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Fructosamine is a measure of short-term glycemic con-
trol, which has been suggested as a useful complement
to glycated hemoglobin (HbA1c) for the diagnosis and
monitoring of diabetes. To date, a single genome-wide
association study (GWAS) including 8,951 U.S. White
and 2,712 U.S. Black individuals without a diabetes diag-
nosis has been published. Results in Whites and Blacks
yielded different association loci, near RCN3 and CNTN5,
respectively. In this study, we performed a GWAS on
20,731 European-ancestry blood donors and meta-ana-
lyzed our resultswith previous data fromU.S.White partici-
pants from the Atherosclerosis Risk in Communities (ARIC)
study (Nmeta = 29,685). We identified a novel association
near GCK (rs3757840, bmeta = 0.0062; minor allele fre-
quency [MAF] = 0.49; Pmeta = 3.66 × 1028) and confirmed
the association near RCN3 (rs113886122, bmeta = 0.0134;
MAF = 0.17; Pmeta = 5.71 × 10218). Colocalization analysis
with whole-blood expression quantitative trait loci data
suggested FCGRT as the effector transcript at the RCN3
locus.We further showed that fructosamine has lowherita-
bility (h2 = 7.7%), has no significant genetic correlation
with HbA1c and other glycemic traits in individuals without

a diabetes diagnosis (P > 0.05), but has evidence of shared
genetic etiology with some anthropometric traits
(Bonferroni-corrected P < 0.0012). Our results broaden
knowledge of the genetic architecture of fructosamine
and prioritize FCGRT for downstream functional studies
at the establishedRCN3 locus.

Fructosamine is a measure of total glycated proteins in
serum. Since the most abundant serum protein is albumin,
fructosamine predominately reflects glycation of albumin
(1). In contrast to glycated hemoglobin (HbA1c), which
reflects average glycemia during the preceding 3 months,
fructosamine measures short-term glycemic control (from 2
to 3 weeks), reflecting the shorter turnover time of serum
proteins (1). As it is independent of hemoglobin, fructos-
amine levels are not affected by red cell turnover or charac-
teristics of hemoglobin, making it a viable alternative to
HbA1c to monitor glycemic control in the presence of ane-
mia or a hemoglobinopathy (1). Another important differ-
ence is that whereas fructosamine reflects levels of
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extracellular glucose, HbA1c is a measure of intracellular gly-
cation. Determinants of these two measurements may
reflect differences in glycation in the two different environ-
ments (2). Despite its potential advantages and its associa-
tion with diabetes incidence, retinopathy, and chronic
kidney disease (CKD), independently of baseline fasting glu-
cose (FG) and HbA1c (1,3), fructosamine has not been widely
used as a measure of glucose control (4).

To date, a single study has examined the single nucleo-
tide polymorphism–based heritability of fructosamine,
yielding an h2 estimate of �13% (5). A fructosamine
genome-wide association study (GWAS) performed on
8,951 U.S. White individuals (Ndiscovery = 7,647) and
2,712 Black individuals (Ndiscovery = 2,104) without a dia-
betes diagnosis found an association in Whites near
RCN3 (rs34459162, Pdiscovery =5.3 × 10�9) and an associa-
tion near CNTN5 (rs2438321, Pdiscovery = 6.2 × 10�9) in
Blacks but neither variant replicated in additional samples
(Nreplication = 1,304 and Nreplication = 608, respectively).
This study also demonstrated that, despite some evidence
(P < 2.7 × 10�4) of association with three established FG
and/or HbA1c loci (TCF7L2, GCK, and SLC2A2), there was
no significant (P > 0.05) genetic correlation of fructos-
amine with FG or HbA1c.

In this study, we aimed to gain further insight into the
genetic architecture of fructosamine by performing a
GWAS in 20,731 European-ancestry blood donors from
the INTERVAL cohort (6). To increase power for novel
locus discovery, we combined our results with association
statistics from U.S. White participants from the study by
Loomis et al. (7) in a meta-analysis (Nmeta = 29,685).
Lastly, we explored the heritability of the trait and its
genetic relationship with other glycemic and nonglycemic
traits to establish the degree of shared genetic influences.

