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ABSTRACT

The inefficiencies and uncertainties surrounding solutions from existing inversion methods have necessitated
investigation for more efficient techniques for the inversion of ill-posed magnetic problems. In this study, the
Social Spider Optimization (SSO) algorithm has been modified, adopted and successfully used in modelling
physical characteristics of magnetic anomalies originating from simple-shaped geologic structures. The study,
aimed at testing the capacity and efficiency of the SSO algorithm to model magnetic data of varying complexity,
was successfully conducted on both synthetic data with varying levels of noise and real field data obtained from
mining fields in Senegal and Egypt. To assess the mathematical nature of the inverse problem considered, error
energy maps were produced for each model parameter pairs in the synthetic examples. These maps enabled the
pre-assessment of the resolvability model parameter for the ill-posed problem. In addition, uncertainty analysis
aimed at providing insight to the reliability of the obtained solutions was carried out using the Metropo-
lis-Hastings (M-H) sampling algorithm. Results show that the procedure converges fast and generates accurate
results even when confronted with constrained multi-parameter non-linear inversion problems. Its outstanding
converging speed and accuracy of the results reveal it as an excellent procedure for overcoming agelong problems
of local optimal solutions associated with pre-existing algorithms. The consistency of the results with actual values
affirms the efficacy of the new procedure which is pioneering in geophysical literature. It is therefore a stable and
efficient tool for performing geophysical data inversion and is therefore recommended for use in inverting
geophysical data with higher complexities like seismic reflection and gravity data, that require many corrections
to be performed before reliable geological interpretations can be made.

1. Introduction

observations at fixed or random positions. The geophysical exploration
methods are many and each method exploits variations in physical

Traditionally, geological modelling focuses mainly on assembling
geological information (ichnography, thin sections, regional geology
maps and lithology logs from drill cuttings) in generating subsurface
models. Models generated from this approach are usually very accurate
and reliable but the process of acquiring these data, particularly in un-
explored fields, is usually laborious, time consuming and expensive.
Hence, the indirect geophysical approach was introduced. Geophysical
data are usually acquired for use in modelling and imaging geologic
structures buried at various depths below the Earth's surface. Data useful
for geophysical modelling of geological structures are usually acquired in
a systematic manner under controlled conditions and the outcome, which
can be presented either in profile or numerical values, represents
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properties of rocks in mapping the dimensions of an anomalous geologic
structure buried at various depths. The properties of such anomalous
structure differ from those of its surrounding environment with respect to
composition, texture and/or source.

Amongst all the conventional geophysical techniques, magnetic
method is the oldest, simplest and most reliable method commonly used
in the search for both hidden ores and structures associated with mineral
deposits (Sharma, 1987). Recently, with the fast rate in which most
known surficial mineral deposits are being depleted, the magnetic
method has gained enormous applications in delineating structural
boundaries beneath sediments economically and in exploring for new
mineral reserves (Ekwok et al, 2020; Shayanfar et al, 2016).
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Figure 1. A simplified flowchart showing main steps used in implementing the SSO algorithm.

Information obtained from the mapping of such structural boundaries
serve as controls in the analysis of frontier sedimentary basin areas
(Ekwok et al., 2019; Rezouki et al., 2020; Ganguli et al., 2020).

The measurable parameters, which include spatial variations in
magnetic field strengths usually generated from field surveys and dips,
are always processed to free the raw field data of the few contributions
from extraneous sources in the best possible ways. The techniques of
processing magnetic data, filtering, display and interpretation have been
advanced with the advent and application of high-speed computers,
artificial intelligence and colour raster graphics. The processed data are
analyzed and interpreted in terms of the depths of burial, geometry and
magnetic properties of the causative bodies. Interpreters have high
confidence level in the geological and structural interpretation of
inverted magnetic data.

Inversion of magnetic data is a stepwise modeling process that seeks
to determine characteristic physical parameters of a buried geologic
structure by assuming their similarities to known and/or pre-defined
models (Kaftan, 2017). The structures of interest in geological explora-
tion usually include spheres, infinitely long cylinders, thin sheets and

geological contacts, and all modelling procedures seek to determine the
parameters that define their latent physical characteristics of depth, po-
sition and shape (amplitude and dip angle) of the observed structure.
Over the years, reports of the application of different techniques in
determining these parameters have been made. These procedures are
united by adept functional exploitation of computational approaches
including Euler deconvolution (Essa et al., 2020; Mota et al., 2020;
Nuamah Daniel and Tandoh Kingsley, 2020), Werner deconvolution
(Ekwok et al., 2019, 2020; Essa et al., 2020), model layering (Pilkington,
2006) and parametric curves (Abdelrahman et al., 2012). Others make
use of fair function minimization procedure and Depth from Extreme
Points (DEXP) (Fedi, 2007; Tlas and Asfahani, 2011), linear least squares
approach (Abo-Ezz and Essa, 2016) and simplex algorithm (Tlas and
Asfahani, 2015). However, practitioners have shown that results ob-
tained from these conventional gradient-based inversion approaches
usually lead to the generation of large numbers of invalid solutions
caused by many factors including noise sensitiveness and poor window
size compatibility (Essa and Elhussein, 2018, 2020). Other causes include
improper filtering of noise from signals of interest (Zhdanov, 2002;
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Figure 2. Theoretically generated noise-free anomaly for (A) Sphere Model (B) Horizontal Cylinder Model (C) Thin Sheet Model.

Table 1. Estimated parameters for the noise-free synthetically generated models.

Table 2. Results of parameter tuning studies.

