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Improved prediction of protein-protein interactions
using AlphaFold2
Patrick Bryant 1,2,3✉, Gabriele Pozzati 1,2,3 & Arne Elofsson 1,2✉

Predicting the structure of interacting protein chains is a fundamental step towards under-

standing protein function. Unfortunately, no computational method can produce accurate

structures of protein complexes. AlphaFold2, has shown unprecedented levels of accuracy in

modelling single chain protein structures. Here, we apply AlphaFold2 for the prediction of

heterodimeric protein complexes. We find that the AlphaFold2 protocol together with opti-

mised multiple sequence alignments, generate models with acceptable quality (DockQ≥ 0.23)

for 63% of the dimers. From the predicted interfaces we create a simple function to predict the

DockQ score which distinguishes acceptable from incorrect models as well as interacting from

non-interacting proteins with state-of-art accuracy. We find that, using the predicted DockQ

scores, we can identify 51% of all interacting pairs at 1% FPR.
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Protein–protein interactions are central mediators in biolo-
gical processes. Most interactions are governed by the
three-dimensional arrangement and the dynamics of the

interacting proteins1. Such interactions vary from being perma-
nent to transient2,3. Some protein–protein interactions are spe-
cific for a pair of proteins, while some proteins are promiscuous
and interact with many partners. This complexity of interactions
is a challenge both for experimental and computational methods.

Often, studies of protein–protein interactions can be divided into
two categories, the identification of what proteins interact and the
identification of how they interact. Although these problems are
distinguished, some methods have been applied to both problems4,5.
Protein docking methodologies refer to how proteins interact and can
be divided into two categories considering proteins as rigid bodies;
those based on an exhaustive search of the docking space6 and those
based on alignments (both sequence and structure) to structural
templates7. Exhaustive approaches rely on generating all possible
configurations between protein structures or models of the
monomers8,9 and selecting the correct docking through a scoring
function, while template-based docking only needs suitable templates
to identify a few likely candidates. However, flexibility has often to be
considered in protein docking to account for interaction-induced
structural rearrangements10,11. Therefore, flexibility limits the accu-
racy achievable by rigid-body docking12, and flexible docking is
traditionally too slow for large-scale applications. A possible com-
promise is represented by semi-flexible docking approaches13 that are
more computationally feasible and can consider flexibility to some
degree during docking.

Regardless of different strategies, docking remains a challen-
ging problem. In the CASP13-CAPRI experiments, human group
predictors achieved up to 50% success rate (SR) for top-ranked
docking solutions14. Alternatively, a recent benchmark study8

reports SRs of different web-servers reaching up to 16% on the
well-known Benchmark 5 dataset15.

Recently, in the CASP14 experiment, AlphaFold2 (AF2)
reached an unprecedented performance level in structure pre-
diction of single-chain proteins16. Thanks to an advanced deep
learning model that efficiently utilises evolutionary and structural
information, this method consistently outperformed all compe-
titors, reaching an average GDT_TS score of 9016. Recently,
RoseTTAFold was developed, trying to implement similar
principles17. Since then, other end-to-end structure predictors
have emerged using different principles such as fast multiple
sequence alignment (MSA) processing in DMPFold218 and lan-
guage model representations19.

As an alternative to other docking methods, it is possible to
utilise co-evolution to predict the interaction between two protein
chains. Initially, direct coupling analysis (DCA) was used to
predict the interaction of bacterial two-component signalling
proteins20,21. Later, these methods were improved using machine
learning22.

In a Fold and Dock approach, two proteins are folded and
docked simultaneously. We recently developed a Fold and Dock
pipeline using another distance prediction method focused on
protein folding (trRosetta23). In this pipeline, the interaction
between two chains from a heterodimeric protein complex and
their structures were predicted using distance and angle con-
straints from trRosetta24,25. This study demonstrated that a
pipeline focused on intra-chain structural feature extraction can
be successfully extended to derive inter-chain features as well.
Still, only 7% of the tested proteins were successfully folded and
docked.

In that study, we found that generating the optimal MSA is
crucial for obtaining accurate Fold and Dock solutions, but this is
not always trivial due to the necessity to identify the exact set of
interacting protein pairs26. Given the existence of multiple

paralogs for most eukaryotic proteins, this is difficult. We also
found that this process requires an optimal MSA depth to opti-
mise inter-chain information extraction. Too deep MSAs might
contain false positives (i.e. protein pairs that interact differently),
resulting in noise masking the sought after co-evolutionary signal,
while too shallow alignments do not provide sufficient co-
evolutionary signals.

In this work, we systematically apply the AF2 pipeline on two
different datasets to Fold and Dock protein–protein pairs
simultaneously. We explore the docking success using the AF2
pipeline in combination with different input MSAs, in order to
study the relationship between the output model quality and
these inputs. We also find that, by scoring multiple models of the
same protein–protein interaction with a predicted DockQ score
(pDockQ), we can distinguish with high confidence acceptable
(DockQ ≥ 0.23) from incorrect models. The modelling success is
higher for bacterial protein pairs, pairs with large interaction
areas consisting of helices or sheets, and many homologous
sequences. We also test the possibility to distinguish interacting
from non-interacting proteins and find that, using pDockQ, we
can separate truly interacting from non-interacting proteins with
consistent accuracy. We find that the results in terms of successful
docking using AF2 are superior to other docking methods. AF2
clearly outperforms a recent state-of-the-art method27 and our
protocol performs quite close to (63% vs 72%) the recently
developed AF-multimer28, which was developed using the same
data as the test set here, making a direct comparison difficult.

