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Abstract: Prostate cancer, which is also known as prostatic adenocarcinoma, is an unconstrained
growth of epithelial cells in the prostate and has become one of the leading causes of cancer-related
death worldwide. The survival of patients with prostate cancer relies on detection at an early, treat-
able stage. In this paper, we introduce a new comprehensive framework to precisely differentiate
between malignant and benign prostate cancer. This framework proposes a noninvasive computer-
aided diagnosis system that integrates two imaging modalities of MR (diffusion-weighted (DW) and
T2-weighted (T2W)). For the first time, it utilizes the combination of functional features represented by
apparent diffusion coefficient (ADC) maps estimated from DW-MRI for the whole prostate in combi-
nation with texture features with its first- and second-order representations, extracted from T2W-MRIs
of the whole prostate, and shape features represented by spherical harmonics constructed for the le-
sion inside the prostate and integrated with PSA screening results. The dataset presented in the paper
includes 80 biopsy confirmed patients, with a mean age of 65.7 years (43 benign prostatic hyperplasia,
37 prostatic carcinomas). Experiments were conducted using different well-known machine learning
approaches including support vector machines (SVM), random forests (RF), decision trees (DT), and
linear discriminant analysis (LDA) classification models to study the impact of different feature sets
that lead to better identification of prostatic adenocarcinoma. Using a leave-one-out cross-validation
approach, the diagnostic results obtained using the SVM classification model along with the combined
feature set after applying feature selection (88.75% accuracy, 81.08% sensitivity, 95.35% specificity,
and 0.8821 AUC) indicated that the system’s performance, after integrating and reducing different
types of feature sets, obtained an enhanced diagnostic performance compared with each individual
feature set and other machine learning classifiers. In addition, the developed diagnostic system
provided consistent diagnostic performance using 10-fold and 5-fold cross-validation approaches,
which confirms the reliability, generalization ability, and robustness of the developed system.

Keywords: prostate cancer; MRI; texture analysis; shape features; functional features; computer-aided
diagnosis; PSA

1. Introduction

In the United States (US), as well as worldwide, prostate cancer (PCa) is one of the
most common male malignancies, and the second most common cancer type in the US
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with a death rate of about 2.4% among male patients [1,2]. It is considered a serious disease
because of the danger of its metastasis into other parts of the body, such as the bladder,
bones, and rectum. By 2030, it is expected that there will be up to 1.7 M PCa patients
worldwide, with nearly half a million corresponding deaths each year [3]. Fortunately,
early detection of PCa leads to better treatment and a lower mortality rate. Throughout
this paper, PCa refers specifically to prostatic adenocarcinoma, the pathological subtype
responsible for 99% of prostate malignancies.

Multiple screening and diagnostic tests are used to search for symptoms of prostate
cancer including prostate-specific antigen (PSA) blood test [4], digital rectal examination
(DRE) [5], needle biopsy [6], and magnetic resonance imaging (MRI) [7]. All these methods
have recognized shortcomings. For instance, because PSA levels are measured in the
blood, situations such as inflamed prostate can produce a high PSA value and may lead
to treatments that are not needed [8,9]. In the DRE test, the physician checks the prostate
manually to feel the surface of the prostate for regions of hardness. This approach can only
identify peripheral zone tumors and cannot identify transitional zone and central zone
tumors, or tumor regions that are too small to be felt [3,8]. Transrectal ultrasound (TRUS)
guided biopsy [8] is the gold standard diagnostic technique, where the doctor takes a set
of small tissue samples from the prostate to investigate under a microscope for cancerous
cells. However, it is a painful and expensive procedure, and has adverse effects, such as
bleeding and infection [8,10].

Over the past decade, prostate MRI has come to be widely used for cancer detection,
especially to discover and locate intraprostatic lesions [11,12]. As a result, large numbers
of MR examinations need to be processed. There is general consensus that the MRI
submodalities best suited for examination of PCa include T2 weighted (T2W), dynamic
contrast-enhanced (DCE), and diffusion-weighted (DW). T2W is the most common type
of MRI that employs the transverse magnetization time T2 to create a grayscale image of
the scanned area of the body [13]. The idea behind DW-MRI is that it generates images
with contrast that reflects differences in the microscopic movement of water molecules
within tissues [14]. It can distinguish between benign and suspicious prostatic lesions
according to apparent diffusion coefficient (ADC) values from the signal intensity in
images obtained using different b-values [7]. Several studies employed apparent diffusion
coefficient (ADC) maps, which are quantitative maps calculated from DW-MRI, for PCa
diagnosis [3,7,12]. Moreover, the acquisition of DW images does not involve injecting a
human with a contrast agent, unlike DCE-MRI [15]. DW- and T2W-MRI have acquired
popularity as non-invasive imaging techniques for detecting prostate cancer and may
overcome many of the flaws of other methods [9]. It is worth mentioning that a few
studies have tried to advanced modeling using intra-voxel incoherent motion (IVIM) MR
imaging for PCa diagnosis [16]. IVIM emerged as a different approach for obtaining of
perfusion information. Significant limitations of the IVIM analysis include the influence
of the b-values used in the measurements and lack of standardization of calculation of
IVIM parameters.

Over the last two decades, computer-aided diagnosis (CAD) has become a key tech-
nology in healthcare with the potential to enhance diagnosis and detection of diseases and
then improvements in treatment [17–19]. Incorporating artificial intelligence (AI) into CAD
systems can help clinicians avoid subjective decisions and reducing reading time. A typical
AI-based CAD system takes MR images, locates the prostate, detects tumors within the
prostate, and then classifies which of those tumors are likely to be malignant [11]. In recent
years, abundant research studies on CAD systems were published employing a variety of AI
techniques [12,13,15,17–19]. CAD systems employing AI can be largely classified into hand-
crafted feature-based CAD and deep learning-based CAD. Our proposed framework falls
under the category of handcrafted feature-based CAD. Handcrafted feature-based CAD has
attained more popularity in texture classification than deep learning-based techniques [20],
owing to the fact that texture data tend to occupy much higher dimensional manifolds
compared to object recognition data. Furthermore, deep learning techniques require a huge
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number of images for training models. Many of the effective CAD systems created for PCa
use a group of handcrafted features that were applied for medical and non-medical images.

