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Modeling material transport 
regulation and traffic jam 
in neurons using PDE‑constrained 
optimization
Angran Li1 & Yongjie Jessica Zhang1,2*

The intracellular transport process plays an important role in delivering essential materials throughout 
branched geometries of neurons for their survival and function. Many neurodegenerative diseases 
have been associated with the disruption of transport. Therefore, it is essential to study how neurons 
control the transport process to localize materials to necessary locations. Here, we develop a novel 
optimization model to simulate the traffic regulation mechanism of material transport in complex 
geometries of neurons. The transport is controlled to avoid traffic jam of materials by minimizing 
a pre-defined objective function. The optimization subjects to a set of partial differential equation 
(PDE) constraints that describe the material transport process based on a macroscopic molecular-
motor-assisted transport model of intracellular particles. The proposed PDE-constrained optimization 
model is solved in complex tree structures by using isogeometric analysis (IGA). Different simulation 
parameters are used to introduce traffic jams and study how neurons handle the transport issue. 
Specifically, we successfully model and explain the traffic jam caused by reduced number of 
microtubules (MTs) and MT swirls. In summary, our model effectively simulates the material transport 
process in healthy neurons and also explains the formation of a traffic jam in abnormal neurons. 
Our results demonstrate that both geometry and MT structure play important roles in achieving an 
optimal transport process in neuron.

The neuron exhibits a highly polarized structure that typically consists of a single long axon and multiple den-
drites which are both extended from its cell body. Since most of the materials necessary for the neuron are 
synthesized in the cell body, they need to experience long-distance transport in axons or dendrites to reach 
their effective location1,2. The intracellular material transport is therefore especially crucial to ensure necessary 
materials are delivered to the right locations for the development, function, and survival of neuron cells. The 
disruption of intracellular transport can lead to the abnormal accumulations of certain cellular material and 
extreme swelling of the axon, which have been observed in many neurological and neurodegenerative diseases 
such as Huntington’s, Parkinson’s, and Alzheimer’s disease3–7. Therefore, it is essential to study and understand 
mechanisms of the transport function and dysfunction.

Recent studies have shown that the neuron is critically dependent on molecular motors to transport various 
materials along the longitudinal cytoskeletal structure like microtubules (MTs)8–10. MTs are long and polarized 
polymers with biophysically distinct plus and minus ends11–13. The polarity of MTs can decide the preferred 
direction in which an individual molecular motor moves. For instance, molecular motors from the kinesin and 
dynein superfamilies have been identified to convey materials along MTs towards their plus and minus ends 
respectively14,15. Inspired by these findings, there have been many mathematical models proposed to quantita-
tively study the motor-driven transport process and understand the pathology of neuron diseases. For instance, 
the partial differential equations (PDEs) of linear reaction-hyperbolic form have been used to approximate the 
traveling waves of a single moving species16. This model was further extended to account for multiple moving 
species17 and their diffusion18,19. Based on PDE-based transport, stochastic models have also been developed for 
both axonal transport20,21 and dendritic transport22,23. In addition, several mathematical models were developed 
to simulate material transport in unhealthy neurons. Xue et al. presented a stochastic model to explain the seg-
regation of MTs and neurofilaments in neurological diseases24. Bertsch et al. proposed to couple Smoluchowski 
equations and kinetic-type transport equations to study the onset and progression of Alzheimer’s disease25.
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Though the aforementioned PDE and stochastic models can successfully simulate and explain certain phe-
nomena during transport, most of these models were solved only in simple one-dimensional (1D) or 2D domains 
without considering the complex neuron geometry. Recent developments in numerical methods allow us to 
obtain accurate solution of PDEs in complex geometries. Specifically, isogeometric analysis (IGA)26 directly 
integrates geometric modeling with numerical simulation and achieves better accuracy and robustness com-
pared to the conventional finite element method (FEM), making it a perfect tool to tackle the highly branched 
neuron geometry. In particular, IGA performs simulation with different types of splines as basis functions 
instead of Lagrange polynomials used in conventional FEM. The same smooth spline basis functions27 used for 
both geometrical modeling and numerical simulation lead to accurate geometry representation with high-order 
continuity and superior numerical accuracy in simulation. Therefore, IGA has been extensively used in shell 
analysis28–31, cardiovascular modeling32–37, neuroscience simulation38,39, fluid-structure interaction40–43, as well 
as industrial application44,45. Truncated T-splines46,47 were developed to support local refinement over unstruc-
tured quadrilateral and hexahedral meshes. Blended B-splines48 and Catmull-Clark subdivision basis functions49 
were investigated to enable improved or even optimal convergence rates for IGA. With the advances in IGA, we 
developed an IGA-based simulation platform to accurately reconstruct complex neuron geometries and solved 
a 3D motor-assisted transport model within them38. We also developed a deep learning framework based on the 
IGA simulation platform to predict the material transport process in complex neurite networks50. The results 
from our IGA solver showed how the complex neuron geometry affects the spatiotemporal material distribution 
at neurite junctions and within different branches. However, the motor-assisted model only provides a simplified 
model of the actual transport process but ignores the active regulation from neuron itself.

