Skip to main content
. 2022 Feb 26;22(5):1848. doi: 10.3390/s22051848

Table 5.

Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity (%), and AUC (in terms of mean ± standard deviation) using a RF classification model, where 𝛜 indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC
FS1 5-fold 86.67 ± 1.56 76.58 ± 1.27 95.35 ± 2.68 0.8603 ± 0.0152
10-fold 86.09 ± 1.59 77.03 ± 1.35 93.9 ± 2.31 0.8546 ± 0.0154
Leave-one-out 85.78 ± 1.24 76.35 ± 1.79 93.9 ± 2.83 0.8512 ± 0.0115
FS2 5-fold 76.25 ± 2.28 63.97 ± 4.03 86.82 ± 2.89 0.7539 ± 0.0234
10-fold 76.67 ± 1.38 65.76 ± 4.03 86.05 ± 2.68 0.7591 ± 0.0148
Leave-one-out 76.75 ± 1.00 65.4 ± 2.02 86.51 ± 3.08 0.7596 ± 0.0087
FS3 5-fold 73.25 ± 0.61 75.68 ± 1.71 71.16 ± 1.14 0.7342 ± 0.0065
10-fold 72.68 ± 1.45 75.68 ± 1.45 70.1 ± 1.94 0.7289 ± 0.0153
Leave-one-out 72.50 ± 𝛜 75.68 ± 𝛜 69.77 ± 𝛜 0.7272 ± 𝛜
FS4 5-fold 73.75 ± 𝛜 51.35 ± 𝛜 93.02 ± 𝛜 0.7219 ± 𝛜
10-fold 73.57 ± 0.44 50.96 ± 0.94 93.02 ± 𝛜 0.72 ± 0.0047
Leave-one-out 73.75 ± 𝛜 51.35 ± 𝛜 93.02 ± 𝛜 0.7219 ± 𝛜
FS5 5-fold 84.82 ± 1.82 77.22 ± 1.97 91.36 ± 2.05 0.8429 ± 0.0182
10-fold 87.32 ± 1.56 79.54 ± 1.97 94.02 ± 1.69 0.8678 ± 0.0157
Leave-one-out 86.13 ± 1.42 77.30 ± 1.32 93.72 ± 2.09 0.8551 ± 0.0138
FS6 5-fold 83.75 ± 0.95 75.29 ± 1.73 91.03 ± 2.30 0.8316 ± 0.0089
10-fold 84.58 ± 1.56 76.58 ± 3.12 91.47 ± 1.09 0.8402 ± 0.0165
Leave-one-out 86.38 ± 1.42 78.65 ± 2.24 93.02 ± 1.80 0.8584 ± 0.0144
FS7 5-fold 84.86 ± 1.5 77.78 ± 2.47 90.96 ± 2.31 0.8437 ± 0.015
10-fold 85.63 ± 1.53 77.67 ± 1.31 92.73 ± 2.44 0.8505 ± 0.0147
Leave-one-out 86.25 ± 1.48 77.30 ± 1.32 93.95 ± 2.59 0.8564 ± 0.0141