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Abstract: Ambulatory blood pressure (BP) monitoring (ABPM) is vital for screening cardiovascular
activity. The American College of Cardiology/American Heart Association guideline for the pre-
vention, detection, evaluation, and management of BP in adults recommends measuring BP outside
the office setting using daytime ABPM. The recommendation to use night–day BP measurements to
confirm hypertension is consistent with the recommendation of several other guidelines. In recent
studies, ABPM was used to measure BP at regular intervals, and it reduces the effect of the envi-
ronment on BP. Out-of-office measurements are highly recommended by almost all hypertension
organizations. However, traditional ABPM devices based on the oscillometric technique usually
interrupt sleep. For all-day ABPM purposes, a photoplethysmography (PPG)-based wrist-type de-
vice has been developed as a convenient tool. This optical, noninvasive device estimates BP using
morphological characteristics from PPG waveforms. As measurement can be affected by multiple
variables, calibration is necessary to ensure that the calculated BP values are accurate. However, few
studies focused on adaptive calibration. A novel adaptive calibration model, which is data-driven
and embedded in a wearable device, was proposed. The features from a 15 s PPG waveform and
personal information were input for estimation of BP values and our data-driven calibration model.
The model had a feedback calibration process using the exponential Gaussian process regression
method to calibrate BP values and avoid inter- and intra-subject variability, ensuring accuracy in
long-term ABPM. The estimation error of BP (∆BP = actual BP—estimated BP) of systolic BP was
−0.1776 ± 4.7361 mmHg; ≤15 mmHg, 99.225%, and of diastolic BP was −0.3846 ± 6.3688 mmHg;
≤15 mmHg, 98.191%. The success rate was improved, and the results corresponded to the Association
for the Advancement of Medical Instrumentation standard and British Hypertension Society Grading
criteria for medical regulation. Using machine learning with a feedback calibration model could be
used to assess ABPM for clinical purposes.

Keywords: blood pressure; photoplethysmography; machine learning; wearable devices; Gaussian
process regression
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1. Introduction

Cardiovascular diseases (CVDs), a group of heart and blood vessel disorders, are the
leading cause of death globally. Nearly 18 million people die of CVD annually, which is
approximately one-third of all deaths in the world [1,2]. CVDs include cerebrovascular
disease, coronary heart disease, congenital heart disease, and other conditions [3]. Recently,
the American Heart Association (AHA) estimated that the global economic burden of
non-communicable diseases related to CVDs was set to increase from USD 555 billion in
2015 to USD 1.1 trillion in 2035 [4]. Evidently, CVDs are already a serious health problem
that should be solved and prevented.

Hypertension is a crucial cardiovascular parameter for the early identification of
CVDs [5]. A key characteristic of CVDs is their dynamic self-regulation in the cardiovascular
system, which involves multiple feedback control loops in response to variations in blood
pressure (BP). Hence, continuous measurement of BP is necessary for medical diagnosis by
physicians. A sphygmomanometer is a standard medical device that is used to monitor
BP in the clinical setting. Although traditional 24-h BP measuring devices can monitor
BP with a cuff at regular intervals through repeated inflation, such readings provide
a tendency evaluation of the patient’s BP, which may not reflect the patient’s true BP.
Additionally, measurement at night causes insomnia in healthy people, leading to increased
awakenings. Such cuff-based methods are uncomfortable, discontinuous, and unsuitable
for daily use. However, ambulatory BP monitoring (ABPM) without a cuff can be used
to continuously detect rhythmic changes, which helps reduce the probability of false
readings and understand the dynamic variability of BP [6]. ABPM is better than traditional
BP measuring devices for real-time BP monitoring and could help in the prevention of
CVD. Recently, wearable healthcare devices have been demonstrated to be successful for
personal health monitoring over the long term and to help professionals understand how a
patient’s multiple chronic conditions interact. To calculate BP using a wrist-type device,
many studies have proposed the noninvasive solution of pulse transit time (PTT), which
measures the time latency between the R-wave of electrocardiogram (ECG) and the peak
of photoplethysmography (PPG) propagated from the heart to the wrist. PTT is the most
common biomarker related to arterial elasticity and can be used to estimate systolic BP
(SBP) and diastolic BP (DBP) [7]. Many studies have used a regression model to propose a
relationship between BP and PTT [8,9]. This method has become widely recognized as a
low-cost, non-invasive method for effectively estimating BP, which has been published in
previous studies [10,11]. Some studies added personal information parameters, including
the user’s height, weight, arm length, and morphological characteristics, as additional
parameters for elevating the accuracy of BP estimation [12–16]. However, there is still
another limitation regarding recording wrist-type ECG and PPG signals simultaneously,
such as the minimum requirement of at least two electrodes that should be connected to
both the right arm and left arm for standard lead I recording of the ECG signal. This results
in the failure of the clinical application of ABPM. The PPT-based BP monitor does not
function when the patient is asleep, and it is challenging to track abnormal variations in BP.
Moreover, the electrode placed on the skin for long-term recording would cause irritation
and degrade the ECG signal quality [17].

Some studies attempted to estimate BP using only PPG signals on the wrist-type device
for simpler design and more convenient user scenarios without ECG electrodes [18–22]. The
advantages are that irritation problems could be decreased and degradation in ECG signal
quality could be avoided. A major benefit of using PPG-based BP estimation techniques is
the continuous tracking of BP during daily routine activities and sleep, especially ABPM in
clinical practice [23]. Additionally, the American Heart Association/American College of
Cardiology (AHA/ACC) guideline indicated that out-of-office BP and home BP might be
strongly correlated with cardiovascular mortality and morbidity compared with clinical
BP [24], so the PPG-based BP estimation design provided a more suitable design for daily
use. However, it seemed that the PPG-based BP estimation promised sufficient accuracy
when the quality of the PPG signal was high. Many studies adopted features, such as
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temporal domain characteristics, including systolic time, diastolic time, cardiac period, and
pulse width, by detecting various feature points of PPG signals for BP estimation [25,26].
Other PPG studies used frequency domain characteristics that contained valuable health-
related information to estimate BP values based on Fast Fourier Transform and generalized
transfer function [27,28]. In these studies of temporal and frequency domains, different
machine learning (ML) algorithms were employed for BP estimation, such as regression
algorithms [29], artificial neural networks (ANN) [30], fuzzy logic [31], and support vector
machine [32]. Although the accuracy of these studies was high, too many parameters would
result in massive memory usage for the model and a long computation time. It would not
be appropriate to be implemented into the embedded system for wearable devices.