RESEARCH DESIGN AND METHODS

We conducted a GWAS for fructosamine using the
INTERVAL cohort (6) and then meta-analyzed our results
with those of U.S. White participants from the previously
published Atherosclerosis Risk in Communities (ARIC)
Study (7). The INTERVAL cohort consists of 47,394 blood
donors in the U.K. (6). The ARIC Study consists of 15,792
participants recruited from four U.S. communities (8).

All participants from the INTERVAL cohort were geno-
typed using the Affymetrix UK Biobank Axiom Array and
imputed using a combined UK10K-1000G phase III impu-
tation panel (9) and those from ARIC were genotyped
using the Affymetrix 6.0 array and imputed separately by
race using the 1000G Project phase I reference panel (7).
Genotype quality control for INTERVAL has been previ-
ously described in Astle et al. (9). Briefly, samples with
poor signal intensity (dish quality control <0.82) or low
call rate (<97%) were excluded. Duplicated, contami-
nated, and non-European samples were also excluded.
Variants with low call rate (<95%) and those with cluster
statistics indicating poor quality genotyping or hard-to-

call multiallelic variants were excluded. Additionally,
before imputation, variants were removed using the fol-
lowing filters: 1) Hardy-Weinberg equilibrium P < 5 ×
10�6; 2) call rate <99% over the genotyping batches in
which the variant did not fail; and 3) global call rate
<75% (over 10 genotyping batches). After imputation,
the total number of variants was 87,696,910. In ARIC,
samples with high missingness (>5%), sex mismatch, dis-
cordance with previous TaqMan assay genotypes, genetic
outliers, and relatedness were excluded (9). Low frequency
variants (minor allele frequency [MAF] <5%) and those
with imputation quality <0.8 were excluded, resulting in
5,446,889 variants (7).

Phenotyping for the INTERVAL cohort was performed
by Star-SHL laboratory (https://www.star-shl.nl/), and
fructosamine was measured on 28,310 INTERVAL cohort
participants using a colorimetric assay (Roche/Hitachi
Modular P analyzer system). We performed phenotype
quality control in R (10) to prepare the data for associa-
tion analysis. After adjusting for relevant biometric and
technical variables (sex, donation center, height, weight,
processing date, number of donations, and attendance
date), values were transformed on the natural log scale in
order to match the approach taken by Loomis et al. (7).
After removal of participants on glucose-lowering medica-
tion and phenotype quality control, we kept 20,731 partici-
pants with fructosamine and genotype data. Fructosamine
in ARIC was measured using a Roche Modular P800 system
from serum collected at visit 2.

BOLT-LMM (11) was used to run genome-wide associa-
tion analysis on 19,100,024 variants with MAF >0.1%
and INFO score >0.4. Linkage disequilibrium (LD) score
regression results showed no signs of inflation, so no
genomic correction was performed (LD intercept = 1.01).
Summary statistics for ARIC White participants from
Loomis et al. (7) were obtained from the authors. We
then performed inverse variance-weighted meta-analysis
using a fixed-effects model in METAL (12). In total,
5,200,018 were included in the meta-analysis. Variants
were clumped into the same locus if they were within 250
kb of the lead variant and if r2 > 0.1. Clumping was per-
formed as implemented in PLINK (13). Variants were
declared as genome-wide significant if they met the stan-
dard genome-wide significance threshold (P < 5 × 10�8).
To identify potential effector transcripts at the RCN3
locus, expression data from Genotype-Tissue Expression
(GTEx) v7 (https://gtexportal.org/) (14) were used to dis-
cover colocalized expression quantitative trait locis
(eQTLs) in whole blood. For this purpose, we used coloc
(15), a software package that calculates the probability of
two phenotypes sharing a causal variant in a region by
performing approximate Bayes factor colocalization analy-
sis. Protein-coding genes within 1 Mb of the lead variant
in the RCN3 locus were tested for colocalization.

