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Abstract: With the growth of factory automation, deep learning-based methods have become popular
diagnostic tools because they can extract features automatically and diagnose faults under various
fault conditions. Among these methods, a novelty detection approach is useful if the fault dataset
is imbalanced and impossible reproduce perfectly in a laboratory. This study proposes a novelty
detection-based soft fault-diagnosis method for control cables using only currents flowing through
the cables. The proposed algorithm uses three-phase currents to calculate the sum and ratios of
currents, which are used as inputs to the diagnosis network to detect novelties caused by soft faults.
Autoencoder architecture is adopted to detect novelties and calculate anomaly scores for the inputs.
Applying a moving average filter to anomaly scores, a threshold is defined, by which soft faults can
be properly diagnosed under environmental disturbances. The proposed method is evaluated in
11 fault scenarios. The datasets for each scenario are collected when an industrial robot is working.
To induce soft fault conditions, the conductor and its insulator in the cable are damaged gradually
according to the scenarios. Experiments demonstrate that the proposed method accurately diagnoses
soft faults under various operating conditions and degrees of fault severity.

Keywords: autoencoder; control and instrumentation cable; fault diagnosis; industrial robot; novelty
detection; soft fault

1. Introduction

Control and instrumentation (C&I) cables are utilized in a wide range of industrial
applications, including nuclear power plants [1], ship power systems [2], vehicles [3], and
factory automation [4], owing to their vital role in the control of motors and instrumen-
tation of sensors. To maintain the stability of automated systems in various applications,
monitoring the health status of the C&I cable is crucial. Early and accurate diagnosis of
faults reduces unwanted system downtime and improves the system reliability, resulting in
the maximization of productivity. In modern automated manufacturing processes, a single
fault in an industrial machine could cause an entire production line stoppage because the
safety signals of machines are shared and controlled by a process control unit. Researchers
have studied the faults from industrial machines. A diagnosis method based on an artificial
neural network using most salient features has shown reliability in diagnosing [5]. In the
other hand, the modern robust control studies have shown that certain types of robot faults
can be overcome with compensation of perturbations [6].

Cable faults comprise hard faults and soft faults. Hard faults include open circuit
and short circuit, and soft faults are characterized by small impedance changes. A local
modification of the cable (soft fault) due to a harsh environment could be transformed into
hard fault by subsequent partial damage of the components, such as the cable conductors,
coatings, and shield [7]. The worst possible case occurs when the machine is still working
without any indication of cable faults, while the cable is partially damaged. This is a
common practical soft-fault problem that occurs in automated factories. Therefore, timely
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diagnosis of a soft fault before it becomes severe is important to prevent further damage to
automated machines in production lines.

Conventional cable-condition assessment can be divided into electrical techniques,
such as tan delta (TD) and partial discharge (PD) techniques; mechanical techniques, such
as elongation at break technique; and chemical techniques, such as oxidation induction time
(OIT) technique. However, these techniques can only be implemented in either destructive
or laboratory environments. Moreover, these methods do not facilitate online diagnosis of
operating cables because the machine must be turned off to disconnect the cables.

Until now, the efficiency of reflectometry-based methods for cable diagnostics has been
demonstrated [8–14]. In particular, time-frequency domain reflectometry (TFDR) [12,13]
proves the robustness of fault diagnosis in a variety of conditions because it utilizes in-
formation in time and frequency domains. Although these methods diagnose hard faults
effectively owing to its huge reflection, their diagnostic accuracy for small anomalies is not
always effective because of the physical difficulties, such as the ambiguous response of
the incident signals [7]. In addition, these reflectometry-based methods require additional
equipment, such as signal generators and sensors, for the diagnosis. Moreover, these
methods require prior domain knowledge and manual feature extraction during the test
and analysis processes.

Online detection of cable faults has been studied for various applications, including
aircraft [14] and power distribution networks [15]. A method based on spread-spectrum
time-domain reflectometry (SSTDR) has been proposed and proven to be a suitable fault-
diagnosis technique for online detection in the aircraft data bus [14]. However, this method
is not suitable for the detection of soft faults in motor control cables owing to the high
current in a motor. In addition, a method for the diagnosis of cable-sheath faults using the
metal sheath current in power distribution networks was proposed in [15]. This approach
allows online fault diagnosis of power distribution networks. However, it utilizes link
boxes of the high voltage cables, which are not installed in automated factories. Moreover,
this method is complex for the direct detection of soft faults in a cable conductor, which is
surrounded by the cable sheath.

The control cable used in automated machines, such as an industrial robot, differs
from the cable used in power plants in that the frequency, amplitude, and phase sequence
vary according to the robot command and are affected by operating conditions, such as
power regeneration. Therefore, existing studies, which assume constant conditions, are not
applicable to this field [16]. Moreover, the length of transmission lines in power plants is
several kilometers, whereas those in smart factories are often extremely short according to
the factory layout. Existing traditional and reflectometry-based methods do not sufficiently
address faults in very short cables from factory automation domains, such as vehicle
manufacturing lines and smart factories.

In addition, because automated machines in the factory floor are not easily accessible,
additional equipment is not preferable when conducting diagnosis. Therefore, all the
diagnosis methods that require additional equipment [8–15] are not preferable. In addition,
the automation machines in manufacturing lines work round the clock; therefore, using an
offline diagnostic approach with no online diagnostic capability is not preferable. More
importantly, destructive and intrusive diagnostic approaches, such as mechanical and
chemical methods, are not applicable under this condition because the automated machines
still need to work to attain the manufacturing target and are repaired only according to the
scheduled maintenance time.