We compared PPG studies to estimate BP values. Some of these methods extended
signal to several dimensions, which will enlarge the memory and inference time. The
simple parametric models may lack expressive power, and another more complex method
(such as neural networks) may not be easy to implement for real-time study. The advent
of kernel machines, such as Support Vector Machines, classification trees, and Gaussian
Processes [33], has allowed flexible models that are practical to work with microcontrollers.
In regression ML models, it can automatically adapt to linear and nonlinear systems with-
out the prior introduction of kernel functions. These methods have been applied in time
series analysis, image processing, and automatic control. GPR models are an appropriate
method to provide a probabilistic output based on the convenience properties of Gaussian
processes and their kernel functions. Due to the Gaussian-based kernels and the normal-
ity of BP dataset distribution, it was more suitable to model the subject-specific relation
between PPG and BP. The GPR model can also provide effective memory usage for the
model and short computation time, so it is more suitable for BP estimation in embedded
system designs for wearable devices. To assess the reliability and effectiveness of a PPG
measurement method, it is essential to validate clinical data under serval experimental
conditions. Usually, patients with hypertension also have other individual differences,
which results in interference of PPG waveforms and decreases the fitting accuracy of
the model. These individual differences can be affected by several factors, such as dia-
betes, arrhythmia, pregnancy, lifestyle, age, gender, body mass index, daily variations, or
environmental conditions such as temperature and experimental errors during the data
measurement [34–38]. As cardiovascular features and signals vary among conditions and
change with time, determining how much the BP estimation varies depending on a factor
or in terms of time is important.

The compensation of the human organ interaction and unexpected physiological
variation and the time and environmental effect is a complex, ongoing problem. Therefore,
inter- and intra-subject variability are the most important and traditional factors that
cannot be personalized [39,40]. Such non-stationary interferences reduce performance and
time and are only adaptable to a specific population, especially outside of the medical
regulation standard [41]. Many studies have proposed strategies, such as the limitation
for specific group application [42], short period [43], the use of multiple physiological and
non-physiological parameters from different devices [44], and calibration with the standard
device [45]. In this study, we reported that BP estimation based on multi-age-grouping
models by PPG morphology characteristic parameters and personal information parameters
as features could be a feasible method, but the calibration step is required. Calibration
based on a linear method using a time delay and specific calibration intervals was proposed
to maintain favorable accuracy, as reported previously [46]. Therefore, careful consideration
is warranted for the selection of clinical populations to realize the calibration method so
that the optimal accuracy and stability of readings can be ensured. A data-driven model
with a feedback calibration method with a sphygmomanometer was proposed to solve the
problem of the inter- and intra-subject variability.

An advanced solution was proposed in this study, and the details are as follows. First,
a large PPG database for BP estimation could be analyzed from clinical studies, and the
data were collected by the proposed reflective PPG sensor for the wearable device. This
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hardware mechanism of the sensor is simulated by optics and designed to reduce noise from
motion artifacts (MAs) and ambient light. The PPG morphological characteristic parameter,
personal information parameter, and actual BP values were explored and understood based
on this database. Although many previous studies explored and defined the features of the
waveform, there were still differences based on the hardware design, wearable method,
and clinical indication [20,21,47]. A study highlighted the characterization of age-related
changes in BP in normotensive and untreated hypertensive participants and showed that
the pulsatile component of BP varies with age [48]. Therefore, before conducting data
mining, grouping similar data by age range is important for exploratory participants. Age
was demonstrated to be related to the hemodynamic model [49]. The grouping method is a
common technique for statistical data analysis and is used in many fields, such as ML, data
compression, pattern recognition, clinical trials, and computer graphics. The participants
in the same group were more similar to each other than to those in other groups. Before
constructing the model, a preprocess method can be used to reduce the complexity of
training and increase the prediction accuracy.

In this study, all the participants were grouped into 11 sets belonging to different age
groups. Then, the ML model was implemented as a predictor to extract the strong relative
characteristics and estimate BP. However, the most accurate models of all groups were
selected to implement in the wearable device. The ML model had some advantages of lower
memory usage than the ANN model and higher accuracy than the multiple regression
model. Based on an intelligent wearable biosensor design, the ML model was evaluated as
the optimized model for the embedded system in the study. Moreover, personal information
parameters, such as age, were found to be beneficial for reducing the inter- and intra-subject
variability of PPG-based BP estimation for different pulse pressure (PP) ranges. Three
other personal information parameters, such as body mass index, height, and weight, were
not considered because of their temporary interference with personal behavior. The other
parameters, such as gender and R-R interval, were used as features together with other
PPG morphological characteristic parameters for the model input. Then, the adaptive
calibration method was designed to enhance BP estimation, which could be increasingly
accurate after learning patterns with actual BP input from the same person. By grouping
the participants in the preprocessing stage, the variability could be subtracted to a small
scale and the fitting errors could be significantly reduced, which could be better improved
by a larger dataset with personal calibration. In short, to achieve the clinical application
of the PPG-based BP estimation model, 24-h ABPM should be considered. This study
proposed the data-driven model with feedback calibration implemented in the embedded
system. The construction of the PPG database included different BP values and ages for
multi-group ML models, and online learning by calibration using the sphygmomanometer
was demonstrated to ensure the accuracy of BP estimation by avoiding inter- and intra-
subject variability. Most importantly, clinical validation and regulatory considerations must
be followed to guarantee functionality and efficiency before clinical application. Therefore,
the clinical trial was designed to validate the results with and without calibration in a
stable situation. The clinical trials representing the static accuracy of BP tried to effectively
meet accuracy criteria of the Association for the Advancement of Medical Instrumentation
(AAMI) standard and British Hypertension Society (BHS) guideline, and the results of a
previous study [50,51]. The primary purpose of this study was to develop an intelligent
wearable biosensor for BP monitoring based on the data-driven model. By using feedback
calibration, inter- and intra-subject variability could be avoided, which was promising for
long-term ABPM even during sleep.

2. Materials and Methods
2.1. A Proof-of-Concept Wrist-Type PPG Device for BP Estimation Using Reflective PPG

This study proposed a convenient wearable device for long-term monitoring of pa-
tients and healthy individuals. For a more convenient user scenario for tracking BP
variation over 24-h, the all-day auto-monitoring mode was defined and implemented in the
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wrist-type PPG device. The PPG sensor was embedded in the back of the proof-of-concept
device and was composed of a multi-wavelength light source with discrete green, red, and
infrared light-emitting diodes (LEDs) and a photodiode (PD), as shown in Figure 1A. There
was a black partition plate between the LED and PD, which could efficiently eliminate
interference and crosstalk from external light [52]. After fastening the device on the wrist
using a 20-mm wide silicone strap, the measured PPG-based BP and heart rate (HR), as
well as oxygen saturation, could be transmitted wirelessly to a mobile phone for display
and recording of multimodal physiological data in the mobile application (APP), as shown
in Figure 1B. In this study, we focused on BP estimation, and we further presented an ML
framework based on the wearable device to deal with raw PPG data. Furthermore, the APP
possesses an auto-monitoring mode to perform measurements every 30 min based on the
stable user scenario during daytime and nighttime for the clinical use of 24-h ABPM. [53–55].
Figure 1C showed an example for a BP trend with different sampling data points (i.e., high
sampling in sleep or rest state and low sampling in high activity count state). This study
implemented the motion detection method with a 3-axis accelerator in wearable devices
as the preprocessing stage for steady-state measurement, and users in the iOS application
recorded the participant’s posture by themselves. For example, if this participant was
sitting with low physical activity counts from 17:07 to 19:37 on day 1, the BP estimation
values were stable and periodic recorded during rest time. Instead, the BP estimation was
not available because of the motion in an upright position from 19:37 to 23:07 on day 1 and
from 9:07 to 10:37 on day 2. Moreover, the mean BP in the supine position was lower than
in the sitting and upright positions. In summary, the 24-h BP variability using the proposed
wearable device was affected by physical activity and transitions between postures (i.e.,
supine, sitting, and upright) consistency with the traditional ABPM [56].

