Skip to main content
. 2022 Feb 26;22(5):1848. doi: 10.3390/s22051848

Table 6.

Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity (%), and AUC (in terms of mean ± standard deviation) using a DT classification model, where 𝛜 indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC
FS1 5-fold 75.45 ± 2.86 76.35 ± 4.22 84.71 ± 6.62 0.7553 ± 0.0266
10-fold 75.50 ± 1.27 77.30 ± 1.32 73.95 ± 1.74 0.7563 ± 0.0125
Leave-one-out 77.50 ± 𝛜 72.97 ± 𝛜 81.40 ± 𝛜 0.7718 ± 𝛜
FS2 5-fold 70.63 ± 1.88 53.60 ± 4.25 85.27 ± 4.58 0.6944 ± 0.0182
10-fold 71.00 ± 0.94 54.59 ± 3.15 85.12 ± 3.78 0.6978 ± 0.0082
Leave-one-out 70.00 ± 𝛜 45.95 ± 𝛜 90.70 ± 𝛜 0.6832 ± 𝛜
FS3 5-fold 66.79 ± 1.13 61.78 ± 4.88 71.10 ± 3.90 0.6644 ± 0.0122
10-fold 65.00 ± 2.85 62.16 ± 2.96 67.44 ± 3.89 0.6480 ± 0.0280
Leave-one-out 66.25 ± 𝛜 70.27 ± 𝛜 62.79 ± 𝛜 0.6653 ± 𝛜
FS4 5-fold 66.88 ± 3.59 61.71 ± 2.88 71.32 ± 5.48 0.6652 ± 0.0347
10-fold 67.50 ± 1.12 58.38 ± 2.76 75.35 ± 1.86 0.6686 ± 0.0117
Leave-one-out 65.00 ± 𝛜 56.76 ± 𝛜 72.09 ± 𝛜 0.6442 ± 𝛜
FS5 5-fold 78.44 ± 2.32 79.39 ± 3.56 77.62 ± 4.93 0.7851 ± 0.0221
10-fold 80.25 ± 3.10 79.46 ± 2.16 80.93 ± 5.58 0.8019 ± 0.0293
Leave-one-out 82.50 ± 𝛜 83.78 ± 𝛜 81.40 ± 𝛜 0.8259 ± 𝛜
FS6 5-fold 79.84 ± 3.09 76.01 ± 4.95 83.14 ± 4.15 0.7958 ± 0.0312
10-fold 79.82 ± 1.82 79.92 ± 4.30 79.73 ± 3.67 0.7983 ± 0.0185
Leave-one-out 83.75 ± 𝛜 83.78 ± 𝛜 83.72 ± 𝛜 0.8375 ± 𝛜
FS7 5-fold 81.46 ± 1.97 77.93 ± 2.88 84.50 ± 3.72 0.8121 ± 0.019
10-fold 80.36 ± 1.10 80.31 ± 2.78 80.40 ± 2.44 0.8035 ± 0.0112
Leave-one-out 83.75 ± 𝛜 83.78 ± 𝛜 83.72 ± 𝛜 0.8375 ± 𝛜