Unlike hard faults, soft faults are of various patterns. Thus, soft faults cannot be
perfectly reproduced in laboratories because the length, cross-sectional area, and the shape
of the fault is indefinitely varying. In particular, the fault length is sometimes overlooked
although it has a strong impact on the diagnostic results [17]. In addition, collecting fault
data, specifically soft-fault data, is often very difficult because the machine can work even
with the unhealthy (soft faulty) cables, without any indication of the fault. Thus, existing
works, which artificially simulate faults using variable resistors and establish a diagnosis
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model accordingly, are difficult to be applied in the field because fault data are rare, and
the simulated faults are not significantly realistic. To compensate for these short comings,
a novelty detection-based approach is an excellent alternative. Novelty detection with
numerous normal-operation data can be established easily and is practically a more realistic
method of diagnosing soft faults.

Novelty detection is the process of finding data points that do not belong to the normal
data [18]. There are many applications of novelty-detection, such as medical anomaly
detection, video surveillance, and industrial anomaly detection [19]. Novelties were suc-
cessfully detected using reconstruction errors a long time ago in [20]. A reconstruction
error is the distance between the network input and the reconstructed input. Autoencoders
(AE) encode the input into the reduced representation and then reconstruct the input by
learning how to reconstruct the data back from the reduced representation as close to
the original input as possible. The novelty detection-based diagnosis method assumes
that novelties, which represent faults, cannot be reconstructed perfectly from the reduced
representations [21]. Therefore, the data points with high-reconstruction errors can be
regarded as novelties.

This article proposes a novel soft-fault diagnosis algorithm that diagnoses the faults
in the control cable of industrial robots using an encoder-decoder structure with the re-
construction along projection pathway (RaPP) module [22]. The RaPP module compares
the input and its reconstruction, not only in input space, but also in the hidden spaces
in the trained network. Therefore, the RaPP supports the decision process by providing
additional information, such as pairs of hidden activation values from projecting input
and hidden reconstructions along the projection pathway of AE. The network receives the
sum of three phase currents and the ratios of squared single-phase currents (SCs) over
the summation of squared three-phase current (SSC) as inputs. The experiment validates
that the proposed diagnosis model successfully diagnoses the fault occurrence even under
varying fault and operating conditions. The major contributions of this study are as follows:

(1) Only three-phase currents are used. Therefore, additional sensors, signal genera-
tors, and signal inducing devices are not required, making the method cost efficient,
whereas the other methods [8–14] need additional devices to generate a reference
signal and to inject the reference signal into target cables. For example, an arbitrary
waveform generator is used to create the designed reference signal in [8–10,12–14].
In [11], a network analyzer is used to inject sinusoidal waves into the target cable
and to measure the reflected waveforms. For signal injection, an inductive coupling
device is used in [9], whereas others [8,10,12–14] utilize three-way connectors, such as
T-connectors, and directional bridges.

(2) No manual feature extraction with prior knowledge and mathematical values of cable
parameters is required, whereas reflectometry based methods need physical cable
parameters, such as the information of cable length, to design an incident signal
by adjusting signal bandwidth, center frequency, and time duration. In addition,
surrounding noise conditions, for example 60 Hz harmonic noise in power plant,
need to be analyzed before building diagnostic model to restore the reflected incident
signal, which is distorted by attenuation and dispersion during propagating through
target cables, using compensate filters and notch filters. Furthermore, the AE structure
encodes the input data into the reduced representation automatically during learning
process, whereas existing works need to analyze the selected features of a resultant
signal in time and frequency domain based on prior domain knowledge.

(3) Unlike the reflectometry-based methods with blind spot issues, which occur because
the incident and reflected signals may overlap for excessively short cables with falsely
selected signal bandwidth and measurement instruments [23], whereas the proposed
fault diagnosis is applicable to very short cables because the transmitted signal is
utilized for the diagnosis.

(4) Online cable-fault diagnosis is possible using the proposed method even when a
machine is operating in production lines, whereas traditional methods such as TD,
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PD and OIT, and recent methods such as TFDR and SSTDR cannot guarantee its
diagnostic accuracy under varying conditions, such as varying frequency, amplitude,
and phases when machine is working.

(5) The diagnosis method does not require numerous fault data because it is based on
an unsupervised learning model, which requires only normal operation data by
assuming unimodal normality. Thus, it is easily applicable in the industry, whereas
other methods usually based on fault dataset to build diagnosis model by analyzing
and learning the dataset, and utilized variable resistors and MATLAB simulations to
artificially reproduce fault conditions.

(6) The proposed diagnosis method can be applied to various types of control cables,
regardless of the conductor thickness, insulator material of cable, and other cable
parameters because the method only utilizes three-phase currents through a control
cable, whereas other diagnosis models need to be rebuilt when target cable is changed
because the model parameters, such as cable length, velocity of propagation and
bandwidth of signal etc., need to be changed according to the new target cable.

The rest of this article is organized as follows. The severity of soft faults and their
effects are presented in Section 2. In Section 3, we propose a fault diagnosis model. Section 4
presents the experimental results. Finally, Section 5 concludes this article.