2. Related Works

There are many works of prostate cancer CAD systems in the literature. CADs that
rely on handcrafted features have become popular in the medical image analysis field. For
example, the work in [19] employed only 215 texture features extracted from T2W-MRI
images and combines the prediction results of 11 classifiers. A noteworthy contribution was
the work on many different texture features. This implies that their work investigates many
features that have not been used before in common CAD systems. This work is limited
in several aspects. For one, it examines the peripheral zone only. It also used the default
parameter setting for each classifier. Moreover, only voxels within the malignant areas
that are observable in T2W-MR images were considered cancerous voxels, this implies that
voxels in the cancerous areas, which did not appear in T2W, were deemed normal. In [17],
the authors introduced a CAD system based on texture, spatial, and intensity features
extracted from DW (b = 2000 s/mm2), ADC, and T2W images on 244 patients. The total
number of features was 17. They applied random forest (RF) classifier and compared
their model to previous CAD models based on support vector machine (SVM) assessed
on the same test data. However, their model has some limitations in that they use high
b-value of 2000 s/mm2, where many institutes may not have the equipment to acquire such
images. In addition, they used an endorectal coil MRI (ERC) when ERC is not available in
all institutions.

A new voxel-based classification CAD system was proposed in [21], where each
voxel in the prostate gland will be classified as normal or cancerous by the means of four
modalities of MRI. Their goal was to produce a probabilistic map of cancer location in the
prostate. They extracted a set of texture, intensity, edge, and anatomical features. These
features were further decreased to provide a group of significant features that accurately
detect malignancies. The random forest was chosen as their base classifier. However, this
study is limited in that authors used a small cohort of patients (only 17 patients). Another
machine learning (ML) framework was introduced in [22], where authors tested seven
different classifiers to identify the classification model that most correctly differentiates
between high-risk prostate cancer patients and low-risk patients. They used 55 texture
features for both ADC and T2W images on 121 patients.

Recently, authors in [9] created a model based on auto-fixed segmentation through
identical VOIs automatically generated a spherical VOI with the center of the lesion image
for quantifying the phenotype of clinically significant (CS) peripheral zone lesions. They
used two different datasets and extracted 92 quantitative radiomics features. They showed
that adding DCE-MR imaging features enhanced the AUC value from 0.81 to 0.87. This
model has a limitation that is only applicable to peripheral zone lesions. In addition, many
institutions are reluctant in applying contrast agent to the patients. Other researchers,
such as those in [23], developed a predictive ML model based on manual segmentation
of T2 images on 191 patients. They extracted 367 radiomic features including the features
suggested by the radiologist. Moreover, they applied the maximum relevance minimum re-
dundancy technique to elect a subset of correlated features. Four classifiers were applied to
evaluate the model and the model was compared with radiologist assessments. The model
is concerned with two tasks: (1) normal vs. cancerous prostate lesion and (2) clinically
significant prostate cancer vs. clinically insignificant prostate cancer.

In recent years, the breakthrough of deep learning in the field of image processing has
radically altered prostate cancer detection and grading using MRI images [24,25]. In the
literature, different related attempts on PCa were published [13,26–29]. The prostate CAD
in [13] deployed a fully automatic mono-parametric MRI malignant PCa identification
and localization system, where authors proposed a new 3D sliding window technique,
that preserved the 2D domain complexity while utilizing 3D information. Although there
are available four different modalities in their public dataset, the authors used only the
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T2W sequence on 19 patients. A first attempt to produce probability maps for prostate
cancer detection by applying deep learning was introduced in [26]. The authors enhanced
the holistically nested edge detection (HED) deep CNN. The main advantage of their
work was in collecting their dataset from six institutions worldwide. One limitation of the
study, however, was that the selected patient cohorts comprised high and intermediate
risk patients only. In the same context, the authors of [27] introduced another model that
also utilized CNN to evaluate predefined regions on prostate MRI. Lesions were manually
segmented by a radiologist. They used three independent cohorts to reduce overfitting for
the neural network. A four-class CNN was trained using the fastai library. They utilized
Cohen’s kappa to measure the agreement of the model with the radiologist and found a
rather low agreement (kappa = 0.40) between the model-driven and radiologist scoring.

Recently, the authors of [28] introduced a new classification framework, which was
trained using patient-level labels only applied for two datasets. Features extracted by
employing seven 3D ResNet CNN architectures from DW images, T2W images, and ADC
maps. Then, a two-level SVM classifier scheme was applied to integrate the selected feature
vectors and normalized clinical features to obtain a final result of classification. However,
there was a big difference in performance evaluation between radiologist and their CAD.
Another recent study [29], proposed a Retina U-Net detection framework to locate the
lesions and expected their most likely Gleason grade. They worked on both the lesion
level and the patient level on two different datasets. On the lesion level, they reported
a sensitivity of 100%, specificity of 79% and an AUC of 0.96 on the first dataset and a
sensitivity of 100%, specificity of 80% and an AUC of 0.96 on the second dataset. However,
at the patient level, they found a noticeably reduced performance on the first dataset
(AUC = 0.87, sensitivity = 100%, and specificity = 37.5%) and on the second dataset as well
(AUC = 0.91, sensitivity = 100%, and specificity = 76.2%). However, their model has two
limitations. First, it needs additional validation to evaluate histological results of targeted
biopsies to the lesions detected by the model. Second, the authors successfully trained their
model on two different datasets, but it still performed differently with each of them. This
shows that CAD for prostate MRI is a very challenging area of study. Table 1 reports a brief
recapitulation of the reviewed CAD studies.

Table 1. A brief comparison between previous prostate MRI CAD studies.

Reference Year Type of
Approach Features Type Classes Images

Sequences
No. of Patients

Involved Accuracy Result

[17] 2017

Handcrafted
features-based

CAD

Spatial, intensity,
and texture

Benign, Gleason 6,
Gleason 7, Gleason 8,
Gleason 9, Gleason 10

B2000, ADC,
and T2W 224

SVM model achieved an AUC
value of 0.86, while Random

Forest achieved an AUC of 0.93

[19] 2016 Texture Malignant or benign T2W 45 It has a value of 0.93 AUC

[21] 2017
Texture, intensity,

edge, and
anatomical

Voxel-based
classification

DWI, T2W, DCE,
and MRSI 17

Classification performance
of an average AUC of

0.836 ± 0.083 is achieved

[22] 2019 Texture High risk patients
and low risk patients T2WI and ADC 121

Quadratic kernel based SVM
is the best model with

an accuracy of 0.92

[9] 2020 Texture
and intensity

Benign and/or cs
PCa vs. non-cs PCa

B50, b400, b800,
b1400, T2WI,

DCE, and ADC
206 It has an average

AUC value of 0.838

[23] 2020 Shape, texture, and
statistical texture

Normal vs. cancerous
prostate lesion and
clinically significant

PCa vs. clinically
insignificant PCa

ADC and T2WI 191

AUC value for normal vs.
cancerous classification
is 0.889, while the AUC

value for clinically
significant PCa vs. clinically

insignificant PCa is 0.844

[13] 2019 Deep learning-based CAD Produces a voxel
probability map T2WI 19

The model attained an AUC
value of 0.995, a recall of 0.928,

and an accuracy of 0.894.
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Table 1. Cont.