To model the active regulation from neurons to control the transport process, we propose to use PDE-
constrained optimization (PDE-CO). PDEs are commonly used in science and engineering to mathematically 
represent biological and physical phenomena. Recent advances in numerical methods and high-performance 
computing equip the development of large-scale PDE solvers. As a result, PDE-CO problems arise in a variety of 
applications including optimal design51–53, optimal control54–56, and inverse problem57,58. In particular, PDE-CO 
has important biomedical applications in exploiting valuable information from real medical data. For instance, 
Hogea et al. presented a PDE-CO framework for modeling gliomas growth and their mass-effect on the sur-
rounding brain tissue59. Kim et al. proposed a transport-theory-based PDE-constrained multispectral imaging 
algorithm to reconstruct the spatial distribution of chromophores in tissue60. Melani utilized the blood flow data 
and solved a PDE-CO problem based on fluid-structure interaction to estimate the compliance of arterial walls 
in vascular networks61. PDE-CO problems was also used to model tumor growth model by fitting the numerical 
solution with real experiment data and estimating unknown parameters in the model62,63.

In this study, we develop a novel IGA-based PDE-CO framework that effectively simulates the material trans-
port regulation and investigates the formation of traffic jams and swirl during the transport process in complex 
neurite structures. Our simulation reveals that the molecular motors and MT structure play fundamental roles 
in controlling the delivery of material by mediating the transport velocity on MTs. The defective transport on 
MTs can cause material accumulation in a local region which may further lead to the degeneration of neuron 
cells. Combined with geometry of the neurite network, the motor-assisted transport on MTs controls the rout-
ing of material transport at junctions of neurite branches and distributes transported materials throughout the 
networks. Therefore, our study provides key insights into how material transport in neurite networks is mediated 
by MTs and their complex geometry. In summary, there are three main contributions in this paper.

•	 Our PDE-CO model introduces a new objective function to simulate two transport control mechanisms for 
(1) mediating the transport velocity field; and (2) avoiding the traffic jam caused by local material accumula-
tion. The control strength can be adjusted through two penalty parameters in the objective function and the 
impact of these parameters is also studied;

•	 Our model introduces new simulation parameters to describe the spatial distribution of MTs, which enables 
the simulation of traffic jam caused by abnormal MT structure such as MT reduction and MT swirls; and

•	 Our study develops an IGA optimization framework for solving the PDE-CO problem in complex neuron 
geometries. The optimization framework is transformative and can be extended to solve other PDE-CO 
models of cellular processes in complex neurite networks.

IGA‑based material transport optimization in neurons
Our interest lies in the transport of particles along an axon or dendrite in neuron cell. In our previous work, 
we simulated the material transport process using a macroscopic molecular-motor-assisted transport model 
without any transport control38. Built upon this transport model, we propose a novel transport optimization 
model to further study the transport control mechanism of neuron and predict the formation of a traffic jam in 
abnormal neurons. Assuming the open set � ⊂ R

d ( d = 2 or 3) represents the d-dimensional internal space of 
the neuron, n0 ∈ R , n± ∈ R and v± ∈ R

