Skip to main content
. 2022 Feb 26;22(5):1848. doi: 10.3390/s22051848

Table 7.

Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity (%), and AUC (in terms of mean ± standard deviation) using an LDA classification model, where 𝛜 indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC
FS1 5-fold 79.38 ± 0.88 72.97 ± 𝛜 84.88 ± 1.64 0.7893 ± 0.0082
10-fold 79.75± 0.94 72.97 ± 𝛜 85.58 ± 1.74 0.7928 ± 0.0087
Leave-one-out 80.00 ± 𝛜 72.97 ± 𝛜 86.05 ± 𝛜 0.7951 ± 𝛜
FS2 5-fold 73.03 ± 1.13 58.69 ± 1.89 85.38 ± 1.05 0.7203 ± 0.0116
10-fold 72.92 ± 0.59 59.01 ± 1.86 84.89 ± 1.17 0.7195 ± 0.0064
Leave-one-out 71.25 ± 𝛜 56.76 ± 𝛜 83.72 ± 𝛜 0.7024 ± 𝛜
FS3 5-fold 72.29 ± 0.86 74.33 ± 1.36 70.54 ± 2.19 0.7243 ± 0.0078
10-fold 71.50 ± 1.22 74.6 ± 1.33 68.84 ± 1.86 0.7172 ± 0.0119
Leave-one-out 72.50 ± 𝛜 75.68 ± 𝛜 69.77 ± 𝛜 0.7272 ± 𝛜
FS4 5-fold 73.13 ± 0.88 50 ± 1.91 93.02 ± 𝛜 0.7151 ± 0.0095
10-fold 73.39 ± 0.56 50.58 ± 1.22 93.02 ± 𝛜 0.718 ± 0.0061
Leave-one-out 73.75 ± 𝛜 51.35 ± 𝛜 93.02 ± 𝛜 0.7219 ± 𝛜
FS5 5-fold 81.56 ± 0.54 73.99 ± 1.31 88.08 ± 0.77 0.8103 ± 0.0057
10-fold 81.75 ± 0.83 74.87 ± 1.24 87.67 ± 1.06 0.8127 ± 0.0083
Leave-one-out 82.50 ± 𝛜 75.68 ± 𝛜 88.37 ± 𝛜 0.8202 ± 𝛜
FS6 5-fold 82.92 ± 0.59 73.42 ± 1.01 91.09 ± 0.86 0.8226 ± 0.0059
10-fold 82.32 ± 0.8 72.97 ± 2.04 90.37 ± 0.82 0.8167 ± 0.0087
Leave-one-out 82.50 ± 𝛜 72.97 ± 𝛜 90.70 ± 𝛜 0.8184 ± 𝛜
FS7 5-fold 83.00 ± 0.93 75.68 ± 𝛜 89.30 ± 1.54 0.8249 ± 0.0077
10-fold 82.29 ± 0.47 75.68 ± 𝛜 87.98 ± 0.87 0.8183 ± 0.0043
Leave-one-out 82.50 ± 𝛜 75.68 ± 𝛜 88.37 ± 𝛜 0.8202 ± 𝛜