Reference Year Type of
Approach Features Type Classes Images

Sequences
No. of Patients

Involved Accuracy Result

[26] 2018

Deep learning-based CAD

Produces probability
maps to detect
prostate cancer

T2WI, ADC, and
high b-value

(b1500 for cases
imaged without
ERC insertion,

and b-2000 with
ERC insertion)

186

The model attained an average
AUC value of 0.94 in the
peripheral zone and an

average AUC value of 0.92
in transition zone.

[27] 2020

Gives a PI-RADS
score to a lesion

detected and
segmented by
a radiologist

T2WI, T1WI,
ADC, and

(b1500 or b2000)
687 Kappa = 0.40, sensitivity = 0.89,

and specificity = 0.73.

[28] 2021
Probability that

patient has
prostate cancer

T2WI, b200,
ADC in the first
dataset, T2WI,

ADC in the
second dataset

249 patients in
the 1st dataset and

282 patients in
the 2nd dataset

AUC value for the first
dataset was 0.79, and for the

second dataset was 0.86.

[29] 2021

Predicting the
Gleason grade group

and classifying
benign vs. csPCa

T1WI and T2WI

490 cases for
training and 75
cases for testing
from 2 different

datasets

On the lesion level, AUC of
0.96 for both the first and

second datasets. On the patient
level, AUC of 0.87 and 0.91,

for the first and second
datasets, respectively.

To overcome the drawbacks of the aforementioned studies, we developed a new
comprehensive framework (shown in Figure 1) for early identification of prostatic ade-
nocarcinoma. The developed CAD system has the following main contributions: (i) it
calculates functional features represented using cumulative distribution functions (CDFs)
of 3D apparent diffusion coefficients (ADCs), estimated from segmented DW-MR images
of the whole prostate. The proposed framework employs DW-MRI data gathered at nine
different b-values (b = 0, 100, 200, 300, 400, 500, 600, 700, and 1400 s/mm2); thus, it is not
sensitive to a specific choice of b-value and accounts for blood perfusion and water diffu-
sion at both low and high b-values. (ii) The system extracts first and second order textural
features that best describe the malignancy status of the prostate by applying novel rotation
invariant techniques. (iii) It estimates best discriminating shape features by applying novel
spherical harmonics analysis. (iv) Lastly, it integrates of functional, textural, shape features
from two modalities of MRI (DW and T2W) with clinical biomarker (PSA) to produce a
new comprehensive CAD system for the early identification of prostatic adenocarcinoma.
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3. Material and Methods

The steps of the proposed framework are fully illustrated below and depicted in
Figure 1.

3.1. Patient Population

A total of 92 patients, who were evaluated for prostate cancer, had undergone T2W-
MR and DW-MR imaging at Urology and Nephrology Center, Mansoura University,
Egypt, in the period between 2019 and 2021, were included. Inclusion criteria were:
(a) high PSA (>4 ng/mL), (b) prostatic adenocarcinoma, and (c) physically and clini-
cally fit for biopsy. Exclusion criteria were: (a) claustrophobia, (b) metallic implants
and cardiac pace marker not suitable for MRI, or (c) abnormal coagulation. Twelve pa-
tients who had prostatitis and/or refused to participate in the study were then excluded.
At the end, we were left with 80 patients with a mean age of 65.7 years, 43 diagnosed
with benign prostatic hyperplasia, 37 with prostatic carcinomas). MRI imaging was
performed on a 3T scanner (Ingenia, Philips Medical Systems, Best, Holland) with the
following settings: number of signals averaging (NSA) = 4, flip angle = 90◦, echo time
(TE) = 88 ms, fasting imaging mode = echo planner imaging (EPI), and repetition time
(TR) = 4734 ms, fat suppression = spectral attenuated inversion recovery (SPAIR), folder-
over-suppression = over sampling. Our study was approved by the IRB (Code Number:
R.21.04.1289), and all experiments were carried out according to the related rules and
instructions, and all patients submitted informed consent to create the original dataset.
An experienced radiologist with more than 10 years of hands-on-experience performed
the manual segmentation of the prostate and all detected lesions using the Photoshop
software tool.

3.2. Extracting Features

Extracting discriminative features from an area of interest is a fundamental characteris-
tic of an efficient CAD system [8,30]. Common features for medical images include texture,
topological, color, morphological, intensity, and various features [18,31,32]. Designing an
efficient image feature set has a vital role in an accurate CAD system. In this framework,
we extracted 266 image feature descriptors for the segmented regions of interest (ROIs) of
lesion and prostate, and their extraction was primarily motivated by functional, textural,
and morphological points of view. This implies that each voxel can be represented in a
266-dimensional feature space.

3.2.1. Functional Features

Relying on the observations that the ADC measures the degree of molecular mobility
and that tumors limit water motion because of the low permittivity of their cell membranes
in comparison with the healthy tissue, a high-grade tumor has a smaller ADC value
than a low-grade tumor, and a malignant tumor has a smaller ADC value than a benign
one [33,34]. Hence, ADC maps could be used as discriminative functional features to
enhance the diagnostic performance of PCa. To generate each ADC map, two DW-MR
images are required; the first image is acquired at the baseline (b0), whereas the other image
is acquired at a higher b-value. It is calculated at the voxel level as follows:

ADC(x, y, z) =
ln s0(x,y,z)

sn(x,y,z)

bn − b0
(1)

where s0 and sn are the signal intensity acquired at the baseline (b = 0) and a higher b-value
bn ∈ {100, 200, 300, 400, 500, 600, 700, 1400} s/mm2, for the voxel at position x, y, z. Then,
ADC maps were calculated at eight different b-values for all cases. Yet applying the voxel-
wise ADCs of the whole prostate volume as discriminatory features faces two challenges.
The main challenge is the data truncation or zero padding for small or bigger prostate
volumes, because of the variable size of input data. The other challenge is that the needed
training time to classify large data volumes is very high. We avoided these challenges
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through constructing the cumulative distribution functions (CDFs) of the 3D ADC maps
at different b-values for each case. The smallest and largest ADCs are estimated for all
datasets. After that, the ADCs are split into one hundred steps, so that all ADC values
are maintained as coherent with a unified size without missing any information. Finally,
CDFs of the 3D ADC map at different b-values are created and employed as discriminative
features. Figure 2 shows the different steps to extract the functional features and Figure 3
shows an illustration for the estimated CDF of two cases (benign and malignant).
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3.2.2. Texture Features

Texture analysis (TA) is a significant field of study in medical imaging applications.
TA has been utilized in the diagnosis of a variety of cancers [31,35–37]. There is no precise
definition of TA, however, it can be described as the analysis of the spatial distribution of
patterns that gives the visual appearance of roughness, randomness, smoothness, fluency,
etc. [36]. It has been proven that MR images have various textural patterns that are often
invisible to the human eye. Accordingly, texture analysis methods were utilized in our
framework on the segmented region of interests (ROIs) of the whole prostate gland to
precisely extract first and second order texture features that best characterize the homo-
geneity and heterogeneity between benign and malignant carcinomas. Usage of such
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extensive texture features depends on the fact that malignant carcinoma usually has high
textural heterogeneity when compared to benign carcinoma. Figure 4 shows an illustrative
example to compare benign cases and different grades of malignant cases in terms of
texture differences.
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Figure 4. Illustrative examples of prostatic texture differences showing high gray level heterogeneity
in four different malignant cases (first row) and low gray level heterogeneity in four different benign
cases (second row).