d are referred as the “state variables” while f± ∈ R
d are referred as the 

“control variables”. The proposed optimization problem is described as 
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where V± is a predefined velocity field inside neuron; n0 , n+ and n− are the spatial concentrations of free, incom-
ing (relative to the cell body; retrograde), and outgoing (anterograde) particles, respectively; D± is the diffusion 
coefficient of incoming and outgoing materials; v+ and v− are velocities of incoming and outgoing particles, 
respectively; k± and k′± are rates of MT attachment and detachment of incoming and outgoing materials, respec-
tively; l± represents the density of MTs used for motor-assisted transport; f± represents the control forces that 
mediate the material transport; µ is viscosity of traffic flow; �i , �o represent the degree of loading at inlet and 
outlet ends, respectively18; and ni , no represent the boundary value of n0 at inlet and outlet ends, respectively. On 
the right hand side of Eq. (1d), the concentration gradient term ∇n± accounts for the porosity induced by the 
material, which models the behavior of molecular motors on MT to speed up when the material concentration 
n± decreases while slow down when n± increases. In this study, we assume the MT system is unipolar that leads 
to a unidirectional material transport process and ignore n− , l− , v− , k− , k′− terms in Eq. (1b)–(1f). The selection 
of parameters is based on the study of Smith and Simmons18: the Einstein-Stokes relation for a 1 µ m sphere in 
water gives D± = 0.4 µm2 /s and we reduce the value to 0.1 µm2 /s considering the irregular neuron topology 
and a bigger cytoplasmic viscosity; the attachment rate k± is set to be 1 s−1 and the detachment rate k′± is set to 
be 0.1 s−1 . The default values of simulation parameters are summarized in Table 1.

Herein, we account for active regulation from neuron in the objective function (Eq. 1a), and we assume the 
optimal material transportation within neuron can be achieved by solving the proposed optimization model. The 
first term in Eq. (1a) measures the difference between v± and the predefined optimal velocity field V± . It serves 
as a velocity control mechanism that neuron expects to achieve the predefined velocity field V± during transport. 
The second term measures the cost from concentration gradient ∇n± within the entire neuron cell. It serves as 
a traffic jam control mechanism that the neuron can improve local traffic jam by detecting and avoiding high 
concentration gradient in the entire geometry. The value of parameter α represents to what extent we want to 
optimize the transport process and avoid traffic jams. The third term is a regularization that measures the control 
forces applied by neuron to mediate the transport. The value of parameter β represents how much the neuron 
can affect the transport velocity. To introduce traffic jams in neurons, we modify the simulation parameters in 
the governing equations. In this study, we modify the spatial distribution of l± to model the traffic jam caused 
by abnormal MTs such as the reduction of MTs and MT swirls during transport.

We employ the “all-at-once” method64,65 and IGA to formulate and solve the optimization model (Eq. 1a) 
with PDE constraints (Eqs. 1b–1f) simultaneously. We first discretize the objective function to obtain its 
approximation Jh(n±, v±, f±) . We also discretize PDE constraints (Eqs. 1b–1f) to obtain their weak form 
Bh(n0, n±, v±, f±) = 0 . Then, we build a discrete Lagrangian

where pT is the Lagrange multiplier and is also referred to as the “adjoint variable”. By taking derivatives of the 
discrete Lagrangian with respect to state, control, and adjoint variables and setting the resulting expressions 
to zero, we obtain the first-order conditions, or Karush-Kuhn-Tucker (KKT) conditions. The resulting KKT 
system is then solved using the GMRES66 solver implemented in PETSc67. In this study, we focus on solving 
the proposed optimization model in 2D neuron geometries. To handle the ill-conditioning issue of the KKT 
system, we implemented the preconditioner following the all-at-once method64. The stopping tolerance for the 
optimization problem is set to be 10−7 . We do not find other local minima when solving the optimization prob-
lem. However, due to the nonlinear constraints in our model, it is possible to have other local minima. Overall, 
there are 7 unknowns in the PDE-CO model, including n0 , n+ , n− , v+ , v− , f+ and f− . In particular, n− , v− and f− 
are ignored when no MT swirl is introduced. The computation usually needs 1 to 3 CPU Nodes (128 cores per 
node) and takes 8-12 hours to finish.

As shown in Fig. 1, we use a bifurcation example to illustrate the pipeline of our simulation. We first generate 
a control mesh and reconstruct the neuron geometry with Truncated Hierarchical B-splines (THB-spline) by uti-
lizing the geometry information stored in a SWC file. The SWC file is widely used to store neuron morphologies 
including vertices and the associated diameters on the skeleton of the neuron. We can obtain the SWC files for 
various real neuron geometries from the NeuroMorpho database68. The raw SWC file needs to be pre-processed 
to ensure no duplicated vertices or overlapping skeleton exist in the geometry. During the geometric modeling 
of our workflow, we take the cleaned-up neuron skeleton as input and use the skeleton-based sweeping method32 
to generate quadrilateral control mesh of the neuron geometry. Then, we build THB-spline on the quadrilateral 
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mesh30,31 for the final representation of the neuron geometry. Once the spline information for the geometry 
is obtained, we run a steady-state Navier–Stokes solver to generate the pre-defined velocity for the optimiza-
tion. We then use the default simulation parameters in Table 1 and modify the spatial distribution of l+ in the 
red circle regions to introduce traffic jam. Finally, we run the optimization solver and obtain the velocity field 
and concentration distribution. In this paper, we apply the pipeline to various neural structures with material 
transport regulation, traffic jam and MT swirl. All simulations are conducted on the XSEDE (Extreme Science 
and Engineering Discovery Environment) supercomputer Bridges at the Pittsburgh Supercomputer Center69,70.

