Table 3.
Classifier | Feature Selection | # of Feature | 95% Confidence Interval Results | Inference Time (ms) | ||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Sensitivity | F1-Score | Specificity | ||||
MLP | XGBoost | 2 | 0.91 ± 01.19 | 0.91 ± 01.19 | 0.91 ± 01.19 | 0.91 ± 01.19 | 0.91 ± 01.19 | 0.592 |
Extra Tree | Random Forest | 5 | 0.88 ± 01.17 | 0.88 ± 01.17 | 0.88 ± 01.17 | 0.88 ± 01.17 | 0.88 ± 01.17 | 0.406 |
Random Forest | XGBoost | 2 | 0.87 ± 01.17 | 0.87 ± 01.17 | 0.87 ± 01.17 | 0.87 ± 01.17 | 0.87 ± 01.17 | 0.412 |
KNN | XGBoost | 2 | 0.87 ± 01.17 | 0.87 ± 01.17 | 0.87 ± 01.17 | 0.87 ± 01.17 | 0.87 ± 01.17 | 0.464 |
SVM | XGBoost | 2 | 0.86 ± 01.16 | 0.86 ± 01.16 | 0.86 ± 01.16 | 0.86 ± 01.16 | 0.86 ± 01.16 | 0.456 |
Gradient Boost | XGBoost | 2 | 0.84 ± 01.15 | 0.84 ± 01.15 | 0.84 ± 01.15 | 0.85 ± 01.15 | 0.84 ± 01.15 | 0.492 |
XGBoost | Random Forest | 5 | 0.84 ± 01.15 | 0.84 ± 01.15 | 0.84 ± 01.15 | 0.84 ± 01.15 | 0.84 ± 01.15 | 0.426 |
Logistic Regression | Random Forest | 2 | 0.81 ± 01.13 | 0.81 ± 01.13 | 0.81 ± 01.13 | 0.81 ± 01.13 | 0.81 ± 01.13 | 0.532 |
LDA | Random Forest | 9 | 0.78 ± 01.11 | 0.78 ± 01.11 | 0.78 ± 01.11 | 0.78 ± 01.11 | 0.78 ± 01.11 | 0.406 |
AdaBoost | Random Forest | 3 | 0.68 ± 01.03 | 0.68 ± 01.03 | 0.68 ± 01.03 | 0.70 ± 01.05 | 0.68 ± 01.03 | 0.492 |