Statistical TA methods can be largely classified into first-order and second-order
texture features, based on the manner the gray levels are distributed over the pixels
as follows.

First-order texture features: These texture features investigate the frequency distri-
bution in the ROI through a histogram. Specifically, mean, median, variance, standard
deviation, kurtosis, skewness, entropy, CDFs (N = 10), descriptive (mean, variance, Nobs,
kurtosis), the number of points in each bin, size of bins, lower limit, bin width, cumulative
frequency, and the gray level percentiles were calculated; from the 10th to the 100th per-
centiles with a step of 10%. A total of 36 first-order textural features were calculated. These
features do not depend on the pixel’s location nor on the gray levels of other pixels in its
immediate neighborhood (Figure 5).
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Second-order texture features: These features depend on the probability that a pair
of gray levels are selected at random distances and directions over the whole image [37].
In our framework, we used the gray level co-occurrence matrix (GLCM) [38] and gray level
run length matrix (GLRLM) [39] as follows:

GLCM is based on computing how many times pairs of pixels with similar values
and in a specified spatial relationship happen in a prostate object. The process starts with
identifying the range of the original gray level of the prostate object and tumor object and
normalizing these gray values to be in the range of 0 to 255 bringing on a GLCM matrix
with a dimension of 256 × 256. After that, all possible pair combinations are specified to
constitute the GLCM columns and rows. Finally, the value of each element within the matrix
is estimated by determining the differences between each voxel and its neighbors. The
neighborhood block is defined by a distance and an angle (the next voxel with the specified
angle). Our neighborhood block has a distance of 1 in the Z-Plane (between different layers)
and 1 in the XY plane (within the same layer). We worked with angles of zero, π

2 , π
4 , and

3π
4 . Thus, each voxel in our 3D object has a total of 26 neighbors (8 in the same layer, 9 in

the upper layer and 9 in the lower layer). After creating the GLCM, it is normalized to have
a sum of one to have the ability to extract the texture features depending on it. After each
stage, a number of representative texture features (N = 6), specifically; contrast, correlation,
angular second moment (ASM), dissimilarity, homogeneity, and energy were extracted as a
summary of the GLCM (Figure 6).
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GLRLM can be expressed as a set of pixels in a specific orientation having the same
intensity value [40]. The number of such pixels specifies the length of the gray level run.
GLRLM is a two-dimensional matrix, where each item p(i,j|θ) represents the number of
elements (j) having an intensity (i). The normalized gray level matrix in our system has
256 rows with different numbers of columns between our objects. Herein, we searched for
groups of sequential horizontal voxels in the XY plane and searched for vertical groups of
voxels in the Z plane. Next, we estimated 16 features of the GLRLM, specifically: gray level
non-uniformity, gray level non-uniformity normalized, high gray level run emphasis, gray
level variance, long run emphasis, long run high gray level emphasis, long run low gray
level emphasis, low gray level run emphasis, run length non-uniformity, run entropy, run
length non-uniformity normalized, run variance, run percentage, short run emphasis, short
run low gray level emphasis, and short run high gray level emphasis (Figure 7).
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3.2.3. Shape Features

For prostate cancer diagnosis and classification using T2W images, radiologists and
researchers agree that morphological features are significant [23,41,42]. In the proposed
framework, a number of shape features (morphological features) were also calculated to
depict the morphology of the tumor candidate region. Shape features are extracted by
capturing the structural information for the segmented region of interest of the lesion. The
motivation for using shape features in our framework is based on the hypothesis that benign
lesion has a less complex shape and a smaller growth rate than the malignant lesion. Figure 8
shows an illustrative example to compare between benign cases and malignant cases in
terms of shape differences. In our work, we utilized the spectral spherical harmonics (SH)
analysis [43] for extracting shape features for PCa diagnosis. A random point inside the
region, or precisely in the interior of its convex kernel, was chosen to be the origin point
(0, 0, 0). In this coordinate system, the surface of the region can be deemed a function
of the polar and azimuth angle, f (θ, ϕ), which can be expressed as a linear set of base
functions Yτβ specified in the unit sphere. The modeling of spherical harmonics constructs
a triangulated mesh approximating the surface of the lesion, afterwards maps it to the unit
sphere by employing the attraction–repulsion technique [44].
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Each cycle (α) of the attraction–repulsion approach operates as follows. Assume that
Cα,i represents the coordinates of the node on the unit sphere corresponding to mesh
vertex i at the beginning of cycle α. Let dα,ji = Cα,j − Cα,i represent the vector from node i
to node j; then, the Euclidean distance between nodes i and j is dα,ji =

∣∣∣∣dα,ji
∣∣∣∣. Assume that

Ji represents the index group of neighbors of vertex i in the triangulated mesh. Next, the
attraction step updates the node’s locations to maintain it in the center with its neighbors
according to Equation (2).

C′α+1,i = Cα,i + CA,1 ∑
jεJi

(
dα,ji d2

α,ji + CA,2
dα,ji

dα,ji

)
(2)

where CA,1 and CA,2 are parameters which specify the strength of the attractive force,
j = 1, 2, 3, . . . , J − 1, J, and i = 1, 2, 3, . . . , I − 1, I. After that, the repulsion step enlarges
the spherical mesh to hinder it from deteriorating according to Equation (3).

C′′α+1,i = C′α+1,i +
CR
2I

I

∑
j=1;j 6=i

dα,ji

d2
α,ji

(3)

where CR is a repulsion parameter that determines the shift incurred due to each other
surface node and maintains a balance between the processing time and the accuracy. A small
value of CR (e.g., 0.3 ≤ CR ≥ 0.7) maintains a higher accuracy at the cost of increasing
processing time. After that, the nodes are projected back onto the unit sphere through
giving them the unit norm, and these are their coordinates at the start of the subsequent
cycle according to Equation (4).