Results
Simulation of material transport regulation and traffic jam.  We first simulate the normal material 
transport and the abnormal transport with traffic jam in a single pipe geometry (Fig. 2). The predefined veloc-
ity field for both cases is computed by solving a steady-state Navier–Stokes equation and the result is shown in 
Fig. 2A. The other simulation parameter settings are summarized in Table 1. The computed velocity field and 
the distribution of concentration in the normal transport are shown in Fig. 2B,E. To model traffic jam caused by 
the reduction of MTs, the distribution of l+ along the pipe is defined as shown in Fig. 2D. The velocity field and 
material distribution results in the abnormal transport are shown in Fig. 2C,F. The convergence curve for the 
gradient of objective functions is shown in Supplementary Fig. S6 to verify the result. The comparison between 
normal and abnormal transport shows that the velocity magnitude decreases in the red dashed circle region due 
to the reduced number of MTs, and this further leads to accumulation of the material in this area.

As shown in Fig. 2G–I and Fig. S1, we also perform parameter analysis using the single pipe geometry to 
study the influence of simulation parameters on the material distribution results. In particular, we focus on three 

Figure 1.   An overview of the material transport control simulation in a bifurcation geometry. The traffic jam 
is introduced by reducing MTs in the red dashed circle region. Color bars unit for velocity field: µm/s and 
concentration: mol/µm2.

Table 1.   Simulation parameters utilized in computations.

Parameter Description [Unit] Default value

D± Diffusion coefficient of incoming and outgoing materials [ µm2/s] 0.1

k± Attachment rate to the MTs that transport materials in the positive (+) and negative (−) directions [s−1] 1.0

k′± Detachment rate from MTs for materials that move in the positive (+) and negative (−) directions [/s] 0.1

l± Density of MTs used for motor-assisted transport 1.0

µ Viscosity of the traffic flow [ µ/m/s] 0.1

�i Degree of loading at inlet end 2.0

�o Degree of loading at outlet end 2.0

ni Boundary value of n0 at inlet end [mol/µ/m2] 1.0

no Boundary value of n0 at outlet end [mol/µ/m2] 0.0

α Penalty parameter for the cost to control high concentration gradient 1.0

β Penalty parameter for the cost of control force f± 1.0
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parameters that may have significant effect when dealing with traffic jam caused by the reduction of MTs. The 
values selected for these parameters are displayed in Table 2. We assume the active regulation from neuron is less 
dominant than natural transport via diffusion or MTs, and thus select two smaller values for α and β compared to 
the default values in Table 1. Regarding the value selection of k/k′ , we refer to the values utilized in71 and ensure 
the selected values stay within a biologically realistic range. Figure 2G shows the effect of the penalty parameter 
of the concentration gradient cost, α , on the concentration distribution. One can see that the decrease of α leads 
to a severer material accumulation around the region with reduced MTs in the single pipe geometry. We also 
find that the concentration gradient becomes larger around the traffic jam region, which indicates that there is 
less control over the concentration gradient due to the decrease of α.

Figure 2H is similar to Fig. 2G but shows the effect of the penalty parameter of the control force, β , on the 
concentration distribution. We find similar phenomena that the traffic jam gets worse when β decreases. By 
comparing Fig. 2G with 2H and Fig. S1A with S1B, we find β has a greater influence on the concentration than 
α when decreasing both parameters by the same amount. Since β affects the control force in Eq. (1d) while α 
affects the concentration in Eqs. (1b) and (1c), the result indicates that the regulation of transport velocity on 
MTs is vital to achieve the optimal material transport process in neuron. In addition, we study the impact of 
α and β on the distribution of the control force f and the resulting velocity profile as shown in Supplementary 
Fig. S2. When α increases, the velocity increases due to the decrease of ∇n± . f also decreases since less control 
is needed to regulate the transport. When β increases, f becomes smaller and the overall velocity decreases. We 

Table 2.   Value selection for parameter study.