Type of model Parameters Parameter bounds TRUE Estimated
Sphere K (nT) 5000-30000 15000.0 15000.00

a (%) —90-90 50.0 50.00

d (m) 3-15 8.0 8.00

X, (m) —30-30 0.0 0.00

P 0-5 2.5 2.50
Horizontal cylinder K (nT) 1000-9000 850.0 850.00

a (%) —90-90 40.0 40.99

d (m) 3-15 9.0 9.00

X, (m) —30-30 0.0 0.02

P 0-5 2.0 2.00
Thin sheet K (nT) 100-2000 800.0 800.00

a (%) —90-90 —20.0 —20.00

d (m) 0-30 11.0 11.00

X, (m) —30-30 0.0 0.00

P 0-5 1.0 0.99

Mbonu et al., 2021) and over dependence on initial model parameters
from subjective prior geologic information (Cai and Zhdanov, 2015)
which may not be reliable or sufficiently reputable.

vV RMS (nT)

minimum mean standard deviation
0.4 1.42101 1.50843 0.82688
0.5 0.25584 0.43459 0.15284
0.6 0.15816 0.21358 0.0758
0.7 0.06953 0.06942 3.30718 x 1077
0.8 0.09384 0.09875 1.61454 x 1072
0.9 0.2691 0.43913 0.1648

Several attempts have been made to resolve these challenges without
much success as given by Mosegaard and Tarantola (2002), Scales and
Tenorio (2001) and Snieder (2019) but with rapid improvements in
machine learning and artificial intelligence (Ewees et al., 2017), practi-
tioners have shown that, using the instrumentality of the more recent and
stable evolutionary techniques, these perennial inversion problems are
gradually being overcome. Kaftan (2017) employed genetic algorithm
(GA) for the optimal interpretation of magnetic anomalies caused by
surficial sources, Essa and Elhussein (2018) employed particle swarm
optimization (PSO) technique in interpretating magnetic anomalies
caused by sources with simple geometrically-shaped structures Balkaya
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Figure 3. Error energy maps for sphere model parameter pairs (a) x,-p, (b) a-d, (¢) K-d, (d) a-p, (e) o-K, (f) o-x,, (8) K-%,, (h) K-p, (i) d-x,.

et al. (2017) conducted three dimensional non-linear inversion of mag-
netic anomalies originating from prismatic bodies using differential
evolution algorithm, Srivastava and Agarwal (2010) employed the ant
colony optimization (ACO) technique in inverting the amplitude of a
two-dimensional analytic signal from magnetic anomaly. Go kt i rkler
and Balkaya (2012) employed a combination of three global optimization
techniques (GA, PSO and simulated annealing, SA) to comparatively
assess the accuracy of estimates made from the metaheuristics-based
stochastic methodologies over their gradient-based counterparts. Di
Maio et al. (2016) employed a robust genetic-price algorithm in inverting
self-potential data while Gobashy et al. (2020) utilised the whale opti-
mization algorithm (Mirjalili et al., 2016) in interpreting magnetic
anomalies due to dike-like and vertical fault like/shear structures with
different orientations and geologic features. Other studies involving
metaheuristic procedure include Ben et al. (2021a), Ben et al. (2022) and
Ben et al. (2021c), who adopted the recently introduced manta ray
foraging optimization for the estimation of model parameters due to
shallow and deep-seated structures from potential field data. In addition,
Ekinci and Yijitbas (2015) and Ekinci et al. (2017) studied the prospects
of applying and the effectiveness of the differential evolution (DE)

algorithm in evaluating magnetic anomalies due to both hypothetical and
real-isolated geological bodies. While Ekinci et al. (2015) focused on
residual gravity anomalies, Ekinci et al. (2017) experimented with ana-
lytic signal of magnetic anomalies. Consequent upon the satisfactory
performance of the DE procedure with isolated anomaly cases, Ekinci
et al. (2020) adapted the algorithm for extensive basement relief delin-
eation of the Aegean Graben system. These bioinspired intelligent algo-
rithms, which claim to work by the functional imitation of the normal
behaviour of animals or groups of animals, are more efficient in over-
coming these challenges. The strength of these algorithms is drawn from
the fact that they are conditioned to be zero-order implying that any
performance enhancements made in a direction towards feasible solution
is not related to the derivatives of the function minimized or in some
cases, maximized.

The Social Spider Optimization (SSO) is a population based algorithm
that mimics the cooperative behavioural style of social spiders (Arul
Xavier and Annadurai, 2019; Pradhan et al., 2018). SSO algorithm ex-
ploits the behaviour of both male and female spiders concurrently
searching for space in their operations. The location of each individual
spider (agent) is adjusted with sets of bio-guided evolutionary operators,
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which depend on the gender of the agent, in searching for an optimal
solution that satisfies the objective. As the algorithm mimics individually
categorized traits as against swarm traits, the collective cooperative
colony behavioural results of this personalized characterization is
healthy reductions in critical particle concentration defects that are

commonly observed in several evolutionary algorithm procedures (such
as PSO, GA and ACO (Majumder et al., 2018; Ewees et al., 2017; Klein
et al,, 2016; Sanyi et al., 2009)). Examples of such defects include
exploration-exploitation imbalances and suboptimal solutions from pre-
mature convergences. This computational edge has motivated the suc-
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cessful application of SSO in diverse fields of engineering (Husodo et al.,
2020; Arul Xavier and Annadurai, 2019; Shayanfar et al., 2016), image
processing (Cuevas et al.,, 2018; Bhandari et al., 2018; Akram &
Abd-AlKareem, 2018; Ouadfel and Taleb-Ahmed, 2016) and energy
(Alrashidi et al., 2020; Ewees et al., 2017) amongst others. Records of
applications of SSO procedure in these fields of research, increasingly
promise the algorithm promises to be a meaningful and appropriate
inversion tool for geophysical data inversion. However, to the best of the
authors’ shared knowledge, there has been no reports of its application in
geophysical data inversion. Thus, the novelty of this study lies in the
pioneering application of the SSO in modelling geophysical data.