Results and discussion
Identifying the best AlphaFold2 model. The SR, i.e., the per-
centage of acceptable models (DockQ > 0.23), is used to measure
AF2 performance over the development set (216 proteins) using
the different MSAs. The best performance is 33.3% for the AF2
MSAs and 39.4% for the AF2+ paired MSAs (Table 1). It is
thereby evident that combining both paired and AF2 MSAs is
superior to using them separately. The average performance of
the AF2 and the paired MSAs is similar, but for individual protein
pairs, frequently one of the two MSAs is superior to the other, as
seen from that the Pearson correlation coefficient for the DockQ
scores between AF2 vs paired MSAs is 0.54 (Supplementary
Table 1). Therefore, combining AF2 and paired MSAs improves
the results.

Next, we compared the default AF2 model (model_1) with the
fine-tuned versions of (model_1_ptm). Surprisingly, the original
AF2 model_1 outperforms AF2 model_1_ptm in most cases
(Table 1). Further, the difference between 10 recycles-one
ensemble and three recycles-eight ensembles is minor across all
MSAs and AF2 models. Therefore, the input information and the
AF2 model appear to impact the outcome the most.

Table 1 Success rate of different modelling setups.

Neural network configuration

NN model model_1 model_1 model_1_ptm model_1_ptm
Recycles 10 3 10 3
Ensembles 1 8 1 8
Setup short name m1-10-1 m1-3-8 mp-10-1 mp-3-8
Paired MSA 28.7 28.2 28.7 27.8
AF2 MSA 31.5 33.3 26.4 23.6
AF2+Paired MSA 39.4 38.4 32.4 31.0

Results of AF2 run on the development set (n= 216) using different MSAs and neural network
configurations. Row labels in bold indicate AF2 setup features. Every column in the table refers
to an overall setup and every corresponding value refers to a run of the described setup with a
different input MSA. Values represent the percentage of acceptable models (DockQ≥ 0.23)
overall the development set. The highest success rates for each MSA type are highlighted
in bold.
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Test set performance. The best model and configuration for AF2
(m1-10-1) was used for further studies on the test set. The best
outcome using this modelling strategy results in an SR of 57.8% (856
out of 1481 correctly modelled complexes) for the AF2+ paired
MSAs compared with 45.0% using the AF2 MSAs alone (Fig. 1,
Table 2). The results using the block diagonalization+paired MSAs
are almost identical (SR= 58.4%, median= 0.363). Further, run-
ning five initialisations with random seeds and ranking the models
using the predicted DockQ score (pDockQ, Fig. 2c), increases the SR
to 61.7% and 62.7% for the AF2+ paired and block diagonalization
+paired MSAs, respectively (model variation and ranking, Fig. 2).
Using the combination of AF2 and paired MSAs increases perfor-
mance, suggesting that AF2 gains both from larger and paired
MSAs, although it often can manage with less information.

What is most striking is that AF2 outperforms all other tested
docking methods by a large margin (Fig. 1, Table 2). RF is better
than AF2 only for 14 pairs in the test set, while GRAMM and
template-based docking (TMdock interface) outperform AF2 for
188 and 225 pairs, respectively. The best performing method in
the CASP14-CAPRI experiment29, MDockPP30, achieves a SR of
only 24.2%. The reason GRAMM, TMdock and MDockPP reach
this level of performance is likely due to the use of the bound
form of the proteins, resulting in very high shape complemen-
tarity and therefore having the “answer” provided in a way.

The recently developed AF-multimer28 has the best perfor-
mance (SR= 72.2%, median= 0.560, Table 2). This method was
trained using the same data as the test set, which makes a direct
comparison difficult. Regardless, we do believe it is likely that
using AF-multimer, the performance would increase over the
results of our pipeline, but it is possible the difference is less than
the observed 9%.

Distinguishing acceptable from incorrect models. It is not only
essential to obtain improved predictions, but also to be able to
discriminate between acceptable and non-acceptable ones. We
measure the separation between correct (DockQ ≥ 0.23) and
incorrect models provided by several metrics using a receiver
operating characteristic (ROC) curve. Different criteria were
examined over the test set, including (i) the number of unique
interacting residues (Cβ atoms from different chains within 8 Å
from each other) in the interface, (ii) the total number of inter-
actions between Cβ atoms in the interface, (iii) the average

plDDT for the interface, (iv) the lowest plDDT of each single-
chain average, and (v) the average plDDT over the whole protein
heterodimer (Fig. 2a). Three criteria result in very similar areas
under the curve (AUC) measures. The total number of interac-
tions between Cβs and the number of residues in the interface can
separate the correct/incorrect models with an AUC of 0.92 and
0.91 respectively, while the average interface plDDT results in an
AUC of 0.88. However, pLDDT results in higher TPRs at lower
FPRs; therefore, we multiply the plDDT with the logarithm of the
interface contacts resulting in an AUC of 0.95.

Interestingly, the average plDDT of the entire complex only
results in an AUC of 0.66, suggesting that both single chains in a
complex are often predicted very well, while their relative
orientation may still be incorrect.