LD score regression (16) was used to establish the heri-
tability of the trait. Genetic correlation analyses with
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glycemic traits, hematological traits, anthropometric
traits, and kidney diseases/traits (Supplementary Table 1)
were performed using LD Hub (17). Power calculation for
genetic correlation analyses was done using the GCTA-
GREML Power Calculator (18).

Data and Resource Availability
Summary statistics from the genome-wide association
analysis in INTERVAL will be available from the GWAS
catalog upon publication under accession GCST90017143.

RESULTS

Genome-wide association analysis of fructosamine in 20,731
blood donors from INTERVAL (19,100,024 variants; MAF
>0.1%) yielded two genome-wide significant (P < 5 ×
10�8) loci. The ABCB11 locus (rs853777, b = �0.009 [95%
CI �0.013 to �0.007]; MAF = 0.35; P = 8.8 × 10�9) previ-
ously associated with HbA1c and FG (19) and the RCN3
locus (rs111476047, b = 0.013 [95% CI 0.009–0.017];
MAF = 0.21; P = 2.1 × 10�11) associated with fructosamine
in Loomis et al. (7) (Table 1). Next, to increase power for
additional locus discovery, we performed genome-wide
meta-analysis of our data set with that of White participants
from Loomis et al. (7). Following meta-analysis (Table 1 and
Supplementary Figs. 1–4), two loci were genome-wide signif-
icant: RCN3 (rs113886122, effect allele = C; b = 0.013 [95%
CI 0.010–0.017]; MAF = 0.17; Pmeta = 5.71 × 10�18) and
GCK (rs3757840, effect allele = T; b = 0.006 [95% CI
0.004–0.008]; MAF = 0.49; Pmeta=3.66 × 10�8), another
established glycemic trait locus (19). In contrast, the associa-
tion at the ABCB11 locus was no longer genome-wide signif-
icant (Pmeta = 8.50 × 10�7) due to lack of supporting
evidence for association at this locus in ARIC (rs853777,
effect allele = T; b = �0.002 [95% CI �0.005 to 0.001]; P =
0.17) (Table 1).

While GCK is known to be the effector transcript at
this locus (20), little is known about the RCN3 locus and
its relationship with fructosamine. We therefore sought
to explore if eQTL information could point toward poten-
tial effector transcripts at this locus. Of 42 protein-coding
genes within 1 Mb of the lead signal (rs113886122), only
the FCGRT eQTL in whole blood displayed convincing evi-
dence of a shared causal variant with same direction of
effect (posterior probability 97.7%) (Supplementary Table
2), suggesting it is the likely effector transcript at this
locus (Fig. 1).

To estimate the heritability of fructosamine, we next
used LD score regression to estimate its heritability
explained by common genetic variation (MAF >0.05 in
EUR) and to quantify the degree of genetic correlation of
fructosamine with other glycemic-related traits. Heritabil-
ity was estimated to be 7.7% (95% CI 3.6–11.9). Genetic
correlation results with anthropometric, glycemic, kidney,
and blood cell traits (Supplementary Table 1) showed evi-
dence of moderate negative genetic correlation (rg) (Bon-
ferroni-corrected threshold P < 0.0012) with waist-to-hip
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ratio (rg = �0.29 [95% CI �0.45 to �0.14]; P = 0.0002),
waist circumference (rg = �0.32 [�0.50 to �0.14]; P =
0.0004), body fat percentage (rg = �0.32 [�0.50 to
�0.13]; P = 0.0007), and obesity class 1 (rg = �0.29
[�0.45 to �0.12]; P = 0.0006).

DISCUSSION

In this study, we aimed to further elucidate the genetic
architecture of fructosamine by conducting a GWAS in
20,731 European-ancestry blood donors from the INTER-
VAL cohort. Combining our data in a meta-analysis with
that of 7,647 White individuals previously published by
Loomis et al. (7), we identified two loci, RCN3 and GCK,
associated with fructosamine levels at genome-wide sig-
nificance level (P < 5 × 10�8).

GCK (rs3757840) was not previously known to associ-
ate with fructosamine levels, but it is a well-established
glycemic locus (19); it codes for glucokinase, a key enzyme
that plays a role in sensing glucose levels in b-cells (20).