Therefore, in this paper, we pioneered the application of the SSO
algorithm in the inversion of magnetic data in order to assess the dis-
tribution of magnetic properties over simple geometrical causative
sources. The paper begins with the methodology of magnetic inversion
and social spider optimization technique. The technique is then
demonstrated by applying it to synthetic models corrupted with different
levels of Gaussian noise (0, 10, 20 and 20%) and multi/integrated
anomaly models. Next, the new methodology is applied to two real life
Case studies from mining sites in Senegal and Egypt. The parameter
values obtained are then compared with those obtained from similar
studies conducted using conventional techniques as well as from drilling
information. Furthermore, and to clarify uncertainties in the solutions,
model parameters from the magnetic anomalies were compared with the
results obtained with the Metropolis—Hastings (M—H) sampling algorithm
using the simulated annealing without a cooling scheme. Finally, the
paper is concluded with a brief analysis of the performance and appli-
cability of SSO as a magnetic anomaly inversion tool.

2. Methodology
2.1. Magnetic inversion and two-dimensional anomaly problem

In the field of Geophysics, inversion is commonly achieved through
the transformation of ill-posed problems into optimization scenarios
where model parameters, describing the buried geologic structures, as
long as a good fit with the observed data is attained (Tarantola, 2005).
The inverse solution requires the supposition of an initial model
(Mehanee, 2014; Zhdanov, 2002). A promising initial model could be
made by introducing a priori information from geology, drilling or other
geophysical techniques (Mehanee and Essa, 2015).

Information on the initial model is commonly obtained from geologic,
drilling or previous geophysical data (Sun et al., 2019). The data are
usually subjected to gradual smoothening in a stepwise running iteration
until a subjectively acceptable fit between the estimated and measured
data is obtained. Then, smoothening is done by intelligent
forward-adjustment of the model parameters. For magnetic inversion,
the required model parameters are typically the amplitude coefficients
(K), which is related to the thickness of the body, the depth (d) to the
geologic structure from the surface, coordinate location of the another at
the origin (%,), the shape factor related to the shape of the body and the
angle of magnetization.

2.2. The generalized expression

The generalized expression for a two dimensional magnetic anomaly
along a profile, T (xx, K, d, a, X, p), for simple geometric shapes (equation
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1) was used in this study. Eq. (1) was obtained by Abdelrahman and Essa
(2015) after adding contributions to the total magnetic anomalies from
spherical objects (Rao et al., 1977; Prakasa Rao and Subrahmanyam,
1988), thin sheets (Gay, 1963) and horizontal cylinders (Rao et al.,
1986).

Ad® +B(x,—X,) +C(xk—x0)2

[a-x e " k=1,2,34,..N

T(Xk, K, d, a, x,, p):K

(€Y

where, d denotes depth to the buried body from the surface, N is the
number of data points and K is the amplitude coefficient of the body. x,
represents the coordinate location of the center of the causative anomaly.
A, B and C are defined as shown in Eq. (2) (Essa and Elhussein, 2018)

3sin2a—1 —3dsina 3cos?a—1
2sina —3dcosa —sina

A={ cosa B=< —3dsina C=1<{ 2 cosa
—cosa 2d sin a —cos a
cos a

d —sin a 0

where, o is the angle of effective magnetization. Rao et al. (1973) and
Prakasa Rao and Subrahmanyam (1988) determined the range of a
values for spherical anomalies, while Gay (1963) calculated o values for
thin sheet and horizontal cylinder anomalies. FSD and SHD are first and
second horizontal derivatives, respectively, while p is the shape factor with
values of 1.0, 2.0 and 2.5 for thin sheet, horizontal cylinder and sphere,
respectively (Abdelrahman and Essa, 2015). These five parameters- K, d, a,
Xo, and p, are the model parameters that will be determined in this study
using the SSO procedure. Optimal values of the model parameters that
minimize the differences between the estimated and observed data were
computed using a simple objective function in nT, Eq. (3) (Essa and Elhus-
sein, 2020) as

for spheres (total magnetic field)

for spheres (vertical magnetic field)

for spheres (horizontal magnetic field) 2)
for horizontal cylinders; thin sheets (FHD); geological contacts (SHD), (all fields)

for thin sheets; geological contacts (FHD) (all fields)
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where, T} and Tf (estimated using the SSO procedure) are measured and
estimated magnetic anomalies.

2.3. Social spider optimization

Social Spider Optimization is a heuristic optimization algorithm
introduced by Cuevas et al. (2013). The algorithm operates by mimicking

Figure 8. Convergence curve for Synthetic Anomaly (Sphere, 0% noise).
S

the cooperative behavior of social spiders where both the male and fe-
male spiders work together as search agents. The spiders moves
randomly within the search space in a high-dimensional communal spi-

der web where each spider is touted as a candidate solution (Alrashidi
et al., 2020). The algorithm, designed to use their behavioral pattern in
as follows:

solving the magnetic inversion problem, was implemented in seven steps
Step 1.

First, the male and female population vectors of spiders (rep-
resenting magnetic models or search agents) were randomly initiated in

search space. Each member of this population is taken as a prospective

Figure 7. a: Histogram reconstructions by Metropolis ~Hasting algorithm based on model datasets (Horizontal Sheet Model) with 25% noise — (i) Origin (ii)
Amplitude coefficient (iii) Angle of effective magnetization (iv) depth (v) Shape factor. b: Histogram reconstructions by Metropolis ~Hasting algorithm based on model
datasets (Sphere Model) with 25% noise — (i) Origin (ii) Amplitude coefficient (iii) Angle of effective magnetization (iv) depth (v) Shape factor. c: Histogram re-
constructions by Metropolis —Hasting algorithm based on model datasets (Thin Sheet Model) with 25% noise — (i) Origin (ii) Amplitude coefficient (iii) Angle of
effective magnetization (iv) depth (v) Shape factor.
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Table 3. The best statistical results obtained from the SSO algorithm for the
synthetically-generated models after 30 independent runs.