Figure 2b shows that increasing both the number of interface
contacts and the average interface plDDT results in higher
DockQ scores for the test set. Using the combination of plDDT
with the logarithm of the interface contacts, we, therefore, fit a
simple sigmoidal function to the DockQ scores (Fig. 2c), see
methods. This enables the prediction of the DockQ scores

Fig. 1 DockQ scores for the test set (n= 1481 for all but RF, n= 1455). Distribution of DockQ scores as boxplots for different modelling strategies on the
test set. Boxes encompass data quartiles, horizontal lines mark the medians and upper and lower whiskers indicate respectively maximum and minimum
values for each distribution. All AF2 models have been run with the same neural network configuration (m1-10-1). Outlier points are not displayed here.
AF2, refers to running AF2 using the default AF2 MSAs, “Paired” refers to using MSAs paired using information about species and “Block” refers to using
block diagonalization MSAs.

Table 2 Success rate and median DockQ scores for the test
set using different methods and model configurations.

Method Success
rate (%)

Median DockQ

RoseTTAfold 9.6 0.011
GRAMM 21.4 0.027
MDockPP 24.2 0.019
TMdock 33.6 0.040
TMdock interfaces 35.1 0.042
AlphaFold2 45.0 0.120
Paired 49.6 0.217
AlphaFold2+ Paired 57.8 0.382
Block+ Paired 58.4 0.363
AlphaFold2+ Paired
top ranked

61.7 0.436

Block+ Paired top ranked 62.7 0.426
AF-multimer 72.2% 0.560

“Block” refers to block diagonalization MSAs. Results for different docking methods in terms of
success rate and median DockQ scores on the test set. The number of complexes is n= 1481 for
all methods except for RoseTTAfold (n= 1455) and AF-multimer (n= 1458).
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(pDockQ) in a continuous manner with an overall average error
of 0.11 on the test set. The AUC using pDockQ as a separator is
identical to the combination of plDDT with the logarithm of the
interface contacts, 0.95 (Fig. 2a).

Model variation and ranking for the test set. Five models are
generated using the best strategy (m1-10-1 with AF2+ paired
MSAs) with different initialisation (random seeds). The average
SR (57.2% ± 0.0%) is similar for all five runs. However, the
average deviation for individual models is DockQ= 0.08 when
comparing the best and worst models for a target (Fig. 2d), i.e.,
there is some randomness to the success for an individual pair. If
the maximal DockQ score across all models is used, the SR would
be 62.9%. Although this is unachievable, ranking the models
using the pDockQ score results in an SR of 61.7%. The AUC
using the same metric for the ranked test set is 0.93, which means

that 31% of all models are acceptable at an error rate of 1% and
54% at an error rate of 10% (Supplementary Table 2).

Bacterial complexes are predicted more accurately. In the test
set, about 60% of the complexes can be modelled correctly. We
try to identify what distinguishes the successful and unsuccessful
cases by analysing different subsets of the test set. First, we divide
the proteins by taxa, next by interface characteristics and finally
by examining the alignments.

The SRs for each kingdom is; Eukarya 61%, Bacteria 73.7%,
Archaea 84.5%, and Virus 60% (Supplementary Fig. 1b). Further,
the SRs for Saccharomyces cerevisiae is better than for Homo
sapiens (66% vs 58%, Fig. 3d). The higher performance in
prokaryotes is consistent with previous observations regarding
the availability of evolutionary information in prokaryotes
compared to Eukarya27 (Supplementary Fig. 1). The higher

Fig. 2 Model quality metrics and multiple model ranking. a ROC curve as a function of different metrics for the test dataset (n= 1481, first run). Cβs within
8 Å from each other from different chains are used to define the interface. IF_plDDT is the average plDDT of interface residues, min plDDT per chain is the
minimum average plDDT of both chains, average plDDT is the average of the entire complex and IF_contacts and IF_residues are the number of interface
residues and contacts respectively. pDockQ is a sigmoidal fit to the combined metric IF_plDDT⋅log(IF_contacts) fitted to predict DockQ as the target score,
see C. b Average interface plDDT vs the logarithm of the interface contacts coloured by DockQ score on the test set (n= 1481). Increasing both the number
of interface contacts and average interface plDDT results in higher DockQ scores. c Using the combined metric IF_plDDT⋅log(IF_contacts), we fit a sigmoidal
curve towards the DockQ scores on the test set (n= 1481), enabling predicting the DockQ score in a continuous manner (pDockQ). The average error
overall is 0.14 DockQ score. d Impact of different initialisations on the modelling outcome in terms of DockQ score on the test dataset (n= 1481). The
maximal and minimal scores are plotted against the top-ranked models using the pDockQ scores for the AF2+ paired MSAs, m1-10-1.
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performance in S. cerevisiae compared to H. sapiens suggests a
similar relationship between higher and lower order organisms
within the same kingdom.

Next, we examine the interfaces. Different secondary structural
content of the native interfaces is investigated (Fig. 3a). The
highest SR is obtained mainly for helix interfaces (62%), followed
by interfaces containing mainly sheets (59%). The loop interface
SR of 53% is substantially lower than the others, suggesting that
interfaces with more flexible structures are harder to predict. We
divide the dataset by interface size, and find that pairs with larger
interfaces are easier to predict, as the SR increases from 47 to 74%
between the smallest and biggest tertiles (Fig. 3b).