The on-board microcontroller unit (MCU) is an ARM® Cortex®-M4 core with Bluetooth
Low Energy (BLE) module (BMD-300-A-R, Rigado Inc., Portland, OR, USA), running with
a maximum working frequency in 64 MHz, and also equipped with 512 KB of flash and
64 KB of RAM memory. Additionally, the device consisted of a PPG sensor (IMSA805, ITM
Semiconductor Co., Ltd., Cheongju-si, Korea) used to continuously measure the PPG signal
in pulse width modulation, and a 3-axis acceleration (MC3610, mCube Inc., San Jose, CA,
USA) used to reflect the MA were co-implemented in the adaptive noise cancellation from
measured PPG signal [57] and used to record participant’s physical activities [58] as well.
The power consumption of the device was 15.58 mW, which allowed continuous recording
up to 15 h or measurements at 30-min intervals for up to 6 days with an 80-mAh battery.
The device’s available RAM (64 KB) was not enough to store signals and model parameters
and perform the computation. The raw PPG data were not stored in an embedded system,
and BP values were transmitted to the APP. For this reason, 62 KB of RAM was used for
computing variables and firmware code. The 276 KB of flash memory was used for storing
model parameters (i.e., Exponential GPR model). In this study, only the green light LED
was turned on to measure BP. The green light was transmitted by an LED into the skin,
and the amount of reflective or unabsorbed light was measured using a PD, which showed
the blood volume changes in the microvascular bed of the tissue. The back-scattered or
reflected PPG signal detected from the PD was first amplified (gain = 66 dB) and low-pass
filtered (filter bandwidth = 50 Hz) in the analog front-end, which utilized a trans-impedance
amplifier (TIA) with the direct current (DC) cancellation loop and a band pass filter to
compensate for the DC drift, as shown in Figure 2A. The gain of TIA was set by its feedback
resistor

(
R f

)
and could be set from 10 kΩ to 2 MΩ. The TIA gain between the input

current and output differential voltage of the TIA was equal to 2R f . At the output of the

TIA was a switched resistor-capacitor
(

R f , C f

)
low-pass analog filter for rejecting common-

mode noise and noise related to power supplies. The effective bandwidth of the switched
resistor-capacitor filter was approximately 50 Hz. After the analog signal was preprocessed,
it was transferred to a digital signal by a 24-bit analog-to-digital converter (ADC). Then,
the band-pass digital filter was used at 0.5–10 Hz, which filtered the noise signal, and
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it comprised the highest frequency cutoff, which was higher than the frequency of the
clean PPG signal, and the lowest frequency cutoff, which was lower than the frequency
of breathing and exercise (15–20/min). Therefore, the clean PPG signal was obtained and
used for the pulse characteristic calculation.
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Figure 2. (A) Shows the circuit of the PPG analog front end. It contained an LED, adjustable R-C filter,
TIA to enhance the signal from the PD and convert the signal to digital data by ADC. (B) The optical
principle of the PPG sensor that reflecting the blood volume variation from PPG signal. The PPG
sensor with the optical shielding design for decreasing noise and disturbance acquired reflective PPG
signal including AC and DC components. AC was defined as the pulsatile component of the artery
and DC was consisted of non-pulsatile components of artery blood, venous blood, and other tissues.

As shown in Figure 2B, the PPG signals acquired from the PPG sensing module could
be individually divided into the DC and alternating current (AC) components. The DC
component was attributed to the bulk absorption of the skin, muscle, venous blood, non-
pulsatile components of artery blood, and unfluctuating tissue. The AC component was
directly attributable to a pulsatile component of arterial blood and showed the changes in
the blood volume that occurred between the systolic and diastolic phases of the cardiac
cycle. The green light was used to observe the PPG waveform because of the large AC
component and good signal-to-noise ratio. Each cardiac cycle was determined as a pressure
pulse wave when the blood was perfused to the dermis and subcutaneous tissue of the skin
in each ventricular contraction.
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In this study, The PPG method could be used to directly measure the blood flow pulse
on the skin, and the wrist-type PPG device could analyze the vital signs uploaded from the
BLE communication protocol. The BP values could be displayed on the cell phone with
the ML model. Moreover, the ML model in the device could be updated online by adding
actual BP values to yield more accurate results.

2.2. Clinical Trial for Validation of the Difference of Estimated and Actual BP

The clinical protocol was approved by the institutional review board (IRB) of National
Yang-Ming University (IRB No. YM106096E) and the IRB of Taoyuan General Hospital
(IRB No. TYGH104055). In total, 435 participants (male: female = 244:191; mean age,
38.498 years; age range, 15–94 years) were included in this study. The acceptance criteria
for the participants are indicated in Table 1.

Table 1. The details of clinical trial database collection for BP estimation modeling.

Criterion Details

Age ≥18 years (males and females).

Document Willing to voluntarily sign the study-specific informed
consent form.

History

No previous percutaneous coronary intervention,
coronary artery bypass graft, abdominal aortic aneurysm,
peripheral vascular disease, aortic stenosis, arrhythmia,
tremors (before or during procedure), diabetes, kidney
disease, or carotid bruits.

Clinical trial setting

SBP ranged from 80 mmHg to 250 mmHg and DBP
ranged from 40 mmHg to 150 mmHg.
In a controlled laboratory environment, with constant
temperature, pressure, and silence ensured.

The clinical trial was designed for the static state validation, as indicated in Figure 3.
This study collected actual BP and 15-s PPG signals in series during the data collection
process. The participants were asked to rest for 5 min before the start of recording, and
their health status was assured. Using the wrist-type PPG device, which was proposed
in this study, pulsatile PPG data of every participant was recorded for at least 1 min at
256 Hz using a triaxial accelerometer. Every participant was instructed to breathe as
normal, sit, and remain stable during the data collection. Then, reliable BP data were
labeled using an FDA-approved sphygmomanometer for BP monitoring (JPN-700, Omron
Corporation, Kyoto, Japan) by a clinical technician and clinical cardiologist. The dataset
included actual BP and PPG data and information from participants who were diagnosed
with normotension (BP < 130/90 mm Hg), prehypertension, and hypertension by two
specialists. The personal information of the participants was recorded for detailed analysis
and classification. All data, including vital signs from the wearable devices and personal
information, were recorded for the following analysis.
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Figure 3. The experimental protocol for the validation of the BP estimation based on wrist-type
PPG device. The protocol was designed for static state validation. Note that the resting for 5 min
should be conducted at the beginning of the experimental protocol to reduce the interference of the
environment and physiological variation. The protocol was consisting of the 5 min rest state and 60-s
settle state for simultaneously recording with wrist-type PPG device and sphygmomanometer.

