Table 1.
Paper and Year | Method | Classification | Dataset Used | Accuracy (%) |
---|---|---|---|---|
Al-Baderneh et al. (2012) [18] | NN and KNN | Normal/Abnormal | 275 images | 100 and 98.92 |
Rajesh et al. (2013) [14] | Feed Forward Neural Network | Normal/Abnormal | 20 images | 90 |
Taie et al. (2017) [15] | SVM | 80, 100, and 150 images | 90.89 and 100 | |
krishnammal et al. (2019) [24] | AlexNet | Benign/Malignant | Not mention | 100 |
Hanwat et al. (2019) [25] | CNN | Benign/Malignant/ Normal | 94 images | 71 |
Hamid et al. (2020) [30] | DWT, GLM, and SVM | Benign/Malignant | Dicom images | 95 |
Kulkarni et al. (2020) [34] | AlexNet | Benign/Malignant | 75 Benign and 75 Malignant images | 98.44 (F measure) |