Skip to main content
. 2022 Feb 26;22(5):1848. doi: 10.3390/s22051848

Table 8.

Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity (%), and AUC (in terms of mean ± standard deviation) using the different classifiers for only our proposed feature set (FS7), where 𝛜 indicates 1.0 × 10−5.

Classifier Validation Accuracy Sensitivity Specificity AUC
SVM 5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103
10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155
Leave-one-out 88.75 ± 𝛜 81.08 ± 𝛜 95.35 ± 𝛜 0.8821 ± 𝛜
RF 5-fold 84.86 ± 1.5 77.78 ± 2.47 90.96 ± 2.31 0.8437 ± 0.015
10-fold 85.63 ± 1.53 77.67 ± 1.31 92.73 ± 2.44 0.8505 ± 0.0147
Leave-one-out 86.25 ± 1.48 77.3 ± 1.32 93.95 ± 2.59 0.8564 ± 0.0141
DT 5-fold 81.46 ± 1.97 77.93 ± 2.88 84.50 ± 3.72 0.8121 ± 0.019
10-fold 80.36 ± 1.1 80.31 ± 2.78 80.40 ± 2.44 0.8035 ± 0.0112
Leave-one-out 83.75 ± 𝛜 83.78 ± 𝛜 83.72 ± 𝛜 0.8375 ± 𝛜
LDA 5-fold 83.00 ± 0.93 75.68 ± 𝛜 89.3 0± 1.54 0.8249 ± 0.0077
10-fold 82.29 ± 0.47 75.68 ± 𝛜 87.98 ± 0.87 0.8183 ± 0.0043
Leave-one-out 82.50 ± 𝛜 75.68 ± 𝛜 88.37 ± 𝛜 0.8202 ± 𝛜