2.3. ML-Based BP Estimation with the Calibrated Model by Age Grouping

Referring to past research [59,60], the PPG wristband, which received the CE certificate
of conformity, was used for short-term measurement and signal analysis. By evaluating
the 24-h signal quality, the 15-s measurement time was considered the optimal sampling
time for physiological applications of PPG [59]. Error reduction with averaging for PPG
estimation was reported in another study [60]. In this study, the error between actual and
estimated BP was calculated after 15-s pulse averaging and corresponded to the medical
regulatory error boundary as defined by the AAMI, which was 5 ± 8 mmHg. Therefore,
the green light PPG morphological characteristics could be defined as the mean of the
15-s segment pulsatile PPG of the systolic area over the total area, diastolic area over the
total area, systolic area over the pulse amplitude, diastolic area over the pulse amplitude,
maximal amplitude over time, systolic time, diastolic time, and mean PP interval, as shown
in Figure 4. Personal information parameters, such as age and gender, were added for the
BP prediction model. Age and gender are important factors when considering phenotypic
changes in health and disease. It was demonstrated that the blood volume of the cardiac
cycle from a vessel is significantly impacted by gender and age [61]. The estimated results
were evaluated for age groups (5–50 years) and without grouping. The participants were
considered to be normally distributed after grouping. Table 2 shows the characteristic
parameters of the PPG waveform and their corresponding personal information parameters
for the BP prediction model and calibration model. Moreover, the actual BP of the user was
defined as a factor to calibrate and optimize the BP model.

The variation of PPG morphology in characteristics was significantly different between
males and females and different age groups. In order to reduce the variation, multiple
models were constructed for subject-specific relation between PPG and BP. The models
included multiple groups by age grouping method trained using exponential GPR algo-
rithm. The partitions of the training set and testing set were seven and three, so the PPG
database was divided into training dataset (306 participants as reference database) and
test dataset (129 participants as validation database). Ten variables including PPG mor-
phology characteristic parameters and personal information parameters were the model
input parameters.
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Figure 4. The characteristics of PPG morphology corresponds to the pulsatile PPG waveform
including waveform parameter and time-related parameter. Waveform parameter: systolic area over
total area, diastolic area over total area, systolic area over pulse amplitude, diastolic area over pulse
amplitude, maximal amplitude over time as maximal slope. Time-related parameter: systolic time,
diastolic time and mean peak to peak interval.

Table 2. PPG morphological characteristic parameters and personal information parameters for the
BP prediction model.

Item
PPG Morphological Characteristic Parameter

Personal Information
ParameterPPG Waveform Parameter PPG Time-Related

Parameter (Unit: s)

Without Calibration

A1/(A1 + A2)
A2/(A1 + A2)

A1/AC
A2/AC

Max Slope

Systolic Time
Diastolic Time

Mean RR

Real

Age (y/o)
Gender (0 or 1)

With Calibration

A1/(A1 + A2)
A2/(A1 + A2)

A1/AC
A2/AC

Max Slope

Systolic Time
Diastolic Time

Mean RR

Real
(For initial use) Optimized

SBP (mmHg)
DBP (mmHg)

Age (y/o)
Gender (0 or 1)

Following the details of GPR was reported previously in [33], the training set was
expressed as Equation (1).

{xi, yi}
n
i=1 (1)
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where n represents the number of data sets, x represents the training parameters array
including PPG morphology characteristic parameter and personal information parameter
as shown in Table 2, and y represents the target value as actual BP value. A learning
function f(xi) was used for transforming the input array xi into the target value yi given a
model as Equation (2).

yi = f(xi) + εi (2)

where εi represents Gaussian noise with zero mean and σ2
n represented the variance. As a

result, the observed targets can also be described by a Gaussian distribution as Equation (3).

y ∼ N
(

0, K(x, x) + σ2
nI
)

(3)

where x represents the vector of all input points xi and K(x, x) the covariance matrix
computed using a given covariance function. The covariance function could be defined
by various kernel functions and could be parameterized in terms of the kernel parameters
in vector θ. Hence, it was possible to express the covariance function as K(x, x|θ). This
model used the exponential kernel function with a separate length scale for each predictor.
The covariance function was defined as follows:

k
(

xi, xj
∣∣θ) = σ2

f exp

−
√(

xi − xj
)T(xi − xj

)
σl

 (4)

The kernel parameters were based on the signal standard deviation σf and the charac-
teristic length scale σl. The unconstrained parametrization θ was:

θ1 = logσl, θ2 = logσf (5)

Therefore, the joint distribution of the observed target values and predicted value f(xi)
for a query point i was given in Equation (6).[

y
f(xi)

]
∼ N(0,

[
K(x, x) + σ2

nI k(x, xi)
k(xi, x) k(xi, xi)

]
) (6)

The predicted mean value f(xi) and the corresponding variance V(xi) could be repre-
sented in Equations (7) and (8) as follows:

f(xi) = k(x, xi)
T
(

K(x, x) + σ2
nI
)−1

y (7)

V(xi) = k(xi, xi)− k(x, xi)
T
(

K(x, x) + σ2
nI
)−1

k(x, xi) (8)

The GPR model is a type of ML method for statistically analyzing data. The purpose is
to understand the relationship between two or more variables and establish a mathematical
model to predict the variables of interest. More specifically, using regression analysis, the
relation function can be found and the long-term trend of BP can be estimated from the
given PPG characteristic.

The detail of the BP calibration procedure in our study was given as below and shown
in Figure 5:
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Figure 5. The details about proposed feedback calibration embedded in PPG devices. (A) The
calibration system. (B) Step 1. Setting Up. (C) Step 2. Calibration. (D) Step 3. Measuring Blood
Pressure.

The calibration system was shown in Figure 5A.
Step 1. Setting Up: Before you start measuring your blood pressure, you must use

APP to connect to the wearable device, and set up your personal profile (Age, Gender) in
Figure 5B.

Step 2. Calibration: To ensure more accurate measurements, be sure to calibrate your
wrist with an upper-arm, cuff-based blood pressure monitor. Start the blood pressure
measurement on the cuff-based blood pressure monitor and enter the reading in the APP
before BP estimation in Figure 5C.

Step 3. Measuring Blood Pressure: Perform the measurement stable and sitting in a
quiet place. The wrist will start measurement every 15 s automatically. The BP estimation
result will be saved in the APP in Figure 5D.