STATISTICS Sphere Horizontal Thin Sheet
Model Cylinder

RMS (nT) Minimum 0.06953 0.09746 0.04937
Mean 0.06942 0.11647 0.06543
Standard 3. 30718 x 2..4641 x 4.9842 x
Deviation 1077 10°° 108

Total Elapsed Time 62 67 59

(seconds)

solution to our geophysical problem. Considering the fact that the density
of female spiders are usually more than the density of male spiders (about
65-90% of the whole population of the colony), the number of female
spiders, Nf was generated using Eq. (4) (Yu and Li, 2015) as

N = Floor [0.9 —rand x 0.25].N @

where, rand is a random number in the range [0,1] and Floor is a function
that returns the largest integer that is less than or equal to N (the total
number of spiders in the search space). The number of males spiders then
becomes N, = N - N¢. We also assumed that the population denoted as S
contains N elements where, S = F U M such that S = {sq, so,..., sn}), and S

= {s1 =f1, 52 =fo, ..., snf = fnrSNFs1 = M,..., SN = M)

Step 2. Weight, Z; was assigned to all the spiders. This weight defines the
quality of spiders in the population S. Z; was determined from Eq. (5) as
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Q(s; — worst)
Zi=—ot TS 5
best; — worst; )
where, Q is the fitness value of a spider evaluated using the objective
function while worst; and best; corresponds to the worst and best indi-
vidual spiders in the population, respectively. The best; and worst; were
defined by Egs. (6) and (7) as

best; =maxi1.2...n) (Q(Sk)) ©®
WOrsty, =Ming2..... v (Q(Sk)) 2

Step 3. The movement of spiders synonymous with their vibration (VIB
process) is simulated. This procedure was implemented using Eq. (8)
(Husodo et al., 2020; Mirjalili et al., 2016) as

VIB;; =Z; x exp(—D%) (€]

where, D;j is the Euclidian distance between spiders i and j.

Step 4. The position of the models, as denoted by the spiders, was
initialized. The position vector for each spider, f; or m;, is a 5-dimensional
vector populated by the parameters to be optimized (K, d, a, %o, p). The
values of these parameters were randomly generated within the some

predefined upper, B;ligh and lower, B}"W bounds (Egs. (9) and (10))

i‘\’],:B]lA"W—i-rand()A(B]’.‘igh —B}"W) i=1,2,.. Npj=1,2,...n ©
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Figure 9. Noisy and predicted magnetic anomalies of a buried sphere-like geologic structure with actual parameters of K = 15,000 nT, « = 50°, d =8 m, p = 2.5, X, =

0 m with (A) 10% (B) 20% (C) 25% Gaussian noise.
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m,‘jJ:B]’.“WJrrand().(BJ’.'igh 7B]’."W) k=1,2,....Npw:j=1,2,....n (10)

where, n is the number of parameters; (n = 5 in this study).

Step 5. For each iterative session, the co-operative interaction between
individual spiders in the colony was implemented according to the spider
gender using Eq. (11).

f(D,Cl) = Xn:min{HXi—CkH k=1,2, ... k} 11
t=1

where, X; and Ci are the dataset and clustering center vectors, respec-
tively. Since the direction of movement of spiders (towards or away)
from each other depends mainly on neighboring spider's vibration, the
movement was modeled using Eq. (12) (Akram & Abd-AlKareem, 2018;
Ben et al., 2021b; Bhandari et al., 2018) as

f(k+1)

i

where, o, , 8 and r are random numbers within the range of 0 and 1, k is
the total number of maximum iterations, TV is the threshold value
otherwise known as the probability factor, and s. and s}, are the nearest
best spider to spider i, and the best spider in the entire population S,
respectively.

Step 6. The co-operative behavior of male spiders was defined. In
natural spider colonies, males are categorized into dominant and non-
dominant males. The dominant males characterized by high fitness
values usually stand better chances of attracting female partners, while
the non-dominant ones, rather tend to gather in male population centers
to exploit leftovers or resources lost by the dominant ones. These be-
haviours were simulated using Eq. (13) (Husodo et al., 2020; Mirjalili
et al., 2016; Pradhan et al., 2018) as

S @ VB (se =) + B VB (s =) + 0 '(rand() - %) =

(12)

J VIBLC.(SC —f,—”‘)) 1B VIBLb.(sb 712-(")) 45 .(rand() - %) > TV

10
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population.

where, S¢ is the nearest female spider to male spider i and the term

\Nm
(thl i (K)-Wa

> represents the mean value of the male spiders M in the

Step 7. We proceeded to select best spiders to represent the offspring gen-
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eration, as part of the model's evolution to solution. Within a certain radius,
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their parents. If new spiders have better quality than their parents, then the
new spiders were adopted and their parents were discarded.

computed from Eq. (14) (Klein et al., 2016), mating between dominant male
and female spiders was allowed in order to produce next generation of
stronger spiders. The fitness values of the new generation of dominant spiders
produced from the mating process were assessed and compared with those of

r=

where, n represents the problem dimension, and p

12

S (p}"“’" - p,’-"w)
2.n

high

;¢ and pjl"w
upper and lower bounds, respectively. In this study, the ranges of the

1000
Figure 14. a: Convergence curve for Synthetic Anomaly (Horizontal Cylinder, 10% noise). b: Convergence curve for Synthetic Anomaly (Thin Sheet, 20% noise). c:
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Table 4. Adopted ranges of model parameters and their numerical results for the
synthetic multimodal anomaly case.

