 105 cells/well 
of 12-well plates. 24 h after isolation, the medium was removed, cells were washed with PBS, lysed with Fenozol 
(A&A Biotechnology, Gdańsk, Poland), and subjected to RNA isolation and miRNA level determination as 
described in “RNA isolation, reverse transcription (RT), and quantitative real-time PCR (qRT-PCR)” section of 
the manuscript.

Seahorse analyses.  Oxygen consumption rate (OCR) in primary hepatocytes was measured using Sea-
horse Bioscience XFe96 Analyzer (Agilent Technologies, Santa Clara, CA, USA) according to our protocol 
described previously86, 87. Briefly, 1 × 105 of live hepatocytes (determined by the trypan blue staining) were plated 
into Seahorse XFe96-well plates directly after isolation. The next day, the medium was switched for low-buff-
ered assay medium (8.3 g/L DMEM, 2 mM L-Glutamine, 1 mM sodium pyruvate, and 0.5% phenol red (all 
from Sigma-Aldrich, St. Louis, MO, USA ) at pH = 7.4, and the cells were incubated at 37 °C, 20% O2, without 
CO2 for ~ 1 h. OCR was assessed at a basal level and after consecutive injections of 1.5 µg/mL oligomycin, 0.4 µM 
FCCP, and 0.5 µM rotenone + antimycin A (all from Sigma-Aldrich, St. Louis, MO, USA). All parameters were 
optimized before the test. Basal respiration was calculated as the last rate measurement before oligomycin injec-
tion minus non-mitochondrial respiration (minimum rate measurement after antimycin A and rotenone injec-
tion). The results were normalized to the protein content using the BCA method.

Statistical analysis.  The results are presented as mean ± SEM. In the figure legends, the “n” number indi-
cates biological replicates equal to the number of mice used in each experiment. Differences between groups 
were tested for statistical significance using one-way ANOVA with Tukey’s posthoc test for multiple compari-
sons or two-way ANOVA for repeated measures with Tukey’s posthoc tests for multiple comparisons. When 
indicated, the unpaired 2-tailed Student’s t-test was applied test for the comparison of two groups. p < 0.05 was 
considered significant, whereas p = 0.05–0.1 was described as a tendency. Grubb’s test was used to identify outli-
ers. Graphs and statistical analyses were performed with the use of GraphPad Prism 8 Software.
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