In Figure 6, the details of the block diagram of the comparison process were divided
into seven steps. All PPG data from our clinical database were first grouped by age and
trained as the different models individually. For DBP model in this study, the PPG database
was separated by gender and age by groups of 15 years (i.e., Age < 30, 30 ≤ Age < 45,
45 ≤ Age < 60, 60≤ Age < 75, 75≤ Age). Above all, there are 10 groups trained as different
models for SBP. On the other hand, the SBP model was by groups of 30 years with 6 groups
(i.e., Age < 30, 30 ≤ Age < 60, 60 ≤ Age). Then, these models were all implemented in
our proposed embedded system. When a participant (i.e., 25 years old) started active
BP estimation without calibration, all the age groups of trained-based models with the
actual gender (i.e., male) were used to predict many BP values. The minimal mean error
between the predicted SBP (i.e., 143 mmHg) and actual SBP (i.e., 140 mmHg) from cuff-
based blood pressure monitor (JPN-700, Omron Healthcare Co. Ltd., Terado-cho, Japan)
was calculated and the corresponded optimal age group (i.e., 30 ≤ Age < 45) was selected.
Finally, the optimal age group for this participant was used for the further BP estimation
accurately. In order to demonstrate the practical application, the application interface based
on the iOS app was designed as the easily keying in the personal information parameters
and activating calibrated function by with Bluetooth Low Energy (BLE) in our wearable
device. The chosen model was more suitable for the participant’s PPG parameters, and a
compensated value could be calculated in variable k(xi, xi) and BP could be predicted using
Equation (7) initially. Then, the parameters could be included in the model for personal
calibration, and the optimized model would predict the BP more accurately.
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(1) Age grouping; (2) Models training; (3) Embedded system implementation; (4) PPG parameter
calculation; (5) Personal information transfer; (6) Calibration with actual BP; (7) Results display).

2.4. Statistical Analysis of BP Estimation in Accordance with International Standards

The BP data of all participants were examined for normality statistics called the
Shapiro–Wilk (S–W) test and the results before and after the age grouping were com-
pared [62]. The S–W test had been shown to be capable of detecting normality for a wide
variety of statistical distributions. The p-value of the S–W method tested the normality of
the data. The higher p-value did not reject the null hypothesis which conformed to the
normal distribution, and the lower p-value represented that rejecting the null hypothesis
which does not conform to the normal distribution.

To evaluate the best grouping-year-number with age by groups of different years,
Pearson correlation analysis was conducted to identify age without grouping (100 years)
and with grouping. Furthermore, the regression analysis presented the correlation results
for performance comparison of different algorithms. These algorithms included 20 ML
models. Significant correlations (p < 0.05) were reported.

To evaluate the accuracy of the proposed wrist-type PPG device, two international
protocols of BHS guideline and AAMI standard were considered. Both standards defined a
maximum-tolerated error between BP monitoring by the proposed wrist-type PPG device
and FDA-approved electric sphygmomanometer in the static state. The standard accuracy
criteria were defined and described as follows. The BHS grading criteria were the cumula-
tive percentage in 5, 10, and 15 mmHg, with four grades: Grade A (≤5, 60%; ≤10, 85%; and
≤15, 95%), Grade B (≤5, 50%; ≤10, 75%; and ≤15, 90%), Grade C (≤5, 40%; ≤10, 65%; and
≤15, 85%) and Grade D (worse than Grade C). Alternatively, AAMI was used to conduct a
statistical comparison as the estimation error of BP (∆BP = actual BP—estimated BP) with
standard deviation (≤5 ± 8 mmHg). A zero ∆BP presented the accurate model, whereas
its negative and positive values would indicate BP overestimation and underestimation,
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respectively. Meanwhile, the Pearson correlation analysis and Bland–Altman analysis were
the visualized approaches for statistical evaluation of agreement between estimated BP
value and actual BP value.

3. Results
3.1. Evaluation of Best Performing ML-Based Algorithm for BP Estimation

In this study, the PPG database included 435 participants with 15-s pulsatile PPG
signals. The recorded data could be divided into three BP levels (i.e., normotension,
hypertension, and hypotension) based on their actual BP values. The normal BP was within
the range of <130/80 mmHg in SBP/DBP and ≥ 90/60 mmHg in SBP/DBP. The abnormal
BP levels were defined as hypertension (SBP/DBP ≥ 130/80 mmHg) and hypotension
(SBP/DBP < 90/60 mmHg), either, according to the guidelines of ACC/AHA and National
Health Service (NHS). A stacked histogram was used to plot the age group corresponding
to the number of participants in the actual SBP and DBP (Figure 7A,B, respectively). The
age distribution is as follows: 15–19 years, 20–24 years, . . . 90–94 years. It is clear that
most participants were aged 25–29 years, and most participants had normotension. The
percentage and number of participants with hypertension increased gradually with age
increasing. The age distribution of all participants in the clinical database reflected that of
the true population.
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Figure 7. The distribution of actual SBP and DBP levels over different age groups in our clinical
database. (A) Distribution of SBP levels. (B) Distribution of DBP levels. Blue column represents the
number of participants in hypotension. Orange column represents the number of participants in
normotension. Yellow column represents the number of participants in hypertension. The age of
participants covered from 15 to 94 years old. The hypertension and the hypotension populations
were also included which was suitable for the true population.

As mentioned, extracted characteristics were considered input parameters for ML re-
gression algorithms. The models were trained using the training set, and BP was estimated
using testing data in each of the twenty ML methods. Table 2 indicates the proposed 10
PPG features in the BP estimator. Table 3 shows a comparison of the accuracy between the
ML models for SBP and DBP, including the ∆BP and its standard deviation of the estimated
BP values and actual BP values. The best ML model was selected as a proposed estimator
for BP value if it contained the minimum ∆BP among all results. Thus, the exponential
GPR method was the optimal ML model with the lowest ∆BP (SBP: −0.7167 ± 15.5851,
DBP: −0.8693 ± 12.6172). However, all the results did not meet the international standard
for medical regulations, with Grade D showing results of 5, 10, and 15 mmHg.
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Figure 8A shows the 11 different periods of age groups in the exponential GPR model.
The age without grouping (100 years) had a high level of ∆BP and standard deviation among
all the results. After grouping the participants by age, the ∆BP and the standard deviation
reduced. As shown in Figure 8B, the age group of 15 years had the lowest ∆BP and standard
deviation in DBP, which was 0.5539 ± 7.8138 mmHg. The age group of 30 years had the
lowest ∆BP in SBP, which was −0.1809 ± 10.7177 mmHg. Thus, the best estimation of
SBP and DBP was in different age groups, in which DBP was much smaller than SBP. The
correlation results between different grouping-year-number were evaluated in Figure 8. The
correlation coefficient r-value and p-value were calculated to evaluate the optimal grouping-
year-number as statistical indexes. In the results, optimal grouping-year-number was 30 years
in SBP (r = 0.538, p < 0.001) and 15 years in DBP (r = 0.373, p < 0.001). These r-values were
similar between with age grouping and without age grouping, but all the correlation results
were statistically significant (p < 0.001).
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In Figure 9, the distribution and the fitting curves were used to depict distribution
normality with grouping and without grouping in this study. With grouping participants,
the fitting curves of actual SBP and DBP shifted to higher-value along with older age groups.
Nevertheless, the fitting curves of actual DBP shifted back to lower-value when the age was
older than 60 years. Using the Shapiro–Wilk normality test, the p-value (p = 1.6 × 10−10

for SBP and p = 2.29 × 10−11 for DBP in Figure 9A) was found to be very small without
grouping, which represented the non-normal distribution characteristic. As shown in
Figure 9B, the normal distribution fitting curve for the age group of 15 years had the
following p-values (p = 3.59 × 10−5, 1.24 × 10−4, 1.63 × 10−5, 9.69 × 10−3, and 2.05 × 10−3

for SBP and p = 7.74 × 10−7, 3.16 × 10−4, 1.41 × 10−2, 5.04 × 10−2, and 3.52 × 10−3 for
DBP with five age groups: <30 years, 30–45 years, 45–60 years, 60–75 years, and ≤75 years).
As shown in Figure 9C, the normal distribution fitting curve for the age group of 30 years
had the following p-values (p = 3.59 × 10−5, 6.91 × 10−7, and 9.85 × 10−5 for SBP and
p = 7.74 × 10−7, 2.91 × 10−5, and 1.91 × 10−4 for DBP with three age groups: <30 years,
30–60 years, and ≤60 years). All the p-values were closer to the null hypothesis of standard
normal distribution, which was more suitable for the exponential GPR training model.
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Table 3. Comparison of accuracy between all ML models for SBP and DBP without calibration and age grouping.