We continue to examine features of the MSAs. First, the impact
of the number of non-redundant sequences (Neff) in both paired
and AF2 MSAs was analysed. It is clear that the fraction of
correctly modelled sequences increases with larger Neff scores
(Fig. 3c). Also, paired MSA Neff (Fig. 3c) has a stronger influence
on the outcome than the Neff of the AF2 MSAs (Supplementary
Fig. 2a). Secondly, the MSA interface signal in the paired MSAs,

measured by the fraction of correct interface contacts using DCA,
was analysed. MSAs with stronger interface signals show higher
SRs, even if the paired MSAs are used in combination with the AF2
MSAs (Supplementary Fig. 3). This suggests that MSA co-
evolutionary signal and, thereby, correct identification of ortholo-
gous protein sequences, has a strong impact on the outcome.

CASP14 and novel proteins without templates. Chains derived
from CASP14 heteromeric targets and chains from PDB com-
plexes with no templates are folded in pairs using the presented
AF2 pipeline (default AF2+ paired MSAs, ten recycles, m1-10-1
and five differently seeded runs).

For the CASP14 chains, four out of six pairs display a DockQ
score larger than 0.23 (SR of 67%). No ranking is necessary in this
case, given that all produced docking models for the same chain
pair are very similar (the average standard deviation is 0.01
between each set of DockQ scores). An interesting unsuccessful
docking is obtained modelling chains from the complex with PDB

Fig. 3 DockQ distributions for test dataset (n= 1481) tertiles. a Distribution of DockQ scores for three sets of interfaces with the majority of Helix, Sheet
and Coil secondary structures. b Distribution of DockQ scores for tertiles derived from the distribution of contact counts in docking model interfaces.
c Distribution of DockQ scores for tertiles derived from the distribution of Paired MSAs Neff scores. d Distribution of DockQ scores for the top three
organisms H. sapiens, S. cerevisiae and E. coli.
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ID 6TMM (Supplementary Fig. 4), which are known to form a
heterotetramer. In this structure, each chain A is in contact with
its partner chain B at two different sites. Both docking
configurations (6TMM_A-B and 6TMM_A-D) put the chain in
between the two binding sites. The other unsuccessful docking
(6VN1_A-H) has an interface of just 19 residue pairs.

The SR for docking the proteins without templates is 50%.
Between the five different initialisations, the average difference in the
DockQ score is 0.03, and there is no deviation in SR, i.e., ranking did
not improve the SR. Two acceptable models are displayed in Fig. 5a
(7EIV_A-C]) and B (7MEZ_A-B). More interesting, in one of the
incorrect models (7NJ0_A-C], Supplementary Fig. 5), the predic-
tions get the location of both chains correct, but their orientations
wrong, resulting in DockQ scores close to 0. For 7EL1_A-E (Fig. 4c),
the shorter chain E is not folded correctly, and instead of folding to a
defined shape, it is stretched out and inserted within chain A. It
occupies the shape of the DNA in the native structure. In the two
remaining incorrect models (7LF7_A-M and 7LF7_B-M), Fig. 4d,
the chains only interact with a short loop of the M chain, making the
docking very difficult and possibly biologically meaningless.

Identifying interacting proteins. Using the best separator from
the model ranking, the pDockQ, it is possible to distinguish the
3989 non-interacting proteins from Escherichia coli and the 1481
truly interacting proteins from the test set with an AUC of 0.87.
Another recently published method obtains AUC 0.76 on this
set27. However, these results are probably overstated since the
negative set only contains bacterial proteins, while the positive set
is mainly eukaryotic.

To obtain a more realistic estimate, we also include a set of
1705 non-interacting proteins from mammalian organisms31

combined with the non-interacting proteins from E. coli. On this
combined set of 1481 interacting and 5694 non-interacting
proteins, we obtain an AUC of 0.82 for the average interface
plDDT and slightly higher (0.84 and 0.85) for the number of
interface contacts and residues, respectively (Fig. 5a). pDockQ

results in an ROC curve with an AUC of 0.87. Importantly,
pDockQ provides a better separation at low FPRs, enabling a TPR
of 51% at FPR of 1% compared to 27%, 18 and 13% for the
interface plDDT, number of interface contacts and residues,
respectively. At FPR 5%, the number of interface contacts and
residues report TPRs of 49 and 42%, respectively, compared to
43% for the average interface plDDT and 66% for pDockQ. The
distribution of the top separators can be seen in Fig. 5b–d.

Limitations. Here, we only consider the structures of protein
complexes in their heterodimeric state, although each protein
chain in these complexes may have homodimer configurations or
other higher-order states. It is also possible that the complex itself
exists as part of larger biological units, in potentially more
complex conformations. Investigating alternative oligomeric
states and larger biological assemblies is outside of the scope of
this analysis and left for future work.

The study of AF2s ability to separate interacting and non-
interacting proteins here contains more extensive data than
recent studies27. However, to test this separation thoroughly, the
data studied here needs to be extended to compare interactions
within individual organisms. We leave this extensive analysis to
further studies.