2. Soft Faults and Features in Control Cable

Soft faults are the faults associated with small impedance changes because of a local
modification in the cable, such as a local modification in a part of conductor or insulation
layer due to harsh environment. The soft-fault resistance Rf directly represents the damage
severity of the conductor because the it is inversely proportional to the reduced cross-
sectional area Sf of the faulty conductor; the relation can be expressed as follows:

S f = α So, 0 < α ≤ 1 (1)

Ro = ρ
l
so

(2)

R f = ρ
l

s f
(3)

R f = ρ
l

α so
=

1
α

Ro (4)

where So is the cross-sectional area of the normal cable, and Sf is the remaining cross-
sectional area after the damage is induced. α indicates the degree of damage according to
the cross-sectional area of the damaged conductor in the cable. Ro is the resistance of the
normal cable, and R f is the fault resistance of the faulty cable, where ρ is resistivity of the
conductor material and l is the length of the conductor. The value of α is one for a healthy
cable and less than one for a faulty cable. For an open and short circuit, α is respectively
zero and greater than one. In this study, we focused on soft faults and healthy cases, i.e.,
0 < α ≤ 1. Therefore, α = 0 and α > 1 cases were not considered in this study.

The currents flowing through the fault location are affected by the damaged conductor
as well as the damaged insulator due to fault resistance Rf and leakage current flowing
through the damaged insulation layer resulting in a power-circuit imbalance. Three-phase
currents will be utilized to diagnose faults for the study because the type of the motor in
the robot joint is 3-phase AC servo motor, which means that the control cable between the
controller and the motor has a 3-phase power network. In addition, most of industrial
controllers measure and use currents to control subjects. Therefore, the current information
is easily accessible in most cases without additional equipment. The three-phase currents
flowing in a C&I cable can be expressed as follows:

ia (t) = Ima cos (ωt + φa) (5)
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ib (t) = Imb cos (ωt + φb − 120◦) (6)

ic (t) = Imc cos (ωt + φc + 120◦) (7)

where Ima, Imb, and Imc are the amplitude of the three-phase currents and φa, φb, and φc are
the corresponding phase angles. The current ratios of each single-phase current to the total
current directly reflect the imbalance in the faulty control network. The current ratio Pj is
defined as follows:

SCj = ij2, j = a, b, c

SSC = ia2 + ib2 + ic2 (8)

Pj = SCj/SSC,

where j represents either of the phases a, b, and c. The squared current ratio Pj compares
the proportion of each single-phase current (SCj) with the total three-phase currents (SSC).
Consequently, it reflects the faulty power network having a fault resistance Rf. The shrunk
cross-sectional area Sf in a single phase causes a phase imbalance and has harmful ef-
fects, such as power loss, additional heating, and energy decrease of the equipment [24].
The asymmetry in phase impedance leads to the imbalance in the phase, leading to the
imbalance of the three-phase currents.

An equivalent circuit model under a soft fault in phase a of the three-phase control
cable is shown in Figure 1. The control cable is connected to the permanent magnet motor
of the robot joint. Figure 1 also shows a soft fault being modeled as an additional resistor
Rf, which represents the reduced cross-sectional area of the conductor. Zc represents
the characteristic impedance of the healthy conductor. The insulator of the conductor is
modelled by Ri and Ci in parallel because the dielectric response of the insulation can be
described by its capacitive characteristic to store charge and its conductive characteristic
to conduct charge [25]. The magnitude of the leakage current ires is smaller than that of
the capacitive current icap in a healthy wire. However, ires increases when the conductor is
damaged (Rf increases), and the insulator is damaged (Ri decreases). Therefore, the vector
summation of the three-phase currents is non zero because of the leakage current, which is
caused by the unhealthy wire. Thus, the vector summation of the three phase currents at
the wire input stage is used as a feature in this study and is expressed as follows:

isum = ia + ib + ic (9)

The magnitude of isum is zero for healthy wires although it is non-zero when soft faults
are induced in the wires.

In addition, the imbalance in the three-phase currents can be described by a negative-
sequence current (NSC), which can be calculated using Equation (10).

iNS =
1
3

(
ia + a2ib + aic

)
(10)

where iNS is the NSC of the three-phase currents. a = ej 2
3 π is an operator for phase

rotation. NSC is a suitable parameter to diagnose the imbalance in the control network
because NSC is present in addition to positive-sequence current if an imbalance exists; for
example, if loading or transmission lines are unbalanced. Although the healthy-motor
and control-cable assembly has a small value of NSC owing to the inherent asymmetry of
the control network, the value of NSC fluctuates remarkably in the event of a soft fault.
The worse the fault, the greater the imbalance in the three-phase currents. However, the
motor in the robot joint rotates at a varying frequency (ω), varying amplitude (Im), and
varying phase (φ) according to the programmed robot-motion command. Therefore, NSC
cannot be a reliable tool because its value is unstable under varying operating conditions;
for instance, when the motor rotates in reverse direction after a forward rotation to move
the robot manipulator up and down. On the other hand, the vector summation of the
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three-phase currents isum at the wire input stage is independent of these changes because
no phase-rotation operator is involved. Moreover, Pj is also independent of this change
because it refers to the current ratios, which is just a simple number related to each phase’s
current magnitude.
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The analysis presented so far regarding the soft faults shows that the fault in the
control cable is closely related to isum and Pj. This suggests that a faulty condition can be
detected directly using these features. Therefore, we propose a deep AE structure to detect
novelty, which is the imbalance in phase currents resulting from the faulty control network
having fault resistance Rf, by learning the normal operation data, with isum and Pj as inputs.
The inputs are consistent under normal operation but experience a significant change in a
faulty situation.