Blood
Pressure SBP DBP

Model r ≤5
(%) ≤10 (%) ≤15 (%) ∆BP

(mmHg)
r ≤5

(%) ≤10 (%) ≤15 (%) ∆BP
(mmHg)

Exponential
GPR (this

study)
0.44 *** 27.131 (D) 56.072 (D) 67.441 (D) −0.716 ±

15.5851
0.31 *** 35.401 (D) 55.814 (D) 77.261 (D) −0.869 ±

12.6172

Bagged Trees 0.43 *** 32.041 (D) 53.746 (D) 71.576 (D) 3.141 ±
14.9823

0.23 *** 32.041 (D) 58.914 (D) 77.002 (D) 1.846 ±
12.2447

Boosted Trees 0.43 *** 25.581 (D) 50.387 (D) 67.441 (D) 1.145 ±
16.1572

0.28 *** 30.491 (D) 55.038 (D) 77.519 (D) −1.328 ±
12.4168

Coarse
Gaussian SVM

0.40 *** 20.930 (D) 44.702 (D) 57.622 (D) −3.328 ±
19.2503

0.25 *** 34.366 (D) 60.465 (D) 77.519 (D) −1.964 ±
12.4512

Coarse Tree 0.37 *** 25.581 (D) 50.387 (D) 70.801 (D) −1.402 ±
15.0477

0.18 *** 35.142 (D) 64.082 (D) 81.657 (D)
1.782 ±
11.6775

Cubic SVM 0.32 *** 22.222 (D) 43.152 (D) 62.015 (D) −1.943 ±
18.1104

0.21 *** 28.423 (D) 50.129 (D) 72.35 4(D) −1.015 ±
13.7282

Fine Gaussian
SVM

0.30 *** 20.413 (D) 46.511 (D) 66.149 (D) −2.324 ±
16.3242

0.24 *** 30.232 (D) 51.938
(D) 73.901 (D) −0.801 ±

14.0499

Fine Tree 0.28 *** 23.772 (D) 45.219 (D) 68.733 (D) −1.861 ±
16.5967

0.21 *** 33.333 (D) 59.173 (D) 77.261 (D) −1.869 ±
12.6172

Interactions
Linear

0.39 *** 17.312 (D) 40.051 (D) 58.656 (D) −5.003 ±
17.5311

0.28 *** 19.638 (D) 42.118 (D) 64.599 (D) −1.835 ±
16.0832

Linear 0.31 *** 23.772 (D) 50.646 (D) 68.992 (D) 1.746 ±
20.0023

0.18 *** 33.850 (D) 61.757 (D) 78.553 (D) 1.508 ±
12.0335

Linear SVM 0.32 *** 23.255 (D) 47.803 (D) 66.667 (D) −1.068 ±
16.0259

0.21 *** 32.558 (D) 60.981 (D) 79.586 (D) 1.221 ±
12.7356

Matern5/2
GPR

0.43 *** 24.031 (D) 51.938 (D) 71.317 (D) 1.345 ±
15.6983

0.30 *** 32.041 (D) 62.532 (D) 81.395 (D) 2.237±
12.549

Medium
Gaussian SVM

0.47 *** 21.705 (D) 44.444 (D) 64.857 (D) −1.943 ±
17.5536

0.30 *** 33.333 (D) 58.139 (D) 77.519 (D) −1.877 ±
12.8238
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Table 3. Cont.

Blood
Pressure SBP DBP

Model r ≤5
(%) ≤10 (%) ≤15 (%) ∆BP

(mmHg) r ≤5
(%) ≤10 (%) ≤15 (%) ∆BP

(mmHg)

Medium Tree 0.34 *** 22.739 (D) 41.860 (D) 63.307 (D) −2.063 ±
18.2236

0.14 *** 25.839 (D) 46.253 (D) 69.251 (D) −1.018 ±
14.9782

Quadratic
SVM

0.44 *** 25.581 (D) 47.028 (D) 66.149 (D) −1.875 ±
15.978

0.29 *** 36.692 (D) 61.498 (D) 78.294 (D) −1.325 ±
11.6168

Rational
Quadratic

GPR
0.43 *** 20.413 (D) 41.860 (D) 60.465 (D) −4.198 ±

17.2031
0.31 *** 32.816 (D) 59.431 (D) 77.002 (D) −1.838 ±

12.7787

Robust Linear 0.32 *** 24.547 (D) 53.488 (D) 72.351 (D) 1.496 ±
15.1054

0.19 *** 32.816 (D) 60.465 (D) 79.586 (D) 1.279 ±
12.7838

Squared
Exponential

GPR
0.41 *** 24.806 (D) 45.736 (D) 63.824 (D) −1.344 ±

15.9769
0.32 *** 32.041 (D) 58.139 (D) 76.227 (D) −1.883 ±

12.9418

Stepwise
Linear

0.40 *** 25.323 (D) 47.545 (D) 67.183 (D) −1.587 ±
16.163

0.26 *** 33.333 (D) 60.206 (D) 79.069 (D) 1.587 ±
12.2077

Gaussian
Mixture
Model

0.17 ** 4.333
(D)

11.333
(D)

16.676
(D)

−21.937±
38.1851

0.12 * 13.000
(D)

21.000
(D)

35.672
(D)

−17.211±
30.0149

BHS grading criteria (mmHg, cumulative percentage): Grade A (≤5, 60%; ≤10, 85%; and ≤15, 95%), Grade B (≤5, 50%; ≤10, 75%; and ≤15, 90%), Grade C (≤5, 40%; ≤10, 65%; and ≤15,
85%), Grade D (worse than Grade C). ANSI/AAMI/ISO 81060-2:2013: ∆BP < 5-mmHg, mean standard deviation < 8-mmHg. p-value: * p < 0.05, ** p < 0.01, *** p < 0.001.
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validation between without and with calibration. In the correlation analysis, the correla-
tion coefficient r-value and p-value were 0.538 (p = 1.84 × 10−30) and 0.373 (p = 3.10 × 10−15) 
in SBP and DBP, respectively. With calibration, the r-value and p-value were 0.968 (p = 
1.20 × 10−232) and 0.854 (p = 3.81 × 10−111) which means the increasing of correlation between 
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Figure 9. BP distribution with grouping and without grouping. (A) BP normal distribution fitting
curve without grouping. (B) BP normal distribution fitting curve in age by group of 15 years. (C)
BP normal distribution fitting curve in age by group of 30 years. The distribution fitting curves
used to depict distribution normality. After grouping participants, these curves were closer to the
null hypothesis of standard normal distribution test which was more suitable for exponential GPR
training model. In Figure 9B,C, the fitting curves of actual SBP and DBP shifted to higher-value along
with older age groups. Nevertheless, the fitting curves of actual DBP shifted back to lower-value
when the age was older than 60 years (light blue and purple line).