There is a big difference between the performance of AF2 on
the development and test sets, reporting 39.4% SR vs 57.8% for
the AF2+ Paired MSAs. This discrepancy suggests that the
performance is highly dependent on the specific interacting
partners being predicted. It is not clear what causes this difference
as the composition in terms of kingdom, found to be very
important (Supplementary Fig. 1b) is similar (54% vs 60%
Eukaryotic proteins), the MSAs have similar Neff scores (2699 vs.
2764 on average), the proteins are of similar sizes (222 vs. 203
AAs on average), and the number of residues in the interface is
similar (139 vs 120 on average). This leads us to believe that there
may be some unknown selection bias in how the sets were chosen.
It can be noted that the development is much smaller than the

Fig. 4 Predicted and native structures from the set of novel proteins without templates. The native structures are represented as grey ribbons.
a Docking of 7EIV chains A (blue) and C (green) (DockQ= 0.76). b Docking of 7MEZ chains A (blue) and B (green) (DockQ= 0.53). c Prediction of
structure 7EL1 chains A (blue) and E (green) (DockQ= 0.01). The DNA going through chain A is coloured in orange. d Docking of 7LF7 chains A (blue) and
M (magenta) (DockQ= 0.02) and chains B (green) and M (magenta) (DockQ= 0.02).
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test set though (216 vs 1481 proteins), which is why performance
should be assessed on as large non-redundant datasets as possible.

Findings and future prospects. Here we show that AlphaFold216

(AF2) can predict the structure of many heterodimeric protein
complexes, although it is trained to predict the structure of
individual protein chains. Even using the default settings, it is
clear that AF2 is superior to all other tested docking methods,
including other Fold and Dock methods17,24, methods based on
shape complementarity30,32 and template-based docking. Using
optimised MSAs with AF2, we can accurately predict the struc-
ture of heterodimeric complexes for an unprecedented SR of
62.7% on a large test set. The SR is higher in E.coli (76.4%) than
in H. sapiens or S. cerevisiae (58.1% and 66.2% respectively).

Further, by analysing the predicted interfaces, we can predict
the DockQ score33 (pDockQ) with an average error of 0.1,
resulting in the separation of acceptable and incorrect models
with an AUC of 0.95. This means that 31% of the models can be
called acceptable at a specificity of 99% (or 54% at 90%
specificity). Interestingly, no additional constraints are imple-
mented in AF2 to pull two chains in contact, meaning that chain
interactions (and subsequently interface sizes) are exclusively
determined by the amount of inter-chain signals extracted by the
predictor. Assuming that all residues in an interface contribute to
the interaction energy could explain why larger interfaces are
more likely to be correctly predicted.

We find that the MSA generation process can be sped up
substantially at no performance loss (performance increase of 1%
SR) by simply fusing MSAs from two HHblits34 runs on
Uniclust3035 instead of using the MSAs from AF2. Fast MSA
generation circumvents the main computational bottleneck in the
pipeline. Using pDockQ makes it possible to separate truly
interacting from non-interacting proteins with an AUC of 0.87,
making it possible to identify 51% of interacting proteins at an error
rate of 1%. The pDockQ score discriminates between both model
quality and binary interactions. Therefore, the same pipeline can
identify if two proteins interact and the accuracy of their structure.

Never before has the potential for expanding the known
structural understanding of protein interactions been this large, at
such a small cost. There are currently 64,006 pairwise human
protein interactions in the human reference interactome36. If 31%
of these can be predicted at an error rate of 1%, this results in the
structure of 19,842 human heterodimeric protein structures. The
computational cost to run all of this is ~5 days on an Nvidia
A100 system and has since the development of the pipeline
presented here, deemed FoldDock, been applied37.

Methods
Development set. A set of heterodimeric complexes from Dockground benchmark
438 is used to develop the pipeline, focusing on the AF2 configuration presented here.
This set contains protein pairs, with each chain having at least 50 residues, sharing
<30% sequence identity and no crystal packing artefacts. There are 219 protein
interactions for which both unbound (single-chain) and bound (interacting chains)
structures are available. Unbound chains share at least 97% sequence identity with
the bound counterpart and, to facilitate comparisons, non-matching residues are
deleted and renumbered to become identical to the unbound counterpart. AF2 MSAs
could not be generated for three of the complexes due to memory limitations (1gg2,
2nqd and 2xwb) using a computational node with 128 Gb RAM for the MSA
generation and were thus disregarded, resulting in a total of 216 complexes. The
dataset consists of 54% Eukaryotic proteins, 38% Bacterial and 8% from mixed
kingdoms, e.g., one bacterial protein interacting with one eukaryotic.

Test set. We used 1661 protein complexes with known interfaces from a recent
study27 to test the developed pipeline. Here, three large biological assemblies were
excluded. These complexes share <30% sequence identity, have a resolution
between 1–5 Å and constitute unique pairs of PFAM domains (no single protein
pair have PFAM domains matching that of any other pair). Some structures failed
to be modelled for various reasons (see limitations of data generation), resulting in
a total of 1481 structures. These proteins are mainly from H. sapiens (25%), S.
cerevisiae (10%), E. coli (5%) and other Eukarya (30%).

107 of the complexes in the test set lack beta carbons (Cβs), and 50 have
overlapping PDB codes with the development set and were therefore excluded. In
the MSA generation from AF2, 20 MSAs report MergeMasterSlave errors regarding
discrepancies in the number of match states, resulting in a total of 1484 AF2 MSAs.
When folding, three of these (5AWF_D-5AWF_B, 2ZXE_B-2ZXE_A and
2ZXE_A-2ZXE_G) report “ValueError: Cannot create a tensor proto whose
content is larger than 2GB”, leading to a final set of 1481 complexes. DSSP could
only be run successfully for 1391 out of the 1481 protein complexes, and we
ignored the rest in the analysis.