Model Parameter Range selected Results
Anomaly 1

K (nT) 5000-15000 704.23
a(®) —90-90 44.83
d (m) 1-15 8.25
X, (m) —30-30 —3.04
p -3-5 2.03
Anomaly 2

K (nT) 5000-15000 10800.00
a(®) —90-90 31.01
d (m) 1-20 10.97
X, (m) 0-50 43.05
p -3-5 2.47

upper and lower bounds for each of the parameters were selected based
on subjective deductions from prior geological or geophysical informa-
tion. Examples of these deductions are those giving insights as to what
geologic materials are commonly found in the region, the range of depth
that they are usually found and the regional/local tectonic history of the
region - that may give insights as to the angle of dip of the buried
structure).
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At the end of every successive iteration, the quality of results obtained
in that particular stage was evaluated by calculating the misfit between
the estimated and measured parameters from Eq. (15), which is basically
the root mean square error of the inversion process.

S (17 + 1))
S

Figure 1 shows a simplified flowchart showing the steps used in
implementing the SSO optimization process.

(15)

2.4. Uncertainty analysis

Since the geophysical inverse problems are mostly illposed, non-
unique, and nonlinear, a wide range of Earth models from obtainable
different sets of parameters can concurrently adapt to measurement data.
A Bayesian methodology, which focuses on estimating conditional
probabilities, can be used to approximate model parameters reflecting
random changes. By combining the probability of observed data with
background understanding, the method allows previous distribution of
the so-called parameters to be achieved. Correct sampling has been
achieved using the Markov chain-monte carlo algorithm with global
optimization algorithms such as GA, SA, and PSO (Alvarez et al., 2008;
Fernandez Martinez et al., 2010; Mosegaard and Tarantola, 1995; Sen
and Stoffa, 2013). For analysis in this study, the Metropolis-Hasting



U.C. Ben et al.

Heliyon 8 (2022) e09027

MODEL 1

1251 K=704.23 K=10800.00
a=4483 a=31.01

1001 d=8.25 d=10.97
p=203 p=247

—4— Multimodel Anomaly
—+— Estimated Anomaly

RMS error = 4.83

Magnetic Field Anomaly (nT)

2.5

-5.0 4

-100 =50

0 50 100

Horizontal Distance (m)

Figure 16. Synthetic and predicted magnetic anomalies from a multimodel source consisting of a sphere model with actual model parameters of K = 11,000 nT, d =
11 m, a = 30° p = 2.5, X, = 0 m, and profile length = 120 m and horizontal cylinder actual model parameters of K = 700 nT, d = 9 m, a = 40°, p = 2, X, = 40 m and

profile length of 120 m.

200 A
+ Observed Anomaly
—6— Calculated Anomaly
. 10071 RMserror = 4.37nT _g@°
= v
v -
[ 0 | —0e00ees
¥ +F v
>
©
£
g —100 A
<
o
L
‘: —200 A
> Model Parameters
S K = 453666.37 nT
© ]
= 73007 o =20.020
d=11.11 km
—-4004 p =250
Xg =-7.13km
=30 =20

-10 0

Horizontal Distance (km?)

Figure 17. Magnetic inversion of the West Coast Senegal magnetic anomaly obtained using SSO procedure.

sampling algorithm (M-H) was adopted for model parameter sam-
pling. The M-H algorithm which was originally introduced by
Metropolis et al. (1953); then generalized by Hastings (1970) prin-
cipally suggests different but related models using previous related
outputs of the distribution. In all cases, the probability was deter-
mined for each new model by resolving the forward problem and
calculating the misfit in the data. If the likelihood increases, the new

14

model was deemed suitable. Furthermore, even though the likelihood
decreased, the current model was still adopted, howbeit with a
probability based on the likelihood ratio between the original model
and the one suggested.

The algorithm, which is based on simulated annealing without cool-
ing (Alvarez et al., 2008), allows for uncertainty assessment by pre-
senting confidence intervals based on parameters.
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Table 5. Model parameters obtained from the inversion of magnetic anomaly
from the West Coast of Senegal using SSO procedure.

Model parameters Selected ranges Results RMS error (nT)
K (nT) 100000-700000 453666.37 4.37

o (®) —90-90 20.02

d (m) 5-20 11.11

X, (m) —20-10 -7.13

) 0-3 2.50

2.5. Algorithm configuration/processing time

The code used in implementing the SSO algorithm was configured in
PYTHON using the virtual studio algorithm compiler. It was installed on
a simple desktop PC running on windows 10 with Core i5 processor. The
duration of compilation depends on the complexity of the model struc-
ture. For simple models, the iteration process terminated within 1-2 min.
However, there was an increase in processing time (up to 20%) for multi-
model cases.

3. Synthetic examples

The SSO algorithm's dependability and reliability were investigated
by subjecting it to a series of credibility tests using both simulated noise-
free models (thin-sheet, horizontal cylinder, and sphere) and later,
intentionally induced noisy models.

Most nature-inspired global optimization algorithms have their own
control parameters that heavily influence the algorithm's convergence
point during inversion. These parameters are critical for any algorithm's
overall efficiency (Peksen et al., 2014; Ekinci et al., 2016, 2017). Their
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selection, however, is largely determined by the essence of the consid-
ered problem (Balkaya et al., 2017). As a result, prior to inversion, model
parameters tunings were carried out to choose the best control parame-
ters for the algorithm. A synthetic magnetic anomaly dataset was theo-
retically developed for a spherical model (Figure 2A) using Eq. (1) with K
=15000nT,d =8 m, p = 2.5, = 50° x, = 0 m, and profile length of 100
m for proper guidance during the tuning studies. The parameter tuning
analyses were primarily concerned with determining the best values for
the likelihood factor — TV — and the spider population — N in the search
space. For the model parameters, large search spaces (Table 1) were used.
This was to help in the investigation of the impact of TV on the final
solution. Thirty independent runs were carried out with N = 150 and
1000 iterations for optimization. N was calculated by multiplying the
number of independent runs (30) by the number of unknown model
parameters (5). The magnetic anomaly problem was then statistically
evaluated using the minimum, mean, and standard deviation of RMS
values obtained from several independent runs. Table 2 displays the re-
sults obtained by using different TV values after 30 runs. The table shows
that using a TV value of 0.7 yielded the most optimal statistical outcomes
(bold face). This means that if 0.7 is used as the probability factor for the
magnetic data, the optimization process will be more stable and efficient.
Consequently, 0.7 was adopted as the best PV for the optimization
problem.

