Skip to main content
. 2022 Feb 26;22(5):1848. doi: 10.3390/s22051848

Table 4.

Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity (%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification model, where 𝛜 indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC
FS1 5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215
10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197
Leave-one-out 82.50 ± 𝛜 67.57 ± 𝛜 95.35 ± 𝛜 0.8146 ± 𝛜
FS2 5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166
10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231
Leave-one-out 77.50 ± 𝛜 64.86 ± 𝛜 88.37 ± 𝛜 0.7662 ± 𝛜
FS3 5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183
10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206
Leave-one-out 77.50 ± 𝛜 86.49 ± 𝛜 69.77 ± 𝛜 0.7813 ± 𝛜
FS4 5-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜
10-fold 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜
Leave-one-out 72.50 ± 𝛜 51.35 ± 𝛜 90.70 ± 𝛜 0.7102 ± 𝛜
FS5 5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021
10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127
Leave-one-out 87.50 ± 𝛜 81.08 ± 𝛜 93.02 ± 𝛜 0.8705 ± 𝛜
FS6 5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092
10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084
Leave-one-out 86.25 ± 𝛜 75.68 ± 𝛜 95.35 ± 𝛜 0.8551 ± 𝛜
FS7 5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103
10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