Cα+1,i =
C′′α+1,i

‖ C′′α+1,i ‖
(4)

In the final cycle, α f , of the attraction–repulsion approach, the surface of the lesion is in
a one-to-one correspondence with the unit sphere. Every point Ci = (xi, yi, zi) of the initial
mesh has been mapped to a corresponding point Cα f ,i = (sin θi cos ϕi, sin θi sin ϕi, cos θi)

with polar angle θi ∈ [0, π] and azimuth angle ϕi ∈ [0, 2π]. At this time, it is possibly to
represent the lesion by a spherical harmonics series (Yτβ). Generating SH series is through
solving an equation of isotropic heat for the surface that is considered a function on the
unit sphere. The Yτβ of degree τ with order β is identified according to Equation (5).

Yτβ =


cτβ G|β|τ cos θ sin(|β|ϕ) −τ ≤ β ≥ −1
cτβ√

2
G|β|τ cos θ β = 0

cτβ G|β|τ cos θ cos(|β|ϕ) 1 ≤ β ≥ τ

(5)

where cτβ is the spherical harmonics factor and G|β|τ represents the relevant Legendre
polynomial of degree τ with order β. Benign lesions are described by a lower-order
integration of spherical harmonic series, since their shapes are homogenous and less
complex, whilst malignant lesions are described by a higher-order integration of spherical
harmonic series since their shapes are heterogeneous and more complex. Subsequently, the
overall number of markers measuring the shape complexity of the identified lesions is the
number of the spherical harmonics. In our framework, a total number of 85 is sufficient to
properly rebuild any lesion shape. Figure 9 shows the reconstruction errors differences at
different harmonics between a malignant and a benign case.

3.3. Feature Integration and Selection

After functional and texture feature extraction from whole prostate gland, and shape
feature extraction from lesion part, the features were integrated with the PSA clinical
biomarker to produce a combined feature set (FS5) to be used for precise identification of
prostatic adenocarcinoma.
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Figure 9. Reconstruction errors differences at different spherical harmonics (SH 01, 10, 50, 70, 85)
between a malignant case and a benign case.

A feature selection method generally aims to select the best features subset for cor-
rectly classifying objects to different classes in the dataset. Hence, an effective selection
method of relevant and redundant features for PCa classification is required to increase
classification accuracy, precision, and to minimize complexity. Many feature selection
techniques have been developed in the domain of ML. They can be generally categorized
into three approaches: filter, wrapper, and embedded [45–49]. A wrapper approach is
applied in this framework. Generally, the wrapper-based feature selection approach uses
learning procedures to determine which features are beneficial. It follows a greedy search
strategy through the space of possible markers. In this study, we performed a bi-directional
stepwise procedure [50] to find the optimal set of markers while taking into consideration
the dependencies between features.

A bi-directional stepwise procedure is a combination of forward selection and back-
ward elimination. As with forward selection, the procedure starts with no features and
adds features using a pre-specified criterion. After adding each new feature, remove any
features that no longer provide an improvement in the model fit (like backward selection).
We applied the bi-directional algorithm with two thresholds of significance (0.05 and 0.1)
on the combined feature sets (FS5) to obtain FS6 and FS7, respectively. A summary of the
different feature sets is shown in Table 2.

Table 2. Details of the extracted feature sets. Let ST denote the significance threshold.

Feature Set No. Representation Number of Extracted Features

FS1 Functional features for whole prostate 122
FS2 Texture features for whole prostate 58
FS3 Shape features for lesion only 85
FS4 Prostatic-specific antigen (PSA) 1
FS5 Combined features (FS1 + FS2 + FS3 + FS4) 266
FS6 Selected features of FS5 with ST = 0.05 101

FS7-Proposed Selected features of FS5 with ST = 0.1 162
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3.4. Cancer Classification

Following feature extraction and feature selection, our framework proceeds with a
classification stage to classify the input images as either benign tumors or malignant tumors.
In the training stage, we used four different machine learning classifiers to attain the best
possible results (e.g., support vector machine (SVM) [51], random forest (RF) [52], the
C4.5 decision tree algorithm (DT) [53] and linear discriminant analysis (LDA) [54]). We
chose these classifiers because of their popularity and strength in CAD systems. SVM is
a kernel-based learner that is robust regarding the sparsity of data. RF has been highly
successful as a general-purpose classifier and is considered as an ensemble of decision trees.
DT is fairly robust in the presence of noise and most effective in CAD systems. On the other
hand, we used the LDA classifier that permits the fast processing of data samples.

To better highlight the advantage of the feature integration process, we first assessed
the performance of each feature set separately. Then, the individual feature sets are com-
bined using a concatenation way, and utilized the aforementioned classifiers to get the final
diagnosis. It should be noted that, for each classifier, a grid search algorithm was used
to search for the optimal parameters, with the classification accuracy as the improvement
criterion, for each of the classifier techniques being tested. In the Section 4, more details
about the performance of feature integration will be provided.

3.5. Performance Evaluation

The new framework was tested on the datasets mentioned in Section 3.1. Performance
evaluation of the new framework was performed using four accuracy metrics: (I) specificity,
(II) sensitivity, (III) accuracy, and (IV) AUC. More details about these metrics can be found
in Figure 10. For assessing the performance of the proposed framework, K-fold cross-
validation was implemented for numerical evaluation. Three validation procedures were
implemented: 5-fold, 10-fold, and leave-one-out cross validation. In order to mitigate
accuracy variations, all the experiments were executed 10 times and the mean and stan-
dard deviation for the accuracy, sensitivity, specificity, and AUC were calculated for each
feature set.
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Figure 10. Performance metrics for evaluation of the proposed framework.

To investigate the added value of our framework, the developed CAD system was also
compared to the clinical diagnosis made by an expert radiologist (10 years of experience
in prostate MRI) for each patient on the basis of the Prostate Imaging Reporting and
Data System (PIRADS) version 2 [55]. PIRADS can be used as a decision support system
for targeting suspicious lesions. A radiologist scores each suspicious lesion on a scale
from 1 to 5. Table 3 shows the scores that compose the PIRADS score system and their
meaning in terms of the risk of the cancer being clinically significant. The radiologist was
blinded to the respective PSA levels and pathological classification of tumors. PIRADS
uses a dominant MRI sequence, including T2W, DWI, and ADC images.
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Table 3. PIRADS scores.