3. Diagnosis System Structure

The proposed diagnosis method comprises anomaly detection and isolation of cable
fault by generating a maintenance call. An anomaly detection-based approach is adopted
because the fault information is significantly lesser than the normal-operation information
in industrial sites, such as automotive manufacturing plants and chemical manufacturing
plants, resulting in an imbalanced dataset. Because of the imbalanced dataset, previous
studies artificially reproduced fault conditions in laboratories using variable resistors
and MATLAB simulations. First, we tried to use these methods to diagnose the cable-
fault problems in our robot manipulators installed in the customer’s factory. However,
the previous studies were not effective for the real fault conditions because the faults
reproduced in the laboratory or simulation were never same as real ones that occur in
factories; hence, the methods diagnosing the fictitious faults were not applicable to the
practical problems.
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Unlike hard faults, such as open and short circuits, soft faults can have an infinite
variety of fault conditions because they can vary according to the fault length, cross-
sectional area of the conductor, and even the condition of the conductor insulation layer.
Therefore, the anomaly detection approach, which utilizes only normal operation dataset
to learn normal conditions and isolate fault conditions, is considered as proper for soft
fault diagnosis. AE is utilized for anomaly detection, and an RaPP module is added to
improve the anomaly-scoring metric, using additional information in the hidden space of
the trained AE.

Owing to the features, isum and Pj, defined in Section 2, the anomaly detection of a
live cable delivering a fluctuating current to the motor is possible because these features
are stable even when rotational speed, load torque, and (phase) direction of robot joint
are changing. These features can only fluctuate if the power network in control cables
is imbalanced. Therefore, this anomaly condition can be detected and isolated by the
proposed soft-fault diagnosis under the changing operating conditions.

The architecture of the proposed model comprises a signal processing module, AE
network with RaPP to detect anomalies, and anomaly monitoring module. The AE adopted
in this study is the adversarial autoencoder (AAE). The advantage of AAE over other AEs,
such as standard AE and variational autoencoder (VAE), is that the encoding distribution
becomes similar to the prior distribution in the adversarial training process. We compared
the anomaly detection capability of AAE with and without RaPP scoring technique, and
the results are presented in the experimental results section.

3.1. Overall Structure of Diagnosis System

The overall structure of the fault-diagnosis system is shown in Figure 2. Windows
of length 9000 were selected from the measured three-phase current data to construct the
training dataset. The four features—Pa, Pb, Pc, Isum rms- were obtained by calculating each
window using Equations (8) and (9) and passed as inputs to the encoder-decoder network.
The features were properly normalized before being used as the inputs.
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The diagnosis of soft faults comprises five steps. The first step is to train the AAE only
with healthy samples. After the AAE is trained, the next step is to obtain pairs of activation
values by projecting the input and its reconstructed input into the trained AAE. As a result,
the novelties can be identified by calculating the anomaly scores. The monitoring module
checks the anomaly score per given window and moving average is applied to these values
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for using it as a fault indicator. If the indicator satisfies the alarm condition, the monitoring
module causes the system alarm to call for maintenance

3.2. AAE

An AAE A consists of an encoder g and a decoder f. The encoder compresses the
input and reduces the dimension of the input, whereas the decoder is its inverse mapping,
i.e., it reconstructs the input back from the reduced dimension as A = f ◦ g. The chosen
features, such as Pa, Pb, Pc, Isum, are the inputs of proposed network. The encoder encodes
the input features into a reduced representation, i.e., a latent code. Thus, the encoder acts
as a latent-code generator and attempts to mislead the discriminator Dz into believing that
the latent code is from the normal distribution. The role of Dz is distinguishing whether a
given sample is generated by the latent code of the AAE or a random vector sample from
the normal distribution. The latent code has similar distributions to the prior distribution
along the training process. Figure 3 presents a graphical illustration of the architecture.
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presses the input x and the decoder f reconstructs the input x̂. Dz acts as a discriminator through
learning process.

3.3. RaPP

Although AAE itself has shown promising results in novelty detection, the reconstruc-
tion error alone does not fully exploit the information provided by a trained AAE. Thus,
the accuracy can potentially be improved using the information in its deep architectures.

RaPP process supports the decision process by comparing not only the input and the
reconstructed input, but also the hidden activations and the corresponding reconstruction
in the hidden space. The hidden reconstructions can be computed indirectly by feeding
the reconstructed input to the trained AAE again because the corresponding hidden recon-
struction is equivalent to the hidden activation of the reconstructed input [22]. Therefore,
the hidden reconstruction can be computed by feeding each of x̂ to g, where x̂ is the recon-
structed input from the trained AAE whose input x is given according to x̂ = A(x). Let ` be
the number of hidden layers in g and f, where g = g` ◦ . . . ◦ g2 ◦ g1 and f = f1 ◦ f2 ◦ . . . ◦ f`.
The partial computation of g is as follows:

g:i = gi ◦ . . . ◦ g1 (11)

If x and x̂ are fed into A, then pairs (hi, ĥi) of their hidden representations are obtained
as follows:

hi(x) = g:i(x) (12)

ĥi(x) = g:i(x̂) = g:i(A(x)) (13)

Finally, the novelty score can be obtained using these two hidden activations, (hi(x),
ĥi(x)). To calculate the score, RaPP adopts the normalized aggregation along pathway
(sNAP) metric [22]:

sNAP (x) = || (d(x)− µx)> VΣ−1 − 1||22 (14)



Sensors 2022, 22, 1917 9 of 21

where d(x) = h(x) − ĥ(x), X is a given training set, and D is a matrix whose i-th row

corresponds to d(xi) for xi ∈ X. To normalize the distance,
−
D = UΣV> needs to be computed.