Furthermore, prediction error maps were created to aid in decipher-
ing the resolvability and improving understanding of the relationship
between the different model parameter pairs. To carry out this proced-
ure, unused parameter values were set to their real values, and with the
true parameter as the mean, parameter spaces with relatively small
ranges between the minimum and maximum values were used to observe
how the error surfaces circumvent the global minima. The limits of the
horizontal and vertical axis were set to be equal to the search space
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Figure 18. Convergence plot for the West Coast of Senegal magnetic field anomaly case study.

Table 6. Comparative results for the West Coast of Senegal anomaly (case study 1).

Model parameters Nettleton (1976) Prakasa Rao and Subrahmanyam (1988) Abdelrahman et al. (2007) Mehanee et al. (2020) Present Study
K (nT) 310,795.00 461,865.90 453,666.37
a® 20.00 19.50 18.50 16.00 20.02

d (m) 10.00 10.80 11.62 10.00 11.11

p 2.50 2.50 2.50 2.50 2.50
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Figure 20. Magnetic anomaly of Hamrawein field, Egypt inverted using the SSO procedure.

boundaries of each parameter. White crosses show the true solutions
(Figure 3). These maps show the possible positions of the model
parameter solutions inside the lowest error area surrounded by the
minimum contour value. It is worth noting that the shapes of these lowest

16

error areas are major indications providing insight into the resolvability
of each parameter. Figure 3 (a,b,e,g, and h) depicts near-circular contour
lines encircling the lowest error surfaces for some parameter pairs. This
behaviour explicitly shows that the associated model parameter is
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Table 7. Numerical results for the Hamrawein magnetic field anomaly (case
study 2).

Model parameters Selected ranges Results
Anomaly 1

K (nT) 50000-150000 99784.10
o (%) 0-90 68.21

d (m) 100-800 491.71
X, (m) 1000-1000 4416.84
p 0-3 0.77
Anomaly 2

K (nT) 10000-80000 57302.68
a(®) 0-90 54.06

d (m) 100-800 414.69
X, (m) 5000-20000 14900.32
p 0-3 0.91

unrelated to the others and can thus be resolved independently. The
elliptical surface contours that sloping towards one of the parameter axes
(Figure 3 ¢, f and i) indicate positive or negative correlations and inter-
pretatively reveal dependency relationship between the parameters. This

Heliyon 8 (2022) e09027

relationship means that reliable estimation of one parameter is depen-
dent on accurate estimation of others. In cases where there is a positive
association between any two pairs of model parameters, a change in the
value of one parameter can cause a proportional change in the value of
the other parameter for appropriate estimations. The parameter solu-
tions' dependencies are shown by the sloping (unclosed) contours
(Figure 3d and h). According to Ekinci et al. (2020), unclosed contour
behaviors are typically distinguished by complicated optimization due to
the presence of identical solutions with the same error values in the
narrow valley topography. In the Case of the present parameter estima-
tion study, no major difficulties were found because the topography of
constructed error energy maps did not include cases of parallel contours.
Because of the similarity in the construction of numerical representations
of cylinders and thin sheets with the sphere model, error plots for these
three cases were observed to show very similar features; thus, the plots
for the first two are not replicated here for brevity.

3.1. Noise-free models

The SSO method was used to model noise-free (synthetic) magnetic
anomalies caused by basic geometrical shapes. The models are as follows:
a spherical model with K = 15000 nT,d = 8 m, p = 2.5, = 50% x, = 0 m
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Figure 21. Convergence plot for the Hamrawein magnetic field anomaly case study.

Table 8. Comparative results for the Hamrawein, Egypt magnetic field anomaly (case study 2).

Model parameters Salem et al. (2005) Salem (2005) Salem (2011)

Essa and Elhussein (2018)

Mehanee et al. (2020) Present study
Anomaly 1
K (nT) - - 127595.3 507.64 102046.00 99784.10
d (m) 555.7 540.0 486.5 623.05 480.00 491.71
X, (m) 4526.0 4530.0 - 4255.98 4550.00 4416.84
a(®) - 21.4 - - 70.49 68.21
p 1.4 - 1.0 0.89 1.00 0.94
Anomaly 2
K (nT) - - 83746.7 427.38 56549.52 57302.7
d (m) 441.2 477.0 440.4 494.14 400.00 414.69
X, (m) 14858.0 14850.0 - 14823.96 15200.00 14900.3
a(® - - - 37.21 55.04 54.06
p 1.2 1.2 1.0 0.93 1.00 0.91

17
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and a profile length of 100 m; a horizontal cylinder with K = 4000 nT,
d=7m, =40°%p =2, x, =0 m and a profile length of 240 m; and a thin
sheet with K =, x, = 0 m and profile length of 90 m Eq. (1) was used to
calculate the magnetic field anomalies caused by these geometrical
shaped anomalies (Figure 2).