RCN3 (lead variant rs113886122) was shown to associ-
ate with fructosamine levels in U.S. White participants by
Loomis et al. (7). Variants in this region have previously
also been associated with total cholesterol, total protein,
albumin, and multiple red cell traits (21,22). In this study,
we replicated this association locus in a large sample of
European-ancestry blood donors, and, using colocalization

analysis with blood eQTL data, we established FCGRT as
the likely effector transcript in the region. FCGRT codes
for the Fc fragment of the IgG receptor and transporter,
which plays a role in maintenance of albumin levels, pro-
tecting albumin from degradation (23). In agreement
with these results, the rs59774409-C fructosamine-
increasing allele was associated with higher FCGRT
expression levels in whole blood. In mouse studies,
hepatic levels of this protein have been shown to regulate
albumin homeostasis and susceptibility to liver injury
(24). These results suggest that the locus found in this
study could influence fructosamine levels through path-
ways that regulate albumin levels. As fructosamine nor-
mally reflects glycated albumin (1), a shared genetic link
is not unexpected.

The ABCB11 locus previously associated with HbA1c

and FG (19) associated with fructosamine at genome-wide
significance levels in INTERVAL participants (rs853777,
P = 8.80 × 10�9), but failed to reach this threshold after
meta-analysis with White participants from Loomis et al.
(7) (Pmeta = 8.80 × 10�7). Given the fact that ABCB11 is
an established glycemic locus (19), testing its association
with fructosamine in larger numbers and diverse ancestry
participants will be important.

In agreement with a previous study (5), fructosamine
appears to be a trait with modest heritability (7.7% [95%
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Figure 1—LocusCompareR (29) plot highlighting FCGRT region. eQTL refers to expression data of whole blood for FCGRT, and GWAS
refers to the fructosamine GWAS performed in this study. Left panel reflects correlation of log10 P values in the region, and right panel dis-
plays the peaks for each phenotype in the region (fructosamine GWAS, top right; FCGRT eQTL, bottom right).
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CI �3.6 to 11.9]), suggesting most of the variation of the
trait in this generally healthy population is due to envi-
ronmental factors. This is in keeping with fructosamine
measuring short-term changes in glycemia (25) and its
use as a measure of treatment response in patients with
diabetes (25). In our data, fructosamine does not show
evidence of significant genetic correlation with other gly-
cemic traits, including with HbA1c (P > 0.05). This is
despite both traits normally having a high phenotypic cor-
relation (�0.61 (26)) and reflecting similar biological pro-
cesses—namely, the glycation of proteins and having
enough power (>80%) to detect a genetic correlation of
0.16. This lack of significant genetic correlation was also
observed in Loomis et al. (7).

Interestingly, the only traits for which we observed a
Bonferroni significant negative genetic correlation were
waist-to-hip ratio, body fat percentage, obesity class 1,
and waist circumference. This is consistent with prior
studies showing a negative association between BMI and
fructosamine (27,28). The effect of adiposity on fructos-
amine is not fully understood but may impact its use as a
clinical measurement of glycemic control.

Lastly, among the genetic correlation results (Supp-
lementary Table 1), nominally significant negative correla-
tions were found with HOMA of b-cell function, platelet
count, and estimated glomerular filtration rate, while
nominally significant positive genetic correlation was
detected with CKD. Given the evidence in the literature
linking fructosamine with incident CKD independently of
other risk factors in individuals with and without diabetes
(2), these correlation results between estimated glomeru-
lar filtration rate and CKD provide some interesting
hypotheses to explore in future studies.

One limitation of this study is our limited power to
detect associations for rarer variants (MAF <1%) due to
our sample size (e.g., 28% power to detect an effect size
of 0.2-SD units for variants with an MAF of 1%, which is
almost double the effect size of the strongest signal in
this study).

In conclusion, we have expanded knowledge into the
genetic architecture of fructosamine levels by identifying
a new genome-wide significant locus (GCK), highlighting
FCGRT as the potential effector transcript at RCN3, find-
ing evidence of genetic correlation with obesity-related
traits, and replicating the absence of a significant genetic
correlation with other glycemic traits in an increased sam-
ple size.
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