This metric considers the properties of hidden spaces and distance distribution of pairs
from Equations (12) and (13) to capture clear patterns.

3.4. Training and Testing Procedure

The purpose of training the AAE is to minimize the difference between its input x
and output A(x). The latent code that the encoder g constitutes provides a more useful
representation for diagnosis than the input space. First, the AAE was trained on normal
data samples. Subsequently, a test sample x was loaded to the trained AAE to generate the
reconstructed input A(x). The novelty of the test sample x was measured by the following
reconstruction error ε formula:

ε = ||x− A(x)||2 (15)

The test sample x can be identified as novel when the error ε(x) increases, this means
that x is farther from the manifold described by the AAE. To improve the result, we adopted
an RaPP technique to obtain the novelty score sNAP. With this novelty score, we evaluated
the diagnostic accuracy using the area under the receiver operating characteristic curve
(AUROC) [26]. In the experimental results section, the reconstruction error ε(x) and sNAP
are listed together to compare the results.

We trained the network with only healthy samples and used both healthy and faulty
samples during the testing. Half of the test datasets were collected from the healthy cable,
and the other half were collected from the faulty cable. We assumed unimodal normality
because we selected one healthy class for normality, and the other classes, that is, 4 cut–28
cut classes were selected as novelty, as shown in Table 1.

Table 1. Degree of damage severity.

Number of Strands Cut
Degree of Conductor Damage

In Percent (%) In α

0 (normal) 0% 1
4 13.3% 0.866
8 26.6% 0.733
12 40.0% 0.600
16 53.3% 0.466
20 66.6% 0.333
24 80.0% 0.200
28 93.3% 0.066

The proposed diagnosis model was implemented in the Pytorch framework [27].
Stochastic gradient descent with Adam optimizer [28] was used for minibatches of size 20.
Binary cross entropy was used as a loss function with the reduction of summation. The
learning rate was set to 0.001. The AAE had a symmetric architecture with three layers of
encoder and decoder. The size of the hidden states for the encoder and decoder was 30. The
value 30 is experimentally obtained from a series of experiments. We applied Leaky-ReLU
activation to every layer, excluding the last layer.

4. Experimental Results
4.1. Experimental Setup

The experiments were conducted on a HYUNDAI HH7 robot manipulator to demon-
strate the effectiveness of the proposed fault-diagnosis method; the experimental setup
is shown in Figure 4. The target cable was the motor control cable of the third joint of
the manipulator. The Hi5a-T10 controller was used to control the motor of the joint. The
specifications of the control cable are listed in Table 2. The cable has 32 wires; each wire is
composed of 30 strands, and each strand has a diameter of 0.25 mm, as shown in Figure 5.
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The three stranded wires, i.e., three-phase, were selected out of the 32 wires. HYUNDAI
HR-basic language is used to program the robot. The programming method was teaching
and playback of robot manipulator using a hand-held device. The robot was programmed
to move up and down by TP530 teaching device using HR-basic. A cylindrical shaped
weight of 7 kg was installed on the end of the robot arm to simulate full load capacity of
the robot because the robot has a maximum payload of 7 kg. The currents in phases a, b,
and c were measured using a Tektronix DPO 4104 B phosphor oscilloscope at a sampling
rate of 100 kHz. Even though the current sensors are already installed inside the controller
for manipulator control, we used the oscilloscope for convenience.
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Figure 4. Experimental setup for the HYUNDAI HH7 manipulator and Hi5a-T10 controller.

Table 2. Specification of the control cable.

Subject Unit Specification

Number of wire - 32
Cross-sectional area of wire mm2 1.5
Number of strands per wire - 30

Cross-sectional area of strands mm2 0.25
Maximum resistance of wire Ω/km 17.7

Insulator - PVC
Insulator thickness - 0.36

Shield type - Braided
Diameter mm 20.4
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Figure 5. Cross sectional view of C&I cable (COVV-SB 32C × 1.5SQ).

To simulate the damage with varying severity to the wire, we artificially increased
the wire’s resistance gradually by decreasing the cross-sectional area of the faulty wire.
Figure 6 depicts the process of inducing damage into the wires. Figure 6a depicts the
intact and healthy wire. To simulate damage, the insulator of the wire was removed, as
shown in Figure 6b. A total of thirty wire strands were gradually removed to reduce the
cross-sectional area of the wire. Four strands were iteratively cut per experiment to increase
Sf and decrease α, as shown in Figure 6c, resulting in the decrease of α from 1.000 to 0.066.
To simulate faulty cable cases, artificial soft faults were induced in the phase a wire with
varying severities (0.066 < α < 1.000). The fault length is fixed for the experiments to keep
the various levels of damage under control [17].
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Figure 6. The process of inducing damage into the wires: (a) Healthy wire inside the cable;
(b) Insulator-removed wire; (c) Faulty wire with a damaged conductor (some strands are cut).

