Skip to main content
. 2022 Feb 28;22(5):1886. doi: 10.3390/s22051886
Algorithm 1. The training process of DamperGAN.
Input: Real damper image dataset Io={Io1,,IoN}; Generator G; Discriminator
    {Di}i=1i=k; g-steps, the training step of the generator; d-steps, the training step of
    the discriminators.
Output: G, generator after training.
1: Initialize generator G and discriminator {Di}i=1i=k with random weights;
2: repeat
3:  for g-steps, perform
4:     G generate fake images;
5:     Calculate the penalty value VDG via Equation (6);
6:     Minimize Equation (9) to update the parameters of the generator G;
7:  end for
8:  for d-steps, perform
9:      Use G to generate fake images Ig={Ig1,,IgN};
10:    Use real images Io={Io1,,IoN} and fake images Ig={Ig1,,IgN} to
update the discriminator parameters by minimizing Equation (10);
11:  end for
12: until DamperGAN completes convergence
13: return