PIRADS Score Definition

1 Most probably benign (normal)
2 Probably benign tumor

3 Intermediate (the presence of clinically significant cancer is
equivocal)

4 Probably malignant tumor
5 Most probably malignant tumor

4. Experimental Results

In order to validate and better highlight the effectiveness of the proposed framework,
we first evaluated the proposed CAD system using each individual feature set (descrip-
tions of each feature set are shown in Table 2). Furthermore, we evaluated the proposed
CAD system using the combined features after applying feature selection, resulting in a
notably improved classification performance. All the seven feature sets were evaluated
and compared their performance using SVM, RF, DT, and LDA classifiers. For the purpose
of applying the grid search algorithm, we created models for various combinations of
parameters, assess the model for each combination and saved the results. We considered
the best sets of parameters for each classifier as follows: For SVM we choose the gaussian
kernel function for FS2, FS4, and FS6, linear kernel for FS1, and polynomial kernel of
order 2 for other feature sets. For RF we set the number of learning cycles to 30. For DT we
used Gini diversity index as the split criterion, and the number of splits varied according
to feature set (10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA,
the Discriminant type was assumed to be diagLinear for FS1 and FS2 and Linear to other
feature sets.

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classifier,
respectively, under the three validation schemas. Overall, the obtained results showed that
the performance based on feature set FS7 is much better than all other individual feature
sets and this highlights the advantage of the features integration and selection process in
the proposed framework. It also showed that using a significance threshold = 0.1 provides
better results than using a significance threshold = 0.05. In the three validation schemas,
the SVM classifier outperformed all other classifiers. Since SVM demonstrated the best
diagnostic capabilities, it was selected for the proposed framework. SVM is also well-
known for its great regularization capabilities preventing overfitting. In terms of assessing
the individual feature sets, the best results were achieved reassuringly by the functional
features (FS1) and this for almost all classifiers. As shown in Table 5, functional features
achieved the best classification performance for all experiments running in 5-fold cross
validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 2.68%
of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was
achieved by texture features (FS2). PSA alone attained the lowest performance.

It can be noted from comparing the performance metrics of the four classifiers for
the different validation schemas, that we can find that there is a low variance between
the results in the same classifier and this is a good indicator of a good fit model of ML.
It should be pointed out that the implementation of k-fold cross-validation was guaranteed
to achieve a balanced reduction of variance and bias in classifier performance estimation.
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Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification model,
where
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

64.86 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

88.37 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7662 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS3
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183
10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206

Leave-one-out 77.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

86.49 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

69.77 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7813 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS4
5-fold 72.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

51.35 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

90.70 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7102 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

10-fold 72.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

51.35 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

90.70 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7102 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

Leave-one-out 72.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

51.35 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

90.70 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7102 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS5
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021
10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127

Leave-one-out 87.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

81.08 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

93.02 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8705 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS6
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092
10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084

Leave-one-out 86.25 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

95.35 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8551 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS7
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155
Leave-one-out 88.75 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

81.08 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

95.35 ±

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8821 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

Table 5. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using a RF classification model, where
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC

FS1
5-fold 86.67 ± 1.56 76.58 ± 1.27 95.35 ± 2.68 0.8603 ± 0.0152
10-fold 86.09 ± 1.59 77.03 ± 1.35 93.9 ± 2.31 0.8546 ± 0.0154

Leave-one-out 85.78 ± 1.24 76.35 ± 1.79 93.9 ± 2.83 0.8512 ± 0.0115

FS2
5-fold 76.25 ± 2.28 63.97 ± 4.03 86.82 ± 2.89 0.7539 ± 0.0234
10-fold 76.67 ± 1.38 65.76 ± 4.03 86.05 ± 2.68 0.7591 ± 0.0148

Leave-one-out 76.75 ± 1.00 65.4 ± 2.02 86.51 ± 3.08 0.7596 ± 0.0087

FS3
5-fold 73.25 ± 0.61 75.68 ± 1.71 71.16 ± 1.14 0.7342 ± 0.0065
10-fold 72.68 ± 1.45 75.68 ± 1.45 70.1 ± 1.94 0.7289 ± 0.0153

Leave-one-out 72.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

69.77 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7272 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS4
5-fold 73.75 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

51.35 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

93.02 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7219 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

10-fold 73.57 ± 0.44 50.96 ± 0.94 93.02 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.72 ± 0.0047
Leave-one-out 73.75 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

51.35 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

93.02 ±

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7219 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS5
5-fold 84.82 ± 1.82 77.22 ± 1.97 91.36 ± 2.05 0.8429 ± 0.0182
10-fold 87.32 ± 1.56 79.54 ± 1.97 94.02 ± 1.69 0.8678 ± 0.0157

Leave-one-out 86.13 ± 1.42 77.30 ± 1.32 93.72 ± 2.09 0.8551 ± 0.0138

FS6
5-fold 83.75 ± 0.95 75.29 ± 1.73 91.03 ± 2.30 0.8316 ± 0.0089
10-fold 84.58 ± 1.56 76.58 ± 3.12 91.47 ± 1.09 0.8402 ± 0.0165

Leave-one-out 86.38 ± 1.42 78.65 ± 2.24 93.02 ± 1.80 0.8584 ± 0.0144

FS7
5-fold 84.86 ± 1.5 77.78 ± 2.47 90.96 ± 2.31 0.8437 ± 0.015
10-fold 85.63 ± 1.53 77.67 ± 1.31 92.73 ± 2.44 0.8505 ± 0.0147

Leave-one-out 86.25 ± 1.48 77.30 ± 1.32 93.95 ± 2.59 0.8564 ± 0.0141
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Table 6. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using a DT classification model, where
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC

FS1
5-fold 75.45 ± 2.86 76.35 ± 4.22 84.71 ± 6.62 0.7553 ± 0.0266
10-fold 75.50 ± 1.27 77.30 ± 1.32 73.95 ± 1.74 0.7563 ± 0.0125

Leave-one-out 77.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

72.97 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

81.40 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7718 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS2
5-fold 70.63 ± 1.88 53.60 ± 4.25 85.27 ± 4.58 0.6944 ± 0.0182
10-fold 71.00 ± 0.94 54.59 ± 3.15 85.12 ± 3.78 0.6978 ± 0.0082

Leave-one-out 70.00 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

45.95 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

90.70 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.6832 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS3
5-fold 66.79 ± 1.13 61.78 ± 4.88 71.10 ± 3.90 0.6644 ± 0.0122
10-fold 65.00 ± 2.85 62.16 ± 2.96 67.44 ± 3.89 0.6480 ± 0.0280

Leave-one-out 66.25 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

70.27 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

62.79 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.6653 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS4
5-fold 66.88 ± 3.59 61.71 ± 2.88 71.32 ± 5.48 0.6652 ± 0.0347
10-fold 67.50 ± 1.12 58.38 ± 2.76 75.35 ± 1.86 0.6686 ± 0.0117

Leave-one-out 65.00 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

56.76 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

72.09 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.6442 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS5
5-fold 78.44 ± 2.32 79.39 ± 3.56 77.62 ± 4.93 0.7851 ± 0.0221
10-fold 80.25 ± 3.10 79.46 ± 2.16 80.93 ± 5.58 0.8019 ± 0.0293