To simulate the fault conditions with varying rotational speed, rotational direction,
and load torque, the third joint of the manipulator was controlled to move up and down
repeatedly, as shown in Figure 7. The motor in that joint is controlled by the controller to
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move the manipulator to the two commanded positions exactly. Throughout the process
of motor control, the frequency, amplitude, and phase of the three-phase currents vary, as
shown in Figure 8. The waveforms of the currents vary according to the movement of the
robot joint. It can be noticed in Figure 8 that the velocity and torque vary continuously
as the third joint and its arm move along the determined trajectory. Using these data, we
demonstrate that the proposed diagnosis method works even under this varying condition.
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Figure 7. The manipulator is moving up and down for the experiment.

The cable conditions were divided into eight classes according to the left cross-sectional
area Sf of the target wire, as shown in Table 1. For the experiments, a healthy target cable
is prepared and damaged gradually to collect normal and fault datasets. 5000 selected
windows per fault-severity class from the measured three-phase currents were utilized
as training, validation, and testing datasets. The collected datasets for each severity are
shown in Table 3. Each dataset is produced by windowing the measured currents and the
length of the window was 9000. The 0 cut dataset, i.e., healthy cable, were used for training
(3000 samples), validation (1000 samples), and testing (1000 samples) under the normal
condition. The 4 cut–28 cut datasets were used as novelty testing dataset (1000 samples).
For example, the 4 cut is a slight fault case with a large α compared to that of the other
data; whereas, the 28 cut is a severe fault case with a small α, where only 2 strands are left
out of the 30 strands owing to the harsh environment.
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Moving down Moving up 

Figure 8. The waveforms of the three-phase currents measured from the moving manipulator (down
and up). The measured signal having varying frequency (speed), phase sequence (rotational direction),
and current amplitude (torque): (a) Measured three-phase currents (down and up); (b) Change in the
rotational speed and direction calculated from (a); (c) Change in the torque calculated from (a).
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Table 3. Total dataset for each damage severity.

Damage Class Damage Severity (α) Number of Dataset

0 cut (normal) 1 5000
4 cuts 0.866 5000
8 cuts 0.733 5000
12 cuts 0.600 5000
16 cuts 0.466 5000
20 cuts 0.333 5000
24 cuts 0.200 5000
28 cuts 0.066 5000

In addition to the eight classes corresponding to one normal condition and seven
faulty conditions, one more fault condition was tested as an extra experiment. Mostly,
the conductor of a wire is damaged after the insulation layer covering the conductor is
damaged by the surrounding environment. Therefore, the damage of insulator also needs
to be diagnosed using the proposed algorithm. From the equivalent model shown in
Figure 1, the damage of insulator changes Ri and Ci values, resulting in the changes in
currents ires and icap, respectively. The proposed method could diagnose this type of soft
fault because the method conducts the diagnosis based on the current flowing through the
target cable.

4.2. Results and Analysis

We tested the 11 scenarios listed in Table 4 to demonstrate the proposed method under
varying operating and fault conditions. Scenarios 1–7 were prepared for each damage class,
that is, 4 cut–28 cut, to be experimented individually. 4 cut class is the slightly damaged
dataset, which means that in this class only 13.3 % of the conductor is damaged. The most
severe damage class is 28-cut class, which means in this class that 93.3 % of the conductor
is damaged; however, the damaged wire is still working without indicating any fault
symptom. It can transform into a hard fault, i.e., open-circuit, within a short time, and
the robot and manufacturing line can stop, resulting in unwanted down time and loss of
productivity. Scenario 8 is to test for relatively slight damage classes, that is, 4 cut–12 cut,
in which more than a half of the cross-sectional area of the conductor is intact, whereas,
scenario 9 is to test for heavily damaged classes, that is, 16 cut–28 cut, in which less than
a half of the cross-sectional area of the conductor is intact. Scenario 10 is to check if the
proposed method diagnoses the damage in the insulator, while the conductor beneath the
insulation layer is intact. According to the equivalent model, the proposed algorithm could
diagnose it theoretically. The last scenario is to test the whole dataset at once to validate the
overall diagnosis capability of the proposed algorithm.

Table 4. Scenarios for experiment.

Number of Scenario Damage Classes Robot Movement

Scenario 1 Normal, 4 cut up and down
Scenario 2 Normal, 8 cut up and down
Scenario 3 Normal, 12 cut up and down
Scenario 4 Normal, 16 cut up and down
Scenario 5 Normal, 20 cut up and down
Scenario 6 Normal, 24 cut up and down
Scenario 7 Normal, 28 cut up and down
Scenario 8 Normal, 4–12 cut up and down
Scenario 9 Normal, 16–28 cut up and down

Scenario 10 Normal, insulator damaged up and down

Scenario 11 Normal, 4–28 cut, insulator
damaged up and down
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The whole dataset was acquired from the moving robot manipulator while the third
joint of the manipulator was moving up and down, as shown in Figure 7. The dataset was
acquired to demonstrate that the proposed method works successfully even under varying
speed, phase, and torque, as shown in Figure 8.