Parameter Value selection

α 1, 0.1, 0.01

β 1, 0.1, 0.01

k±/k
′
± Fix k± = 1.0 s−1 , let k±/k′± = 1, 10, 100
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Figure 2.   Simulation of material transport and parameter analysis in a single pipe geometry. (A) The 
predefined velocity field V+ . Black arrow points to the inlet of the pipe. The computed velocity field in (B) a 
healthy neuron and (C) an abnormal neuron with reduced MTs in the red dashed circle region. (D) Distribution 
of l+ to model the traffic jam caused by the reduction of MTs. Distribution of concentration ( n0 + n+ ) in (E) 
a healthy neuron and (F) an abnormal neuron with reduced MTs in the red dashed circle region. (G–I) The 
concentration curve ( n0 + n+ ) on the centerline of the single pipe affected by different settings of (G) α ; (H) β ; 
and (I) k/k′ . Unit for color bars: (A–C) µm/s and (E, F) mol/µm2.
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also notice that with larger β , the distribution of f is stabler and the sharp velocity change is mitigated in the 
traffic jam region, which may explain the reduction of ∇n± . Though the increase of regularization reduces the 
overall transport, the material accumulation is alleviated and has less hazard to the neuron, which is an expected 
control from neuron.

Figure 2I shows the effect of the ratio between the attachment rate and detachment rate, k/k′ , on the material 
concentration. We find that when k/k′ increases, the location of maximum concentration moves toward right, 
which indicates the decrease of detachment rate k′ causes more material get attached to MTs and transport faster 
as expected in18. However, the reduction of MTs slows down the motor-assisted transport on MTs and results in 
worse traffic jam. Interestingly, when k/k′ decreases from 10 to 1, we also observe a similar traffic jam phenom-
ena. The possible reason is that the increase of k′ causes more material transported via free diffusion. Although 
free diffusion helps to transport the material farther along the branch, the slow diffusion speed limits its ability 
to mitigate the traffic jam caused by the reduction of MTs.

To account for morphological effect on the transport process, we simulate the normal material transport and 
the abnormal transport with traffic jam in two neuron tree structures as shown in Figs. 3 and 4. The predefined 
velocity fields for both geometries are shown in Figs. 3A and 4A. To quantitatively study the influence of traffic 
jam on the material concentration among tree structures, we also plot the concentration distribution curves along 
the centerline from the inlet to each outlet of these two neurons. In each curve plot, we compare the distribution 
between the normal transport and the abnormal transport with traffic jam, as shown in Figs. 3E and 4E. For 
both cases, we model traffic jam by reducing the number of MTs ( l+ ) used for transport in the red dashed circle 
regions. As a result, a sudden decrease of velocity (Figs. 3C and 4C) and material accumulation (Figs. 3E and 4E) 
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Figure 3.   Simulation of material transport and parameter analysis in a neuron tree extracted from 
NMO_54504. (A) The predefined velocity field V+ . Black arrow points to the inlet of the neuron tree. The 
computed velocity field in (B) a healthy neuron and (C) an abnormal neuron with reduced MTs in the red 
dashed circle region. Distribution of concentration ( n0 + n+ ) in (D) a healthy neuron and (E) an abnormal 
neuron. We also compare the concentration curve on the centerline from the inlet to every outlet between 
normal and abnormal transport in (E). The red dashed curve shows the centerline from the inlet to one of 
the outlets and each outlet is indexed by a unique number. (F–H) The concentration curve ( n0 + n+ ) on the 
centerline from inlet to outlet 2 affected by different settings of (F) α ; (G) β ; and (H) k/k′ . Unit for color bars: 
(A–C) µm/s and (D, E) mol/µm2.
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can be observed in these regions. By observing the distribution curve of the outlets downstream the traffic jam 
region (curve plots 1–4 of Fig. 3E and 3–8 of Fig. 4E we find that the reduced number of MTs not only causes 
high concentration in the local region, but also decreases the material concentration along the downstream of 
traffic jam region. The distribution curves of the other outlets (curve plots 5 of Fig. 3E and 1, 2, 9, 10 of Fig. 4E) 
demonstrate that more materials are transported to these outlets to minimize the hazard of traffic jam. The result 
also shows that materials rely on motor-assisted transport in longer branches of neurons and the directional 
transport on MTs contributes significantly to the entire transport process.