Fig. 5 Discrimination of interacting (n= 1481) and non-interacting (n= 5694) proteins. a The ROC curve as a function of different metrics for
discriminating between interacting and non-interacting proteins. IF_plDDT is the average plDDT in the interface, min plDDT per chain is the minimum
average plDDT of both chains, average plDDT is the average of the entire complex and IF_contacts and IF_residues are the number of interface residues
and contacts respectively. pDockQ is a sigmoidal fit to this with DockQ as the target score, as described above. b–d Distribution of the top discriminating
features average interface plDDT (b), the number of interface contacts (c), and d the combination of these (IF_plDDT⋅log(IF_contacts)) and the pDockQ
for interacting (non-grey) and non-interacting proteins (grey).
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For RF, 26 complexes produced out of memory exceptions during prediction
using a GPU with 40 Gb RAM and were excluded from the RF analyses, leaving
1455 complexes.

For the mammalian proteins from Negatome, seven out of 1733 single chains
were redundant according to Uniprot (C4ZQ83, I0LJR4, I0LL25, K4CRX6, P62988,
Q8NI70, Q8T3B2), 34 had no matching species in the MSA pairing, 106 produced
out of memory exceptions during prediction using a GPU with 40 Gb RAM, 35
gave a tensor reshape error, and 65 complexes were homodimers, leaving 1715
complexes for this set.

CASP14 set and novel protein complexes. As an additional test set, we used a set
of six heterodimers from the CASP14 experiment. In addition, we extracted eight
novel protein complexes deposited in PDB after 15 June 2021, which produced no
results for at least one chain in each complex when submitted to the HHPRED web
server (version 01-09-2021)39,40, see Supplementary Table 3. We selected this small
set to test the performance on data AF2 is guaranteed not to have seen.

Non-interacting proteins. Two datasets of known non-interacting proteins were
used, one from the same study as the positive test set27. Here, all proteins are from
E. coli. Two methods were used to identify non-interacting proteins, first a set of
proteins with no reported interaction signal in Yeast Two-Hybrid Experiments41

and secondly complexes whose individual proteins were found in different APMS
benchmark complexes42. This dataset contains in total 3989 non-interacting pairs.

The second set contains 1964 unique mammalian protein complexes filtered
against the IntAct43 dataset from Negatome31. This data deemed “the manual
stringent set” contains proteins annotated from the literature with experimental
support describing the lack of protein interaction. Some structures in this dataset
are homodimers (65) and are therefore excluded, resulting in 1705 structures.
Together there are 5694 non-interacting protein complexes.

AlphaFold2 default MSA generation methodology. The input to AlphaFold2
(AF2) consists of several MSAs. We used the AF2 MSA generation16, which builds
three different MSAs generated by searching the Big Fantastic Database44 (BFD)
with HHBlits34 (from hh-suite v.3.0-beta.3 version 14/07/2017) and both MGnify
v.2018_1245 and Uniref90 v.2020_0146 with jackhmmer from HMMER347. The
AF2 MSAs were generated by supplying a concatenated protein sequence of the
entire complex to the AF2 MSA generating pipeline in FASTA format. The
resulting MSAs will thus mainly contain gaps for one of the two query proteins in
each row, as only single chains can obtain hits in the searched databases (Fig. 6).
No trimming or gap removal was performed on these MSAs.

MSA block diagonalization. In addition to the default AF2 MSA, we generated an
additional MSA by simply concatenating diagonally MSAs generated indepen-
dently from each of the two chains. These MSAs were constructed by running
HHblits34 version 3.1.0 against uniclust30_2018_0835 with these options:

hhblits -E 0.001 -all -oa3m -n 2

The concatenation is done by joining side-by-side the two input chains; then
sequences from one MSA are added, aligned to the corresponding input chain.
Each sequence in the MSA is then elongated with gaps (on the right side if it is the
left sequence MSA or the other way around), to reach the length of the two
concatenated input chains. The process is then repeated for the other input chain
MSA to complete the block diagonalization.

Paired MSA generation. In addition to the block diagonalization MSAs, we used a
“paired MSA”, constructed using organism information, where sequences are
matched based on their organism origins4,21,24 (Fig. 6). The rationale behind using
a paired MSA is to identify inter-chain co-evolutionary information. An unpaired
MSA has a limited inter-chain signal since the chains are treated in isolation.

The organism information was, using the OX identifier, extracted from the two
HHblits MSAs48. Next, all hits with more than 90% gaps were removed. From all
remaining hits in the two MSAs, the highest-ranked hit from one organism was
paired with the highest-ranked hit of the interacting chain from the same organism.
Pairing the correct sequences should result in MSAs containing inter-chain co-
evolutionary information27.

Number of effective sequences (Neff). To estimate the information in each
MSA, we clustered sequences at 62% identity, as described in a previous study50.
The number of clusters obtained in this way has been used to indicate a Neff value
for each MSA.

Unaligned FASTA sequences were extracted from the three AF2 default MSAs.
Obtained sequences were processed with the CD-HIT software51 version 4.7
(http://weizhong-lab.ucsd.edu/cd-hit/) using the options:

-c 0.62 -G 0 -n 3 -aS 0.9

We calculated the Neff scores separately for paired and AF2 MSAs.

AlphaFold2. We modelled complexes using AlphaFold216 (AF2) by modifying the
script https://github.com/deepmind/alphafold/blob/main/run_alphafold.py to
insert a chain break of 200 residues—as suggested in the development of
RoseTTAFold17 (RF). During modelling, relaxation was turned off. We note that
performing model relaxation did not increase performance in the AF2 paper16 and
was, therefore, ignored to save computational cost. No templates were used to build
structures, as this would not assess the prediction accuracy of unknown structures
or structures without sufficient matching templates. Further, AF2 has been shown
to perform well for single chains without templates and has reported higher
accuracy than template-based methods even when robust templates are available16.