Leave-one-out 82.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

83.78 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

81.40 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8259 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS6
5-fold 79.84 ± 3.09 76.01 ± 4.95 83.14 ± 4.15 0.7958 ± 0.0312
10-fold 79.82 ± 1.82 79.92 ± 4.30 79.73 ± 3.67 0.7983 ± 0.0185

Leave-one-out 83.75 ±

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

83.78 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

83.72 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8375 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS7
5-fold 81.46 ± 1.97 77.93 ± 2.88 84.50 ± 3.72 0.8121 ± 0.019
10-fold 80.36 ± 1.10 80.31 ± 2.78 80.40 ± 2.44 0.8035 ± 0.0112

Leave-one-out 83.75 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

83.78 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

83.72 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8375 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

Table 7. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using an LDA classification model, where
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC

FS1
5-fold 79.38 ± 0.88 72.97 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

84.88 ± 1.64 0.7893 ± 0.0082
10-fold 79.75± 0.94 72.97 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

85.58 ± 1.74 0.7928 ± 0.0087
Leave-one-out 80.00 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

72.97 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

86.05 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7951 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS2
5-fold 73.03 ± 1.13 58.69 ± 1.89 85.38 ± 1.05 0.7203 ± 0.0116
10-fold 72.92 ± 0.59 59.01 ± 1.86 84.89 ± 1.17 0.7195 ± 0.0064

Leave-one-out 71.25 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

56.76 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

83.72 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7024 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS3
5-fold 72.29 ± 0.86 74.33 ± 1.36 70.54 ± 2.19 0.7243 ± 0.0078
10-fold 71.50 ± 1.22 74.6 ± 1.33 68.84 ± 1.86 0.7172 ± 0.0119

Leave-one-out 72.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

69.77 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7272 ±

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS4
5-fold 73.13 ± 0.88 50 ± 1.91 93.02 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7151 ± 0.0095
10-fold 73.39 ± 0.56 50.58 ± 1.22 93.02 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.718 ± 0.0061
Leave-one-out 73.75 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

51.35 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

93.02 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.7219 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS5
5-fold 81.56 ± 0.54 73.99 ± 1.31 88.08 ± 0.77 0.8103 ± 0.0057
10-fold 81.75 ± 0.83 74.87 ± 1.24 87.67 ± 1.06 0.8127 ± 0.0083

Leave-one-out 82.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

88.37 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8202 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS6
5-fold 82.92 ± 0.59 73.42 ± 1.01 91.09 ± 0.86 0.8226 ± 0.0059
10-fold 82.32 ± 0.8 72.97 ± 2.04 90.37 ± 0.82 0.8167 ± 0.0087

Leave-one-out 82.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

72.97 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

90.70 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8184 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

FS7
5-fold 83.00 ± 0.93 75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

89.30 ± 1.54 0.8249 ± 0.0077
10-fold 82.29 ± 0.47 75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

87.98 ± 0.87 0.8183 ± 0.0043
Leave-one-out 82.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

88.37 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8202 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 
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ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 
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5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 
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To highlight the advantages of the proposed feature set (FS7), we provided a sum-
mary of comparison between the different classifiers using the three validation schemas
applied on FS7 only in Table 8. From this table, the best results were achieved for FS7 by
the SVM classifier using leave-one-out cross validation with 88.57% ± 0.00% of accuracy,
81.08% ± 0.00% of sensitivity, 95.35% ± 0.00% of specificity, and 0.8821 ± 0.00 of AUC.
The second highest performance results were also achieved for FS7 by the RF classifier
using leave-one-out cross validation with 86.25% ± 1.48% of accuracy and 93.95% ± 2.59%
of specificity, and 0.8564 ± 0.0141 of AUC, while the DT achieved the highest sensi-
tivity of 83.78% ± 0.00%. This suggests that using SVM classifier for classification is a
promising one.

Table 8. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using the different classifiers for only our
proposed feature set (FS7), where
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 
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5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 
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5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
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5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 
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5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 
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indicates 1.0 × 10−5.

Classifier Validation Accuracy Sensitivity Specificity AUC

SVM
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103
10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155

Leave-one-out 88.75 ±

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
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(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

81.08 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

95.35 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8821 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

RF
5-fold 84.86 ± 1.5 77.78 ± 2.47 90.96 ± 2.31 0.8437 ± 0.015
10-fold 85.63 ± 1.53 77.67 ± 1.31 92.73 ± 2.44 0.8505 ± 0.0147

Leave-one-out 86.25 ± 1.48 77.3 ± 1.32 93.95 ± 2.59 0.8564 ± 0.0141

DT
5-fold 81.46 ± 1.97 77.93 ± 2.88 84.50 ± 3.72 0.8121 ± 0.019
10-fold 80.36 ± 1.1 80.31 ± 2.78 80.40 ± 2.44 0.8035 ± 0.0112

Leave-one-out 83.75 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

83.78 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

83.72 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

0.8375 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

LDA
5-fold 83.00 ± 0.93 75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

89.3 0± 1.54 0.8249 ± 0.0077
10-fold 82.29 ± 0.47 75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

87.98 ± 0.87 0.8183 ± 0.0043
Leave-one-out 82.50 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

75.68 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
is also well-known for its great regularization capabilities preventing overfitting. In terms 
of assessing the individual feature sets, the best results were achieved reassuringly by the 
functional features (FS1) and this for almost all classifiers. As shown in Table 5, functional 
features achieved the best classification performance for all experiments running in 5-fold 
cross validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 
2.68% of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was 
achieved by texture features (FS2). PSA alone attained the lowest performance. 

Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specific-
ity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification 
model, where 𝛜 indicates 1.0 × 10−5. 

Feature Set Validation Accuracy Sensitivity Specificity AUC 

FS1 
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215 

10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197 
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 

FS3 
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183 

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206 
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜 

FS4 
5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜 

FS5 
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021 

10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127 
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜 

FS6 
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092 

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084 
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜 

FS7 
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103 

10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155 
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜 

  

88.37 ±
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diversity index as the split criterion, and the number of splits varied according to feature set 
(10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA, the Discriminant 
type was assumed to be diagLinear for FS1 and FS2 and Linear to other feature sets. 