3.2. Comparison of the Proposed BP Estimation Model with and without Calibration

Figure 10 indicated comparisons of correlation and Bland–Altman analysis for BP
validation between without and with calibration. In the correlation analysis, the correlation
coefficient r-value and p-value were 0.538 (p = 1.84 × 10−30) and 0.373 (p = 3.10 × 10−15) in
SBP and DBP, respectively. With calibration, the r-value and p-value were 0.968 (p = 1.20× 10−232)
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and 0.854 (p = 3.81 × 10−111) which means the increasing of correlation between actual BP
and estimated BP. Similarly, the Bland–Altman plots showed that the mean value of SBP and
DBP were similar between without and with calibration, and the standard deviation was
much smaller after calibration in both SBP and DBP results. The performance comparison of
exponential GPR-estimated BPs between with and without calibration was shown in Table 4.
The results in Table 4 were expressed in (1) Total Mode and (2) Interval Mode, which both
were from BP estimated data of the same study group (129 testing participants) for further
performance analysis. In Total Mode, corresponding summary (combined) BP estimated re-
sults were determined from the overall 129 testing participants in this study. In the Interval
Mode, the corresponding BP estimated results were individually classified into three BP
subgroups of normotension, hypertension, and hypotension from 129 testing participants.
In Total Mode, as shown in the upper row of Table 4, the cumulative percentage of readings
within 15 mmHg was 70.974% (Grade D) in SBP and 78.072% (Grade D) in DBP. The ∆BP
of SBP was −0.1809 ± 10.7177 mmHg and of DBP was 0.5539 ± 7.8138 mmHg. The results
from the proposed prediction model did not correspond to the medical regulatory error
boundary as defined by the AAMI, which is 5 ± 8 mmHg. For the calibration result, the
same testing participants were used by using actual BP values to optimize the models. The
cumulative percentage of readings within 15 mmHg improved to 99.225% (Grade A) in
SBP and 98.191% (Grade A) in DBP. The ∆BP of SBP was −0.1776 ± 4.7361 mmHg and of
DBP was −0.3846 ± 6.3688 mmHg. The calibration results from the proposed estimation
model corresponded to the medical regulatory error boundary defined by the AAMI very
well. In Interval Mode, as shown in the lower row of Table 4, the SBP and DBP estimation
using the exponential GPR method with calibration also achieved an overall B/A grading
and fulfilled the AAMI/ BHS accuracy criteria [51,63]. Overall, the exponential GPR-BP
estimation with calibration showed higher accuracy performances than those without
calibration in both Total and Interval Modes.

Table 4. Performance comparison of the BP estimation between without and with calibration.

Exponential GPR
Model

Without Calibration With Calibration

Total Mode ≤5 (%) ≤10 (%) ≤15 (%) ∆BP
(mmHg) ≤5 (%) ≤10 (%) ≤15 (%) ∆BP

(mmHg)

DBP 37.936 (D) 63.637
(D) 78.072 (D) 0.5539 ±

7.8138 60.723 (A) 88.372 (A) 98.191 (A) −0.3846
± 6.3688

SBP 37.421 (D) 58.379 (D) 70.974 (D) −0.1809
± 10.7177

71.834 (A) 96.382 (A) 99.225 (A) −0.1776
± 4.7361

Interval Mode ≤5 (%) ≤10 (%) ≤15 (%) ∆BP
(mmHg) ≤5 (%) ≤10 (%) ≤15 (%) ∆BP

(mmHg)

DBP

hypotension
<60

16.667
(D)

33.333
(D)

60.000
(D)

−12.5832
± 5.5526

50.000
(B)

80.000
(B)

100.000
(A)

−7.5400
± 3.7221

normotension
60–79

39.891
(D)

65.295
(C)

78.689
(D)

−7.5627
± 6.8504

65.027
(A)

89.617
(A)

97.814
(A)

−3.9673
± 4.7367

hypertension
≥80

29.101
(D)

58.201
(D)

77.249
(D)

6.5413 ±
9.9935

59.788
(B)

87.831
(A)

98.413
(A)

3.6523 ±
5.2502

SBP

hypotension
<90

20.000
(D)

33.333
(D)

66.667
(D)

−11.1238
± 3.6607

53.333
(B)

100.000
(A)

100.000
(A)

−5.5844
± 2.3086

normotension
90–129

40.621
(C)

61.136
(D)

72.348
(D)

−4.6248
± 9.9551

73.863
(A)

98.482
(A)

100.000
(A)

−1.5600
± 3.9808

hypertension
≥130

20.000
(D)

42.500
(D)

56.667
(D)

8.1414 ±
12.3490

68.333
(A)

91.674
(A)

97.501
(A)

2.9987 ±
4.7528

BHS grading criteria (mmHg, cumulative percentage): Grade A (≤5, 60%; ≤10, 85%; and ≤15, 95%), Grade B
(≤5, 50%; ≤10, 75%; and ≤15, 90%), Grade C (≤5, 40%; ≤10, 65%; and ≤15, 85%), Grade D (worse than Grade C).
ANSI/AAMI/ISO 81060-2:2013: ∆BP < 5-mmHg, mean standard deviation <8-mmHg.
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Figure 10. Relationship between actual BP measurement and exponential-GPR estimated BP in the
analysis of correlation coefficient and Bland-Altman plot for ∆BP between actual BP measurement
and exponential-GPR BP estimation. (A) SBP measurement without calibration showed a moderate
correlation (r-value = 0.538 and its associated p = 1.84 × 10−30) with a mean ∆BP of −0.1809 mmHg
(CI = −21.1876 to 20.8258) between actual BP measurement and exponential-GPR BP estimation. SBP
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measurement with calibration showed an excellent correlation (r-value = 0.968 and its associated
p = 1.20 × 10−232) with a mean ∆BP of −0.1776 mmHg (CI = −9.4603 to 9.1051) between actual BP
measurement and exponential-GPR BP estimation. (B) DBP measurement without calibration showed
a fair degree of relationship (r-value = 0.373 and its associated p = 3.10 × 10−15) with a mean ∆BP
of 0.5539 mmHg (CI = −14.7611 to 15.8689) between actual BP measurement and exponential-GPR
BP estimation. DBP measurement with calibration showed an excellent correlation (r-value = 0.854
and its associated p = 3.81 × 10−111) with a mean ∆BP of −0.3846 mmHg (CI = −12.8674 to 12.0982)
between actual BP measurement and exponential-GPR BP estimation. The mean ∆BP of the data was
illustrated by the central horizontal line (blue) of Bland–Altman analysis. Upper and lower reference
lines (blue) showed the upper and lower limits of agreement (95% confidence intervals (CIs)).