Table 5 presents the AUROC of the standard AAE and the improved AAE with RaPP.
The best score for each scenario is underlined. The improved AAE provided good results
for most of the scenarios, except for scenario 8. The highest improvement was observed
in scenario 5 in that the difference of AUROC between standard and RaPP AAE was over
20%. For the slight damage classes (scenario 8), the standard AAE detected the damage
better than the AAE with RaPP. Nevertheless, the AUROCs for both the methods were
greater than 0.900, which is sufficiently high for diagnosing soft faults because they tend
to be transformed into hard faults gradually from slight to severe fault in chronological
order. Therefore, the ongoing soft-fault development can be detected in the process of
development. Moreover, the AUROC in scenario 10 was calculated to be 0.980, which
is sufficiently high to confirm that the proposed method is applicable for the diagnosis
of insulator damage. The equivalent circuit presented in Figure 1 worked as expected;
hence, the proposed method can be used for the diagnosis of a damaged insulation layer.
The scenario 11 is tested for all kind of damage classes, which are found in the soft
fault developing process. Thus, this experimental result demonstrates that the proposed
diagnosis model is applicable to practical problems.

Table 5. AUROC with novelty datasets.

Scenarios
AAE

Standard With RaPP

Scenario 1 0.933 0.949
Scenario 2 0.959 0.971
Scenario 3 0.956 0.967
Scenario 4 0.900 0.980
Scenario 5 0.804 0.971
Scenario 6 0.899 0.943
Scenario 7 0.798 0.916
Scenario 8 0.972 0.945
Scenario 9 0.948 0.968

Scenario 10 0.921 0.980
Scenario 11 0.945 0.981

The results also prove that the proposed method is applicable to varying operating
conditions, such as changing rotational direction, rotational speed, and torque (Figure 8).
It can be observed that the novelties can be detected using the proposed method even in
the transient conditions in which the rotational direction and speed change. In addition,
even if the torque changes, the faults with various degrees of severity can be detected. This
is because the inputs, such as the sum of the three phase currents and the ratio of phase
current to the total current, are invariant to the changes in the operating conditions but only
reflect the asymmetry in the motor control network, which results in the fluctuations in the
input features (isum, Pj). These fluctuations can be recognized as novelty. Therefore, the fault
detection and clear distinction between the healthy and faulty conditions are achieved.

The anomaly score alone is difficult for use in cable diagnosis because the score can be
affected by measurement errors, cable re-routing, and environmental disturbances, making
it difficult to assess the condition of the target cable, as shown in Figure 9a,c, which depicts
the anomaly score graph of scenario 11. Therefore, a moving-average filter with a moving
window length of 0.4 ms was used for stable diagnosis. The moving-averaged anomaly
score was utilized as a fault indicator in this study. Moreover, to avoid false maintenance
calls and set the diagnostic sensitivity, the threshold limit was set for the moving averaged
anomaly score, as shown in Figure 9b,d. The threshold value is obtained experimentally by



Sensors 2022, 22, 1917 16 of 21

observing the moving averaged anomaly score of the healthy cable. The threshold limit
for AAE without RaPP scoring technique needs to be set higher than that for AAE with
RaPP because of its low detection accuracy. The false positive (FP), false negative (FN),
true positive (TP), and true negative (TN) for Figure 9b are counted as 29, 111, 889, and
971. For Figure 9d, the values are 33, 7, 993, and 967. Using these value, the calculated
accuracy and sensitivity are 0.93 and 0.89 for Figure 9b, and 0.98 and 0.99 for Figure 9d
respectively. Therefore, it is demonstrated that RaPP scoring technique helps to improve the
detection accuracy. In addition, the threshold value can be set to tune the sensitivity, which
is related to TP and FN; sensitivity can be increased by increasing TP or by decreasing FN.
By introducing the threshold, the proposed method ensures that the diagnosis method is
applicable to practical cable maintenance in factories by adjusting the diagnostic sensitivity
to reflect one’s maintenance standard, such as a schedule of installed cable inspection and
asset management plan for old-cable replacement, according to the tendency of anomaly
score graph compared with the preset threshold.
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line represents the threshold limit: (a) Score of standard AAE; (b) Moving-averaged score of standard
AAE; (c) Score of RaPP AAE; (d) Moving averaged score of RaPP AAE.
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According to the structure of the diagnosis model in Figure 2, the monitoring module
checks the score of novelties from each window by saving the score and applying the
moving-average filter. If required, the monitoring module makes a maintenance call when
the moving-averaged novelty score over time exceeds the threshold limit. The moving-
averaged score values increase rapidly for a damaged wire and are low and stable for a
healthy wire. The score for a healthy wire is under the threshold limit. Figure 10 depicts the
test results for scenarios 1–10. The moving-averaged anomaly scores for all the scenarios
demonstrate that various faults can be diagnosed properly, and the isolation of faults is
possible by presetting an adequate threshold limit. Moreover, these results are meaningful
because only normal operation dataset was used to train the anomaly- detection module.
The faults that were intentionally induced, as shown in Table 4, were properly diagnosed,
and this fact make it possible to anticipate that the other indefinite kinds of soft faults,
which are defined by combinations of fault length and cross-sectional area of a conductor,
can also be diagnosed using the proposed method. This approach is useful if the fault
dataset is very small and imbalanced, which is a usual situation in the industrial field.
Unlike hard faults, that is, open-circuit and short-circuit, soft faults are difficult to be
diagnosed because these faults are difficult to be detected by maintenance staff until they
transform into hard faults. In many cases, a cable with soft fault continues to work, without
any fault symptoms. Existing studies based on simulated faults with variable resistors or
computer simulations have found implementation for this problem difficult because their
methods have focused on fault conditions. In this sense, we demonstrate that the proposed
diagnosis method is applicable to real world problems.