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classi-
fier, respectively, under the three validation schemas. Overall, the obtained results 
showed that the performance based on feature set FS7 is much better than all other indi-
vidual feature sets and this highlights the advantage of the features integration and selec-
tion process in the proposed framework. It also showed that using a significance threshold 
= 0.1 provides better results than using a significance threshold = 0.05. In the three valida-
tion schemas, the SVM classifier outperformed all other classifiers. Since SVM demon-
strated the best diagnostic capabilities, it was selected for the proposed framework. SVM 
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Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜 

FS2 
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166 

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231 
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜 
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In a clinical setting, the AUC value is grouped into three grades: (1) acceptable when
the score ranges from 0.7 to 0.8, (2) excellent when the score ranges from 0.8 to 0.9, and
(3) outstanding when the score is over 0.9 [21,49]. In this regard, the proposed framework
upgrades the CAD system from an acceptable grade to an excellent grade using the pro-
posed feature set (FS7). The AUC reached in leave-one-out cross validation using SVM
classifier was an average of 0.88 with FS7, while it was an average of 0.87 with FS5. This
confirms that the results provided here constitute strong evidence to support the proposed
feature integration hypothesis and feature selection method.

The receiver operating characteristics (ROC) curves for SVM using leave-one-out cross
validation for all feature sets and the proposed FS7 using the three validation schemas in all
classifiers are visualized in Figure 11. ROC shows the trade-off between true positive rate
(sensitivity) and false negative rate (1—specificity). As shown in this figure, the ROC area of
the proposed FS7 is the maximum when compared to other feature sets and this highlights
the advantages of using the proposed feature set (FS7) over other feature sets. Furthermore,
the functional features demonstrated a potential in identifying the malignancy status of a
given prostate tumor. Moreover, SVM classifier is optimal in comparison to other classifiers
evidenced by the highest AUC, as shown in Figure 11.

The PIRADS v2 scores resulted in the correct classification of 47 of 51 lesions (17 benign
prostatic hyperplasia cases and 30 prostatic carcinomas cases). The four lesions that were
not detected were benign lesions. The counts of PIRADS 3 were 29 from 80 cases that were
undecided and this is considered high, more specifically the number of PIRADS 3 was 22
for benign prostatic hyperplasia cases and 6 for prostatic carcinomas. For a fair comparison,
we can say that PIRADS missed 33 cases and there is a large degree of subjectivity. It is
worth mentioning that there were no cases given a score of PIRADS 1 by the radiologist as
PIRADS 1 lesions were generally not biopsied and therefore are only partially included in
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this study. These results stress the need for our CAD system to distinguish these equivocal
lesions further into insignificant and significant tumors and to be more objective.
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5. Discussion

With a high mortality rate, prostate cancer is considered as one of the worldwide
leading cancerous causes of death. Precisely detecting prostate cancer at early stages could
enhance the survival opportunities of the patients.

In this study, we introduce a new comprehensive framework to precisely differentiate
between malignant and benign prostate cancer. The classification results of the developed
CAD system that combined different imaging markers and clinical biomarkers showed
high accuracy, sensitivity, specificity, and AUC. These results revealed the feasibility and
efficacy of the developed CAD system to non-invasively identify prostatic adenocarcinoma
at an early stage. Classification results attained using individual features (functional or
texture or shape or PSA) had lower accuracy, sensitivity, specificity, and AUC compared to
using combined features. Validation schema experiments further reinforce the reliability of
our accuracy findings.
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It is worth noting that this high diagnostic accuracy of the developed CAD system
is obtained by SVM classifier due to its ability to handle non-planar class boundaries
in an efficient and stable manner by using kernels [51]. Throughout this study, we have
extracted functional features from the whole prostate ROI, textural feature from the whole
prostate ROI, and shape features from the lesion ROI only. This can be justified in part by
the fact that the prostate gland as a whole is more informative in terms of functionality
analysis to study the motion of water molecules quantified by 3D ADCs and in terms of
texture analysis by providing a larger area to study the spatial relationship between the
neighboring voxels using various first and second order texture features. On the other
hand, lesion ROI is more informative in terms of the lesion shape, size, and complexity of
the surface.

Most of the clinical research calculates the ADC at a few select b-values [9,14,17,26,27],
typically one of the lower b-values and one of the higher b-values along with the base-
line (b = 0). This study utilized nine different b-values to accurately differentiate between
malignant and benign cases.

There are several other studies that designed to extract different features from DW
MRI and T2 MRI that check the existence of PCa [9,17,21,23,42]. Few have investigated
using clinical features for PCa detection [56]. To the best of our knowledge, there is no
work in the literature that was conducted a fusion of texture, functional, shape imaging
features and clinical features for PCa detection. This implies that our study could be a
base for further studies using a combination of imagery and clinical MRI derived features
to discriminate between benign and malignant PCa. A direct comparison between our
study and other literature would not be objective as the other studies incorporate different
data sets and variations in imaging protocols. However, our results are in line with the
findings of other studies [9,17,21,23], showing that the combination of different features
attained higher classification results than using textural features or morphological features
alone. Moreover, our developed CAD system achieved AUC of 0.882, an improvement
over the study done of Lemaitre et al. [21] that produced an AUC of 0.838, despite using
more imaging modalities than used our study. Additionally, our performance is greater
than the study done by Bleker et al. [9], as they attained an AUC of 0.838, in spite of using
greater sample size in their study (206 patients).

Adding this superiority of the developed system (compared to the literature) to
our experimental findings (Tables 4–8), reflect the accuracy of our methodology and the
potential clinical utility of these provided approaches when used with MR imaging in
computer-aided diagnosis of prostate cancers.

6. Conclusions

In this study, a new CAD system for the precise identification of prostate cancer in
multiple modalities of MRI is presented. The paper depicts the complete design of the
proposed framework to assess the potential role of integrating functional, textural, shape
features combined with PSA and provides a detailed diagnostic performance analysis. The
proposed framework achieved a high classification accuracy of 88.75%, a sensitivity of
81.08%, a specificity of 95.35%, an AUC of 0.8821, in differentiating benign tumor from
malignant tumor using SVM along with the selected features set (FS7) outperforming
the diagnostic abilities of individual and combined feature sets and other well-known
ML classification models (e.g., LDA, RF, and DT). We have also included three validation
schemas (5-fold, 10-fold, and leave-one-out cross validation). These results highlight the
advantage of integrating clinical biomarker with DW-MRI and T2W-MRI for prostate cancer
diagnosis.

Our framework is not devoid of limitations. Firstly, it needs manual lesion segmenta-
tion, that supposes that the tumor can be discovered and segmented accurately. Secondly,
we studied DW-MRI and T2W-MRI acquired from one hospital and using only one type
of scanner. The focus of the future work will be on validating our framework on a large
dataset to verify the robustness of the proposed system. Further research is also needed to
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investigate whether we can reduce the number of b-values that are not informative enough.
In addition, we plan to investigate the potential capabilities of the IVIM model in early and
precise identification of prostatic adenocarcinoma. Moreover, a deep learning-based CAD
will be established for the fully automated extraction of imagery features.
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