4. Discussion

Focusing on wearable devices and their healthcare purpose, this BP measurement
method was based on simplifying the data collection steps and reducing the number
of steps. However, a wrist-type PPG device was selected without any controlling steps.
Suppose the accuracy of estimation was sufficiently enhanced with calibration, a cuffless
BP meter that predicts ABPM instead of using cuff-based BP devices can be implemented
in the future. Most vital signals in clinical settings are continuously measured, except BP.
However, physicians are also concerned about potential cardiovascular diseases based on
patients’ vital signs, especially daily BP trends. To provide a warning signal, trends in BP
values can be obtained when training the model with real data in actual clinical settings.

A wrist-type device of photoplethysmography was provided as a monitoring tool
for healthcare to estimate BP and examine the use of PPG independently in this study.
The widespread use of BP estimation tools in the health care domain was indicated, and
the increasing number of PPG-based wearable devices was also given with continuous
ambulatory measurements of BP. In most cases, traditional readings were taken every 30- to
60-min intermittent sampling of the recordings during the day and night when the patient
was in a stable situation [64]. This previous study also highlighted that the performance of
noninvasively functioning ambulatory monitors tended to be poorer under ambulatory
conditions, in the working environment, and during exercise than at rest. Therefore, the
criteria were applicable only to subjects examined at rest. In view of the above-mentioned,
the wearable BP estimation in this study was designed under the same condition (i.e., at
rest) and took the readings only at 15-s intervals. In order to get the high quality of data
in both traditional and wearable PPG methods, the limitation for keeping the arm steady
during measurement was required.

Figure 7 shows a histogram of the age distribution of the participants from 15 to 94
years from the PPG database with low, normal, and high SBP and DBP. The BP distribution
of all the participants was in accordance with the definition of the general population in
the ISO 81060-2:2018 standard. According to the BP distribution pattern, in the database,
at least 5% of the readings should have a reference SBP of ≤100 mmHg, and at least 5%
of the readings should have a reference SBP of ≥160 mmHg. The distribution of BP was
compliant with the standard.

Table 3 shows the comparison results of the model for training and evaluating the BP
estimation values, and exponential GPR ML algorithms performed the final model with
the highest accuracy. Due to the nonlinear relationship between BP and the PPG signals,
the linear regression algorithm did not explain which ∆BP was highest and the exponential
GPR method with the lowest ∆BP and its standard deviation. Compared with the ML
methods, the exponential GPR method results in the database in this study produced
results that were similar to the AAMI standard and BHS standard. Based on the results, the
exponential GPR method based on green light wrist-type PPG features could be a powerful
method for BP prediction.

As shown in Figure 8, the ∆BP result of grouping the participants according to age
in the exponential GPR model was more accurate than with no grouping. Normally, SBP
is 90–200 mmHg and DBP is 60–130 mmHg. As the ranges of SBP and DBP are different,
SBP and the DBP had different age intervals in the training results. The age interval was
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smaller in DBP because of the narrower range. Otherwise, the age interval in SBP was larger
because of the wide range in SBP distribution. As shown in Figure 9, the higher age range
led to a wider distribution in the BP histogram before the grouping operation. Using the
Shapiro–Wilk normality test, the p-value was found to be much lower than 0.05 in all data,
which represented the non-normal distribution characteristics. To increase the suitability of
the model for exponential GPR training, using the grouping operation by age interval was a
common preprocess method before model construction to reduce the complexity of training
and increase the predicted accuracy. After the grouping operation, the p-value increased,
which indicated the reason why grouping by age before the estimation would increase the
accuracy. The best model in all age ranges can be selected for use in personal calibration.

As shown in Table 4 and Figure 10, after grouping the data, the results showed that the
accuracy was increased without calibration but was still not high enough for the standard
of the FDA-approved sphygmomanometer. We suspected that the data after grouping
contained intra-/inter-individual variability. The physiological status of peripheral blood
vessels, such as stiffness, compliance, and aging, was generally accepted, which can be
partially expressed in terms of peripheral arterial pressure waveforms. The BP varied in
the same age groups, even though the corresponding physiological parameters of PPG
were similar. As the chronological age, which is the number of years a person had been
alive, was well known and not the same as physiological age, it was necessary to determine
the physiological age. Nonetheless, the phenomenon of BP variation over time could still
be observed. Using the personal calibration method, accurate BP values were measured,
and the success rate of the personal calibration method was increased. The major core
concept of the calibration method in our study was different from a previous study [29].
In the Bland–Altman analysis for the BP estimation by the exponential GPR model with
the calibration, as shown in Figure 10, significant BP prediction biases of underestimations
(positive ∆BPs) and overestimations (negative ∆BPs) were found in these subgroups of
the Interval Mode (Table 4). The inference was mainly that the under-representation
associated with imbalanced source data from relatively small numbers of participants with
hypertension and hypotension in our training set, which led to the biased PPG-based BP
estimation in the hypertensive and hypotensive BP ranges [65]. In the Total Mode, as
shown in Table 4, the nearly zero mean of ∆BP showed from a statistical perspective in
the lump-sum condition (a whole distribution of BP testing data) that it would diminish
their corresponding biases of underestimation and overestimation in the BP predictions of
three subgroups of the Interval Mode and could, therefore, be used in calibration with the
traditional cuff-based BP measurement to provide accurate estimations of continuous BP
monitoring. However, we considered that only one-point calibration was not enough to
refine the general model successfully, especially for long-term monitoring. More individual
data points were needed as the refined training process to maintain accuracy. Instead,
the age grouping method was proposed in this study as multiple models from different
age groups. Our core concept of the calibration method was to fit the best model among
all age groups as the optimal individual model. It could solve the problem of the lack of
insufficient individual reference points. The results corresponded to the medical regulatory
error boundary defined by the AAMI. This enabled the realization of a data-driven model
with feedback calibration-embedded BP estimator using reflective photoplethysmography,
which can be potentially used in ABPM in clinical settings.

5. Conclusions

In this study, a new approach for BP estimation was proposed, which was continuous,
noninvasive, and based on using only the PPG signal. The method proposed was based on
the nonlinear ML GPR model, which could estimate the regression between BP values and
PPG features by grouping the age range of a user. The results demonstrate the potential of
the proposed ML model for ABPM. According to our estimated results after calibration,
the conditions were matched to the AAMI standard requirements. The ∆BP was negligible,
and standard deviation was close to the standard AAMI limit in SBP estimation. This
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achievement was due to the large variety of PPG parameters, grouping the set-in different
age ranges, and calibration by the standard used in the implementation of the ML method
design. The ML algorithms in BP estimation achieved grades A and B according to the
BHS standard. Calibration methods could be implemented in an embedded system for
personalized measurement and be adapted to different environments and health statuses.
With the use of all-day auto-monitoring, sufficient feasible data could be obtained in
models for further expert application by self-training and population learning. Above all,
the proposed system could be linked to medical and fitness applications and potentially
extend to other domain applications such as insurance and nutrition.
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