We supplied four different types of MSAs to AF2: (1) the MSAs generated by
using the default AF2 settings, (2) the top paired MSAs constructed using HHblits,
described above, (3) both alignments together and finally, (4) the top paired and
single-chain MSAs from HHblits to speed up predictions (only for the test set).
AF2 was run with two different network models, AF2 model_1 (used in CASP14)
and AF2 model_1_ptm, for each MSA. The second model, model_1_ptm, is a fine-
tuned version of model_1 that predicts the TMscore52 and alignment errors16. We
ran these two different models by using two different configurations. The
configurations utilise a varying amount of recycles and ensemble structures.
Recycle refers to the number of times iterative refinement is applied by feeding the
intermediate outputs recursively back into the same neural network modules. At
each recycling, the MSAs are resampled, allowing for new information to be passed
through the network. The number of ensembles refers to how many times
information is passed through the neural network before it is averaged16. The two
configurations used are; the CASP14 configuration (three recycles, eight ensembles)
and an increased number of recycles (ten) but only one ensembles.

Since structure prediction with AF2 is a non-deterministic process, we generate
five models initiated with different seeds. To save computational cost, this was only
performed for the best modelling strategy. We rank the five models for each
complex by the number of residues in the interface, giving the best result.

RoseTTAFold. For comparison, the RoseTTAFold (RF) end-to-end version17 was
run using the paired MSAs with the top hits. The RoseTTAFold pipeline for
complex modelling only generates MSAs for bacterial protein complexes, while the
proteins in our test set are mainly Eukaryotic. Therefore, we use the paired
alignments here. We compare RF with AF2 using the same inputs (the paired
MSAs) for both the development and test datasets to provide a more fair com-
parison, as AF2 searches many different databases to obtain as much evolutionary
information as possible when generating its MSAs. To predict the complexes, we
use the “chain break modelling” as suggested in RF (https://github.com/
RosettaCommons/RoseTTAFold/tree/main/example/complex_modeling) using the
following command:

predict_complex.py -i msa.a3m -o complex -Ls chain1_length
chain2_length

No optimisation of the RF protocol was made here.

MDockPP. The docking method MDockPP30 was run through the provided
webserver (https://zougrouptoolkit.missouri.edu/MDockPP/). This docking algo-
rithm is based on fast Fourier transform (FFT). The docking results are assessed
using the “in-house” scoring function ITScorePP.

GRAMM. For comparison, a rigid-body docking method, GRAMM32, was used.
Here, two protein models are docked using a FFT procedure to generate 340,000
docking poses for each complex. The bound structures extracted from complexes in
the test set were used as inputs. This docking generation stage mainly considers the
geometric surface properties of the two interacting structures, allowing minor
clashes to leave some space for conformational flexibility adjustment. As the bound
form of the proteins is used, this should represent an easy case for GRAMM-based
docking, and performance drops significantly when unbound structures or models
are used53. The atom-atom contact energy AACE18 is used to score and rank all
poses, as this has been shown to provide better results than shape-complementarity
alone54.

Template-based docking. For comparison, a template-based docking protocol7

referred to as “TMdock” is also adopted. The adopted template library includes
11756 protein complexes obtained from the Dockground database38 (release 28-10-
2020). Monomers from target complexes are structurally aligned with complexes in
the supplied libraries (depleted of the target structure PDB ID) in order to identify
the best available template structure. The bound form of the template structures
was used. TM scores resulting from the alignment of target proteins to each
template are averaged and used to score obtained docking models. Alternatively, we
refer to “TMdock Interfaces” when targets are structurally aligned only to the
template interfaces, defined as every residue with a Cβ atom closer than 12 Å from
any Cβ atom in the other chain.
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AlphaFold-multimer. The simultaneous fold-and-dock program based on the
same principles as AF2, AlphaFold-multimer28, was run with the default settings.
These entail creating four different MSAs. Three different MSAs are created by
searching Uniref90 v.2020_0146, Uniprot v.2021_0448 and MGnify v.2018_1245

with jackhmmer from HMMER347 and one joint is created by searching the Big
Fantastic Database44 (BFD) and uniclust30_2018_0835 with HHBlits34 (from hh-
suite v.3.0-beta.3 version 14/07/2017).

The results from the Uniprot search are used for MSA pairing and the results
from the remaining searches are used to create a block-diagonalized MSA, similar

to the procedures described above. All four MSAs are then used to fold a protein
complex. Some complexes failed due to computational limitations, resulting in
1458 out of 1481 complexes successfully folded.

Scoring models. The backbone atoms (N, CA and C) were extracted from the
predicted AF2 structures (as these are the only predicted atoms in the end-to-end
version of RF). The interface scoring program DockQ33 was then run (without any
special settings) to compare the predicted and actual interfaces. This program

Fig. 6 Comparison of different MSAs. a Depiction of MSAs generated by AF2 and the paired version matched using organism information. Both AF and
paired representations are sections containing 10% of the sequences aligned in the original MSA. Concatenated chains are separated by a vertical line
(magenta). The visualisations were made using Jalview version 2.11.1.449. b Docking visualisations for PDB ID 5D1M with the model/native chains A in
blue/grey and B in green/magenta using the three different MSAs in (a). The DockQ scores are 0.01, 0.02 and 0.90 for AF2, paired, and AF2+ paired
MSAs, respectively.
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compares interfaces using a combination of three different CAPRI55 quality
measures (Fnat, LRMS, and iRMS) converted to a continuous scale, where an
acceptable model comprises a DockQ score of at least 0.23.