As shown in Fig. 3F,H and Figs. S3 and S4, we also perform parameter analysis on the concentration dis-
tribution in the neuron tree structure. Similar to the parameter analysis in single pipe geometry, we study the 
influence of three parameters on the concentration distribution and the selected values are listed in Table 2. To 
quantitatively study the influence, we also plot and compare the concentration curves on the centerline from inlet 
to outlet 2 of the neuron tree. We obtain similar results as in single pipe geometry that the decrease of α or β leads 
to a severer material accumulation around the region with reduced MTs, and β shows greater effect than α on the 
concentration distribution. In addition, we observe in Figs. 3E,F and S3 that when α or β increases, the concentra-
tion in the bottom long branch (pipe 5) has slight increase, indicating that more material is transported to the 
unaffected region to mitigate the traffic jam in other branches. As shown in Supplementary Fig. S4, the increase 
of regularization parameter β reduces the control force f. The overall velocity is also reduced but we observe that 
velocity in pipe 5 keeps increasing and is close to the predefined value when β = 1.0 , which explains the slight 
increase of the concentration in pipe 5. In Fig. 3H, we also find that the maximum concentration location moves 
downstream slightly when k/k′ increases, and either increasing or decreasing k/k′ intensifies the traffic jam.
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Figure 4.   Simulation of material transport in a neuron tree extracted from NMO_54499. (A) The predefined 
velocity field V+ . Black arrow points to the inlet of the material. The computed velocity field in (B) a healthy 
neuron and (C) an abnormal neuron with reduced MTs in the red dashed circle region. Distribution of 
concentration ( n0 + n+ ) and the concentration curve on the centerline of the circled region in (D) a healthy 
neuron and (E) an abnormal neuron. We also compare the concentration curve on the centerline from the inlet 
to every outlet between normal and abnormal transport in (E). The red dashed curve shows the centerline from 
the inlet to one of the outlets and each outlet is indexed by a unique number. Unit for color bars: (A–C) µm/s 
and (D,E) mol/µm2.
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Simulation of traffic jam with MT swirls and local swelling.  Recent studies have shown that the 
formation of MT swirls can lead to accumulation of transported material and cause local swelling of neuron 
geometries72. In our model, we modify the spatial distribution of l± and enlarge the radius of neuron in a local 
region to simulate the effect of MT swirls and local swelling on the transport process. We explain the simulation 
setting by using a straight pipe geometry with MT swirls and swelling in the middle L2 region, as shown in Fig. 5. 
We assume the normal transport is unidirectional from left to right ( + direction, red arrow in Fig. 5A). Due to 
the MT swirls in the middle region, the transport path is extended by two segments: one segment reverses to 
transport the material from right to left (− direction, blue arrow in Fig. 5A) and the other segment transports 