Furthermore, t-distributed stochastic neighbor embedding was used to visualize the
learned high-dimensional latent space representation in terms of 3D feature vectors to
verify the feature extraction capability of the proposed method [29]. The visualization of
scenario 11 is shown in Figure 11. It can be observed that healthy and faulty conditions are
clustered well. The healthy class, that is, 0-cut dataset, is set only to be a normal class as
per Table 1 because unimodal normality is assumed to be considering one healthy class for
normality. Thus, the other classes, that is, 4 cut–28 cut, and the class corresponding to a
damaged insulator, belong to the faulty classes, as indicated by the red dots in Figure 11.
Moreover, the results demonstrate that the proposed diagnosis method is applicable to
practical problems in factory fields with changing operating conditions in that the latent
space described in Figure 11 is achieved under various operation and fault conditions,
such as varying speed, varying torque, varying rotational direction, and various degrees of
fault severity.
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4.3. Comparison with Other Methods

To evaluate the applicability of the proposed method, qualitative comparison with
other methods were conducted, as shown in Table 6. Consequently, several indices, such
as diagnosis capability, need of prior domain knowledge and testing equipment, and the
application diagnosis methods, were used.

Table 6. Comparison with other methods.

Proposed
Method

Mechanical
(EAB)

Chemical
(OIT)

Electrical
(TD, PD) [10] [11] [13] [14] [16]

Applicability to very short cables O 1 O O O X X X X O
Online diagnosis under varying

conditions (Im, ω, φ) O X X X X X X O X

Nonintrusive and
nondestructive O X X O O O O O O

Require prior domain
knowledge X 1 O O O O O O O X

Require waveform generator X X X X O O O O X
Require dedicated equipment X O O O X X X X X

1 For the first three, O is better. For the last three, X is better.

First, the mechanical techniques tend to be intrusive and destructive, and specialized
training is required to operate the test equipment. Moreover, chemical techniques can be
used to calculate the life expectancy of the target cable by testing. However, a part of the
cable is needed to conduct the test in a laboratory. Taking the test sample can be destructive
and is often not acceptable. On the other hand, electrical techniques are widely used for
cable condition assessment. However, the associated test, such as partial discharge (PD), is
susceptible to noise and is possible only if the cable is disconnected from the automated
machine. Moreover, advanced skill set is needed to perform the analysis of the data from
the test.

Reflectometry-based methods [10,11,13,14] need to consider proper compensation of
the response to the incident signal because the reflected signal cannot avoid attenuation
and dispersion in the cable. In addition, the issue of blind spots needs to be addressed
because the incident and reflected signals may overlap for excessively short cables. More
importantly, reflectometry-based methods require arbitrary waveform generators to inject
the designed reference signal into the target cable.

There is research utilizing current signals to diagnose faults [16], preferred over the
methods that require both current and voltage signals. The proposed method in [16] can
successfully handle different kinds of power network and diagnose faults in a very short
time, 1.7 ms, with a high degree of accuracy. However, the method is assuming that the
amplitude and phase angles are almost equal and constant in normal operation. Unlike
power plants, the currents of automated machines are varying in amplitude, frequency,
and phase to control the machines. Therefore, this approach is difficult to be applied in
factory automation.

The major differences between the existing methods and proposed method are as
follows: (1) The proposed method does not need manual feature extraction and prior
domain knowledge, such as physical parameters of cables. (2) It does not need additional
equipment (cost effective); (3) It can diagnose very short cables. (4) It can be used to
perform online diagnosis of the operating cable even if the operating conditions change
continuously. The proposed method is applicable in the field of factory automation in
which various operating conditions and different types of cables are present.
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5. Conclusions

In this study, a novel soft-fault diagnosis scheme is proposed to diagnose faults in C&I
cables using only three-phase currents. The results confirm that faults can be detected with
a 98% accuracy. The proposed deep AAE consists of an encoder and a decoder with a RaPP
scoring technique. The AAE structure was used to detect novelties in the inputs using the
information in hidden spaces. The detecting and monitoring modules check the detected
fault and generate a maintenance call when the threshold is exceeded.

The proposed diagnosis model is cost efficient because extra sensors and signal gen-
erators are not required for its application. In addition, physical parameters of cables
and related information are not required. Experiments conducted on an industrial robot
demonstrated that the proposed diagnostic model effectively diagnoses healthy and faulty
conditions and is applicable to the automated production lines, which operate under
varying and harsh environments.

This study is focused on the diagnosis of soft faults in C&I cables of industrial machines.
Localizing faults is not considered in this paper because cables from automated factories
are relatively short and fixed according to factory layout. In this sense, short faulty cables
tend to be replaced first and analyzed later in a case of emergency, unlike the cables from
power plants where the length of cables is in the range of kilometers can be fixed after
finding the faulty location. Therefore, timely diagnosis of soft faults is more important
than localizing the faults in factory automation. Moreover, hard faults, such as open-circuit
and short-circuit, are not considered for this study because these faults can be directly
detected by machine controllers and related error codes will be generated automatically by
the controllers, such as ‘Power loss in the first servo motor’, nowadays. Therefore, hard
faults can be diagnosed considering the generated error codes. In addition, diagnosing soft
faults in advance is more beneficial than hard faults later because soft faults have a high
probability of transforming into hard faults, and a single hard fault in C&I cables could
result in production line stoppages.

In future studies, we will focus on the diagnosis of soft faults in the flexible C&I cables
for moving (bending, torsion) applications by combining various signals, such as voltage,
temperature, and current.
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