Ranking models. To analyse the ability of AF2 to distinguish correct models as
well as interacting from non-interacting proteins, we analyse the separation
between acceptable and incorrect models as a function of different metrics on the
development set: the number of unique interacting residues (Cβs from different
chains within 8 Å from each other), the total number of interactions between Cβs
from different chains (referred to as the number of interface contacts), average
predicted lDDT (plDDT) score from AF2 for the interface, the minimum of the
average plDDT for both chains and the average plDDT over the whole
heterodimer.

We use these metrics as a threshold to build a confusion matrix, where true/false
positives (TP and FP respectively) are correct/incorrect docking models which places
above the threshold and false/true negatives (FN and TN respectively) are correct/
incorrect docking models which scores below the threshold. From the built confusion
matrix, we derive the true positive rate (TPR), false positive rate (FPR) defined as:

TPR ¼ TP
TPþ FN

ð1Þ

FPR ¼ FP
FPþ TN

ð2Þ
Then, we calculate TPR and FPR for each possible value assumed by the set of

dockings given a single metric and plot TPR as a function of FPR in order to obtain
an ROC curve. We compute the area under curve (AUC) for ROC curves obtained
for each metric to compare different metrics. The AUC is defined as:

AUC ¼
Z 1

x¼0
TPR

1
FPRðxÞ

� �
dx ð3Þ

The TPR and FPR for different thresholds are used to calculate the fraction of
models that can be called correct out of all models and the positive predictive value
(PPV). The fraction of acceptable and incorrect models are obtained by multiplying
the TPR and FPR with the SR. Multiplying the FPR with the SR results in the false
discovery rate (FDR) and the PPV can be calculated by dividing the fraction of
acceptable models by the sum of the acceptable and incorrect models. The PPV,
FDR and SR are defined as:

PPV ¼ TP
TPþ FP

ð4Þ

FDR ¼ 1� PPV ð5Þ

SR ¼ Fraction of predictedmodels withDockQ≥ 0:23 ð6Þ

pDockQ. As it is not only desirable to know when a model is accurate but also how
accurate this model is, we developed a predicted DockQ score, pDockQ. This score
is created by fitting a sigmoidal curve (Fig. 2c) using “curve_fit” from SciPy
v.1.4.156, to the DockQ scores using the average interface plDDT multiplied with
the logarithm of the number of interface contacts, with the following sigmoidal
equation:

pDockQ ¼ L
1þ e�kðx�x0Þ þ b ð7Þ

where

x ¼ average interface plDDT � logðnumber of interface contactsÞ ð8Þ
and we obtain L= 0.724, x0= 152.611, k= 0.052 and b= 0.018.

Analysis of models. To analyse the possibility of determining when AF2 can
model a complex correctly, we analyse the structures and the MSAs. We investi-
gated: the number of effective sequences (Neff), the secondary structure in the
interface annotated using DSSP57, the length of the shortest chain, the number of
residues in the interface and the number of contacts in the interface.

DSSP was run on the entire complexes, and the resulting annotations were
grouped into three categories; helix (3-turn helix (310 helix), 4-turn helix (α helix)
and 5-turn helix (π helix)), sheet (extended strand in parallel or antiparallel β-sheet
conformation and residues in isolated β-bridges) and loop (residues which are not
in any known conformation).

In addition, we assess the PPV of the top N interface DCA signals using the
paired MSAs. Here, N is the number of true interface contacts (Cβs from different
chains within 8 Å from each other). The PPV is therefore the fraction of the top N
DCA signals in the interface that are true contacts. The DCA signals are computed
using GaussDCA58.

Interface PPV ¼ Number of correct contacts among top N interface DCA signals
N

ð9Þ

Computational cost. To compare the computation required for each MSA, we
compared the time it took to generate MSAs for three protein pairs (PDB: 4G4S_P-
O, 5XJL_A-2 and 5XJL_2-M), using either the block diagonalization or AF2 pro-
tocol. The tests were performed on a computer using 16 CPU cores from an Intel
Xeon E5-2690v4.

Fusing the MSAs took 3 s on average per tested complex. It took 7884 s for
generating the AF2 MSAs, the single-chain searches took 338 s on average and the
pairing 2 s. The pairing and fusing are thereby negligible compared to searching,
resulting in a speedup of 24 times for the hhblits searches. In comparison, folding
using the m1-10-1 strategy took 191 s on average for these pairs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data used in this study, including multiple sequence alignments and predicted
PDB files, are available in the figshare from Science for Life laboratory under accession
code 16866202.v1. All other data supporting the findings of this study are available
within the article and its supplementary information files. The results used to produce all
figures can be found in the supplementary information. Additional information and
relevant data will be available from the corresponding author upon reasonable request.

Code availability
All code to run FoldDock and reproduce the analysis here can be obtained here https://
gitlab.com/ElofssonLab/FoldDock (commit 2e4c96aa352338976260ece0646ceaaa75392dec)
under the Apache License, Version 2.0.
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