Normal
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Curve 3
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Figure 5.   Simulation of material transport in a straight pipe with swelling in the middle region. (A) The 
simulation setting for modeling MT swirls. The red and blue arrows show the transport path along swirly MTs. 
Due to the MT swirls in the L2 region, both l+ and l− are increased along centerline and their distributions 
on cross-section are also modified. (B,C) The computed velocity field and concentration distribution in the 
swollen geometry. Three different curves are labeled for concentration plot. (D) The velocity streamline and 
concentration distribution in the swollen region. Different color maps are used to distinguish between velocity 
and concentration. (E–J) The concentration curve ( n0 + n+ ) along three different curves from inlet to outlet 
affected by different settings of (E–G) α and (H–J) β . Unit for color bars: Concentration: mol/µm2 ; Velocity: µ
m/s.
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in the normal direction from left to right. Therefore, we increase the values of l+ and l− along the longitudinal 
direction in the swelling region to describe the transport path change caused by swirling. We also assume that 
the swirl direction is counter-clockwise and assign an asymmetric distribution of l± on the cross-section in the 
swelling region. In particular, l+ is higher on the bottom of cross-section while l− is higher on the top of cross-
section, as shown in Fig. 5A. We perform simulation with the new parameter setting and compare with the 
results of normal transport in the same geometry. The velocity field and concentration distribution of normal 
and abnormal transport are compared in Fig. 5B,C, respectively. The decrease of velocity and material accumula-
tion can be observed in the swollen region. We also find that the velocity magnitude is not symmetric anymore 
due to the MT swirls in abnormal transport. In Fig. 5D, we plot the velocity streamline with concentration dis-
tribution in the zoomed-in swollen region for both normal and abnormal transport. Compared to the uniform 
velocity streamline in normal transport, the velocity displays vortex pattern in the abnormal transport, which 
reflects a longer transport distance due to MT swirls. We also find that the swirl of velocity streamline usually 
happens in the high concentration region, which implies that the material accumulation is caused by the vortex-
shape velocity field. Moreover, we study the effect of regularization parameters on transport and the results are 
shown in Fig. 5 and Supplementary Fig. S5. In Fig. 5E–J, we compare the concentration distribution obtained 
with different α and β along three different curves labeled in Fig. 5C. We observe that the concentration is the 
highest in Curve 3 while the lowest in Curve 1, which is caused by non-uniform distribution of l+ and l− on the 
cross section. We also find that most curves have two peaks that occur at the two ends of the swelling region. 
At the left end of the swelling region, the sudden increase of l− makes some materials to move left along “−” 
direction MT and thus causes traffic jam. At the right end of the swelling region, the decrease of both l+ and l− 
causes more materials to get detached from MT and the slow diffusion causes the second material accumulation. 
By comparing Fig. 5E–J, we find that the increase of α reduces the maximum concentration value and the con-
centration gradient, while the increase of β reduces the range of high concentration region. As shown in Fig. S5, 
the overall transport velocity increases when α increases and the transport velocity distribution becomes stabler 
when β increases, which can explain the improvement of traffic jam.

As shown in Fig. 6, we then apply the same approach to simulate the normal and abnormal transport with 
MT swirls in two neuron tree structures with local swelling. The swelling is introduced by increasing the skeleton 
radius in the red dashed circle regions. We also assume a counter-clockwise MT swirl in these swollen regions 
and modify the distribution of l± accordingly. For each model, we simulate the abnormal transport process due 
to MT swirls to obtain velocity field and concentration distribution results and compare with the result of normal 
transport in the same geometry. By comparing Fig. 6A,C with Fig. 6B,D, we find the velocity magnitude decreases 
and material accumulates in the swollen region. In other branches that are not downstream the swollen region, 
the material concentration also increases to mitigate the traffic jam in the swollen region. In addition, similar to 
the results in straight pipe with swelling geometry (Fig. 5D), we also observe that the velocity streamline with 
vortex pattern matches with the high concentration region (Fig. 6B,D). These results illustrate that the MT swirls 
lead to the circular transport velocity field in a local region which not only extends the transport distance but 
also traps the material and causes traffic jam.

Discussion
In this paper, we develop a PDE-constrained optimization model to simulate material transport control in neu-
rons. Using our simulation, we examine both normal and abnormal transport processes in different geometries 
and discover several spatial patterns of the transport process. Our results show the formation of traffic jams due 
to the reduction of MTs and MT swirls in the local region. We also observe how the traffic jam affects the spatial 
patterns of transport velocities that in turn drives the transported materials distributed distinctly in different 
regions of neurite networks to mitigate traffic jam. By solving the proposed new optimization problem, we build 
a more realistic transport model for neurons by including active traffic regulation. In particular, we assume the 
active regulation to be an optimization process and include the potential active regulation mechanism into the 
objective function of the PDE-CO model. Though it is challenging and time consuming to solve the inverse prob-
lem, the model can determine a more plausible distribution of the transport control variables within neuron and 
provide a more reliable explanation for the active regulation mechanism. Moreover, since the objective function 
measures the difference between the desired and simulated results, we can further integrate the experimental 
or clinical data with this model to provide more realistic simulations. For instance, we can use the velocity from 
clinical data as input to approximate the control variables and find the potential abnormal region in the neuron 
that causes the disease. Herein, the model is successfully applied to complex 2D neuron geometries and provides 
key insights into how neuron mediates the material transport inside its complex geometry.