The search space was seeded with 150 initial models/vector spiders
and a diverse set of parameter boundaries. K values for spherical de-
viations were set to be between 5,000 and 30,000 nT, d between 3 and 15
m, « between -90° to 90°, p between 0.5 and 3.5, and x, between - 30 and
30 m. K values for the horizontal cylinder model range from 1,000 to
9,000 nT, d from 3 to 15 m, -90° to 90°, p from 0 to 5, and x, from -30 to
30 m. Lastly, in the thin sheet model, K values were varied between 100
and 2000 nT, d between 0 and 30 m, -90° to 90°, p between 0 and 5, and
x0 between -30 and 30 m. Each algorithm was allowed to run a total of
1000 repeated iterations (Figures 4,5,6,7, 8). The observed values for the
five model parameters (K, d, p, X,) were found to be in close alignment
with their known values (Tables 1 and 3). Furthermore, a careful ex-
amination of the histogram reconstructed using the M-H algorithm's
uncertainty appraisal technique (Figures 4a, 5a, 6a, 7a) reveals that our
solutions fall within very reasonable confidence intervals.

3.2. Noisy models

To simulate subsurface conditions in non-ideal geologic scenarios, the
synthetic anomalies of the three forward models were deliberately
contaminated with normally distributed and zero-meaned pseudo-random
numbers with standard deviation of +2 nT. Each noise level (10, 20 and
25%) was obtained independently by scaling the synthetic noise-free
magnetic anomaly. The authors employed the SCILAB PYTHON library
to achieve this. The purpose of embedding these varying levels of noise in
the noise-free anomaly was to monitor/assess the performance of SSO al-
gorithm in the presence of noise due to the host rock or intercalating
geologic materials. The noise percentage was computed using Eq. (16).

I To =T

16
T ] (16

Percentage of Noise =

where, T and T, are vectors of the noise-free and noisy anomalies,
respectively.

The SSO algorithm was again used in estimating the model parame-
ters using the objective function (equation 2). In all cases, the upper and
lower bounds of the model parameters were consistent with those listed
in Section 3.1. After every successive iteration, the convergence and level
of misfit were carefully analyzed. At the end of the execution of the SSO
algorithm, the difference between the estimated and actual model pa-
rameters were observed to be insignificant (Figures 9 and 10). After
converging (Figures 11, 12, 13, and 14), the level of misfit at the end of
each successive run, as measured using the RMS error technique, in-
creases marginally with increase in noise level. However, this slight in-
crease did not affect the integrity of the inversion process as the
estimated results of the model parameters (K, d, o, p, X,) remain
consistent even up to the high noise level of 25% (Table 3). More too, the
RMS error values (Figures 9, 10, 15) are found to be well-matched to the
STD at all levels of artificially added noise content. These observations
uniquely capture the capacity of the SSO algorithm to suppress noise,
thereby affirming its stability and efficiency for optimal inversion of
magnetic anomalies. Their higher convergence speed and accuracy mark
them out as better tools for overcoming problems of local optimal solu-
tions associated with other procedures like the quasi-Newton method and
Levenberg- Marquardt method (Sanyi et al., 2009). The observed histo-
gram construction of model parameters for all cases of the executed noisy
models is displayed in Figures 11, 12, and 13. Careful consideration of
each of the observed histograms by the Metropolis-Hasting sampler
(Figures 4b-c, 5b-c, 6b-c, 7b-c) indicates that sampling operation
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performed by SSO is very effective as the actual parameter values esti-
mated by the algorithm are all within the high probability areas.

4. Application in modelling a multi-model case

The capacity of the SSO algorithm to satisfactorily model anomalies
in complicated subsurface conditions like those caused by interfering
subsurface structures was tested. This was implemented by generating
and modelling synthetic data from multiple sources in close proximity
and with multifarious model parameters. The actual model parameters
from a spherical source were K = 10,000 nT, d = 6 m, a = 30°, p = 2.5, X,
= 0 m, and profile length of 120 m, while those of a horizontal cylinder
had actual model parameters of K=850nT,d =9m,a=40%p=2,%, =
40 m, and profile length of 120 m. The magnetic field anomaly modelled
using the parameter ranges on Table 4 for this scenario is shown in
Figure 16. The observed model parameters are in very good agreement
with actual parameters obtained from other methods.

5. Field examples

The performance of the SSO algorithm was again tested with actual
field data from ore and mineral exploration sites in order to assess its
capacity to perform in such scenarios. The two field data sets were ob-
tained from North and West Africa. The observed model parameters from
these two fields were compared with results obtained from other pro-
cedures reported in literature and discussed.

Case study 1: The West Coast of Senegal Magnetic anomaly.

Figure 17 shows a north-south representation of a total magnetic
anomaly profile from an exploration field on the West Coast of Senegal in
West Africa. The causative geological body was modelled and identified by
Nettleton (1976) to be a massive intrusive body within the host basement
rocks. The zero crossing and the base line of the profile are as reported in
Nettleton (1976) and Rao et al. (1977). The causative anomaly is char-
acterized by a broad positive anomaly and a sharp negative anomaly on
the south and north sides, respectively. For the purpose of this study, the
40 km long anomaly was digitized at 1 km interval.

The ranges of parameter used in the inversion exercise are shown on
Table 5. The SSO algorithm was used to determine the model parameters
(depth, magnetic angle, amplitude coefficient, anomaly origin and shape
factor) of this intrusive body. The RMS error technique was used in
monitoring the misfit between the measured and those computed from
the SSO procedure. The algorithm converges after 120 iterations
(Figure 18) with RMS error of 4.37 nT. The modelled curve (Figure 17)
and observed model parameters agree with actual model parameters
(Table 5). The results show that the causative anomaly is spherically
shaped with best-fitting model parameters of K = 453,666.37 nT, a =
20.02° and d = 11.11 km. These results are consistent (Table 6) with
existing information about this same anomaly that are present in relevant
literature (Nettleton, 1976; Prakasa Rao and Subrahmanyam, 1988;
Abdelrahman et al., 2007; Mehanee et al., 2020).

Case study 2: The Hamrawein magnetic field anomaly.

The Hamrawein field is located at the western corridor bordering the
Red Sea in Egypt, North Africa. In terms of oregeny, the area is an integral
part of the Rift Valley System, RVS. The RVS is reported to have been
formed by the anticlockwise rotation of the Arabian Tectonic Plate from
the African Plate with the pole of rotation centred in the Central to
Southcentral Mediterranean Sea (Noweir and Fheel, 2015). The region is
characterized by meta-volcanic rocks notably pillow tholeitic basalts
formed on ultramafic and gabbroic layers of substrata. These layers of
strata are unconformably overlain by calcalkaline volcanic rocks and
sedimentary rocks. Exhaustive details of the geology of the Hamrawein
field are discussed in (Salem et al. (2005)).

The 15 km magnetic anomaly profile was extracted from a high res-
olution aeromagnetic data originally acquired by Salem et al. (1999)
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(Figure 19). The data was digitized at 200 m interval and used for this
study. The profile is characterized by two prominent anomalies at both
ends (Figure 20). The anomaly is peculiar because the source of the two
anomalies can be rightly or otherwise, interpreted to be from any of the
simple shaped sources. The technical problem was resolved by running
the SSO algorithm in a dual-combinable shape mode. The parameter
ranges used in modelling this anomaly are shown on Table 7. At the end
of the execution, the algorithm converges after 440 iterations
(Figure 21). RMS error of 10.79 was obtained between the estimated and
actual model parameters. The causative anomalies have p values of 0.77
and 0.91 for anomalies 1 and 2, respectively (Figure 20). These obser-
vations reveal that the causative anomaly is a thin sheet-like structure.
The optimal model parameters were observed to be K = 99784.10 nT,
d=491.71 m, a = 68.21° and x, = 4416.84 m for the first anomaly while
best fit model parameters for the second anomaly were observed to be K
=57302.68nT, d = 414.69 m, « = 54.06° and X, = 14900.32 m (Table 7,
Figure 20).

Table 8 shows a comparison between the results obtained from SSO
procedure and those obtained from other procedures published in liter-
ature. While Salem et al. (2005) interpreted the two Hamrawein Field
anomalies as thin sheet structures located at depth of 555.7 and 441.2 m,
Salem (2005) computed a similar shaped anomaly but reported depths of
540 and 447 m respectively for the first and second anomalies. Salem
(2011) interpreted the Hamrawein Magnetic anomaly using both total
gradient (TG) and local wave number (LW) methods. With the LG
method, the anomaly sources were interpreted to be buried at depths of
486.5 and 440.4 m, while results from the LW technique show that the
causative bodies are buried at depths of 432.6 and 422.8 m for the two
anomalies. Essa and Elhussein (2018) used swarm intelligence in
modelling this same data. They described the causative bodies of the
anomalies to be thin sheets buried at depths of 623.05 and 494.14 m.
Thus, the findings of this study obtained using the SSO procedure are in
good agreement with reports obtained from previous studies.

6. Conclusion

The deployment of metaheuristic algorithms for the resolution of
complex ill-posed geophysical problems is not new. In fact, these tech-
niques have been found to be more decisive in exploring/exploiting
potential solution-leading positions than their numerical counterparts.
Nevertheless, even though there have been immense improvements in
terms of problem resolution, some of these techniques employing meta-
heuristics procedures are still disarranged by flaws attributed notably to
mirage-convergence, local optima, etc. These flaws, which have been
found to reduce accuracy in geophysical parameter estimations, arise
mostly from the way individual vectors characterizing the algorithm are
strategized. In this study, the capacity and efficiency of the Social Spider
Optimization algorithm in modelling distinctive body parameters (K, d,
®, Xo, p) of magnetic anomalies from simple geometrically-shaped
(spheres, horizontal cylinders and thin sheets) causative geologic struc-
tures was investigated. Unlike previously studied heuristic algorithms
where individual positions are either modified by the best-positioned
individual or in some cases, a random individual concentrating popula-
tion around a single particle vector (best particle); with the SSO algo-
rithm, each individual is modelled based on their gender. This strategy
promotes de-individualization of the best positioned agent allowing for
the incorporation of computational mechanisms to curb/reduce the
critical flaws aforementioned. The tests which were conducted on both
synthetic and real (from Senegal and Egypt) magnetic anomalies with
varying noise levels, were very successful. Success was based on model
stability and measured for efficient performance. This includes fast and
generated results for constrained multi-parameter linear problems.

The SSO procedure thereby exhibited both the fast convergence and
solution accuracy. More too, uncertainty analysis conducted using the M-
H sampling algorithm showed placed the geophysical parameters esti-
mated within impressively high probability areas. These features imply a
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competitive processing tool, one that could easily be superior to pre-
existing algorithms that are also challenged by local optima problems.
Stable and efficient tool for performing geophysical data inversion.

The SSO procedure is therefore recommended for use in inverting
geophysical data with higher complexities like seismic reflection and
gravity data that require many corrections to be performed before reli-
able geological interpretations can be made. As recommendations; it is
suggested that in the Case of fracture characterization from seismic data,
SSO can be used to estimate Thomsen-type anisometric parameters
which is widely known to define the physical characteristics of fracture
networks. The algorithm can also be used to estimate velocity macro-
model parameters which consist of travel-times, position and slopes of
reflected events. For reservoir characterization, SSO can be used inte-
grally with well-log data for estimation of seismic-lithologic parameters
i.e porosity and permeability and acoustic impedance. For earthquake
studies, optimization techniques such as Artificial Neural Network (ANN)
and PSO have already been employed for the estimation of earthquake
source parameters such as seismic moment and stress drop from con-
ventional models (e.g. Model of Brune). Considering the gains of our new
optimization strategy as explained in this article, SSO can comparatively
improve on the process of estimating these parameters. For gravity, SSO
can be adapted for the estimation of structural model parameters
describing the location (such as depth origin and inclination), shape and
character (such as density and amplitude) of buried features directly from
gravity field data.
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