Our study shows that MTs have a major impact on the material transport velocity and further affect the 
material concentration distribution. As shown in Fig. 2, the reduction of MTs in the middle of the single pipe 
slows down the transport velocity downstream and leads to traffic jam in the middle region. When the neuron 
has more branches in its geometry (Figs. 3 and 4), the reduction of MTs in one branch has a similar influence 
on the transport downstream the branch. However, we observe an increase in transport velocity and material 
concentration in other branches, indicating that the active regulation from neuron takes effect to avoid traffic 
jams. In addition, we perform parameter analysis to study the influence of different simulation parameters on 
the material concentration distribution. The ratio between the attachment rate k and detachment rate k′ affects 
the amount of material transported via MTs or free diffusion. This will affect the overall transport speed and 
material distribution due to the different transport behavior between motor-assisted transport and free diffusion. 
The penalty parameters α and β affect the ability of neuron to handle traffic jams. β has a greater influence on 
the traffic regulation compared to α since it directly affects the transport velocity on MTs, this again verifies the 
vital role of MTs during the intracellular transport process. Our model can also model the influence of diverse 
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neuron topologies on material distribution. For the transport in healthy neurons (Figs. 3,4B,D), the magnitude 
of transport velocity is different among branches due to the asymmetric geometry. The different velocity magni-
tude further contributes to the distinct material concentration in different branches. In particular, we find that 
shorter branches tend to have faster transport speed and higher material concentration, which may result from 
the high demand of materials for their growth.

Our study also successfully simulates and provides reasonable explanation on the traffic jam caused by MT 
swirls. We assume the counter-clockwise MT swirls exist in a local region of neuron geometry which cause traf-
fic jam and geometry swelling. The spatial distribution of MT density ( l± ) and neuron geometry are modified 
accordingly to model this phenomena. We compare the simulation result of abnormal transport on swirly MTs 
with normal transport and find that MT swirls have severe impact on the transport velocity field. Compared to 
the uniform velocity streamline in normal transport, the abnormal transport exhibits a streamline with counter-
clockwise vortex pattern (Figs. 5D, 6B,D), which is caused by the counter-clockwise MT swirls. This circular 
streamline not only extends the transport distance but also traps the material in the local region, and therefore 
explains why high concentration region matches with the circular streamline pattern.

Our study develops an IGA solver (available at https://github.com/CMU-CBML/NeuronTransportOptimiza-
tion) for solving the PDE-CO problem in complex neuron geometries. Specifically, we adopt the skeleton-based 
sweeping method32,38 for mesh generation to represent the tree structures of neuron geometry. Given the geom-
etry information of neurons, our method automatically reconstructs 2D network geometry with high accuracy 
and high order of continuity for IGA computation. Our automatic IGA optimization solver provides an efficient 
computation tool for studies of material transport regulation in complex neurite networks. The current 2D solver 
can be easily generalized to 3D and it is also extensible to solve other PDE-CO models of cellular processes in 
complex neurite network geometry.

Figure 6.   Simulation of material transport in neuron trees extracted from (A,B) NMO_54504 and (C,D) 
NMO_54499 with swelling in the red circle regions. The first column shows the computed velocity field and 
black arrow points to the inlet of the material. The second column shows the concentration distribution. The 
last column shows the velocity streamline and concentration distribution in the swollen region. Different color 
maps are used to distinguish between velocity and concentration. Unit for color bars: Concentration: mol/µm2 ; 
Velocity: µm/s.
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Our study has its limitations, which we are addressing in the ongoing work. In the current model, we only 
consider the influence of traffic jams on the material concentration but neglect its effect on the deformation of 
neuron geometries. In addition, although IGA offers great advantages in accurately simulating material transport 
control in complex neuron geometries, the computational cost of simulating transport in large-scale neurite 
networks remains very expensive, which limits its biomedical application. To improve the computational effi-
ciency of our model, we will adopt deep learning techniques to build fast and accurate surrogate models50,73. 
Moreover, designing comparable experiments is necessary to verify the active regulation mechanism in our 
model. For instance, the photoactivation technique74,75 can be used to visualize the material transport process 
and extract the velocity or concentration distribution to compare with simulation results. The velocity data from 
experiments can also be used as the pre-defined velocities to provide a more realistic simulation. Regarding the 
control variables in our model, they may have relationship with the distribution of molecular motors that affect 
the transport dynamics on MTs, and thus needs further experimental data for verification. Despite these limita-
tions, our simulation directly shows how the traffic jam is formed in neurons and how neurons could control 
material traffic to avoid traffic jams. The simulation results provide references to further answer the question of 
how neurons deliver the right material to the right destination in a balanced manner in their complex neurite 
networks and how the transport may be affected by disease conditions.

Data availability
The source code for our model and all input data are available for download from a public software repository 
located at https://github.com/CMU-CBML/NeuronTransportOptimization. All data generated during this study 
can be reconstructed by running the source code.
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