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Abstract

The digital information age has been a catalyst in creating a renewed interest in Artificial 

Intelligence (AI) approaches, especially the subclass of computer algorithms that are popularly 

grouped into Machine Learning (ML). These methods have allowed one to go beyond limited 

human cognitive ability into understanding the complexity in the high dimensional data. Medical 

sciences have seen a steady use of these methods but have been slow in adoption to improve 

patient care. There are some significant impediments that have diluted this effort, which include 

availability of curated diverse data sets for model building, reliable human-level interpretation 

of these models, and reliable reproducibility of these methods for routine clinical use. Each 

of these aspects has several limiting conditions that need to be balanced out, considering the 

data/model building efforts, clinical implementation, integration cost to translational effort with 

minimal patient level harm, which may directly impact future clinical adoption. In this review 

paper, we will assess each aspect of the problem in the context of reliable use of the ML methods 

in oncology, as a representative study case, with the goal to safeguard utility and improve patient 

care in medicine in general.
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1. Introduction.

The digital information era has seen a surge in the ways to generate and collect data, 

in recent times, data has been equated to be the new ‘oil’ of the future that will 

fuel technological innovation [1]. Every enterprise wants to have a ‘Big data’ resource 

that follows five popular characteristics: volume, velocity, variety, veracity and value. 

Availability of such resources and a motivation to aid human cognitive computing capability 

have led to resurgence in the development of advanced data analytics techniques to cope 
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with such big data with artificial intelligence (AI) being the driving force [2]. It has been 

widely perceived that data will enable wide ranges of enterprises from finance, marketing, 

entertainment to medicine to better understand their customer behavior and cater future 

services that can be directly linked to their economic and well-being of future interests [3].

The medical radiological and oncological sciences have been traditionally collecting data in 

silos for a few decades that are stored in various forms. However, making inferences using 

the vast resource has been a challenge. Nevertheless, there were some noted successes in the 

field that had made use of the data repositories, that include radiological sciences, radiation 

oncology and large patient records [4–8].

In the recent past there has been a convergence of multiple factors that enabled the 

resurgence of AI, that includes availability of Big data resources, open-source machine 

learning (ML) tools and cheaper computational units, especially the development of parallel 

computing technologies such graphical processing units (GPUs) and tensor processing units 

(TPU) by the high-tech commercial information technology (IT) vendors. The ‘Big data’ 

wave has given the private sector an edge to forge ahead with technological advancements 

to make machine-based adaptive learning possible. These developments had several 

phases, certainly tumultuous iterations, most vibrant media display of these technological 

advancement can be traced back to initial success starting with the IBM’s Deep Blue 
computer that won the Grand chess master game against chess champion, Kasparov [9], 

The Watson computer that won the Jeopardy game [10], Deep Mind’s computers that won 

over the Chinese game of GO against its known human champions, which was significant 

due to the fact that GO game had more potential positions than number of atoms in the 

universe [11]. Relentless efforts by the IT industry to adopt open-source tool developments 

have accelerated the Deep learning wave in recent years. The pioneering open source efforts 

from industry and academic leaders was unheard-of in recent history, where a massive 

code base has been made open source that has allowed widespread adoption from varied 

sectors [12, 13] [14]. Specifically, the current advancements in convolutional deep neural 

network architecture followed an evolutionary process in the research community, one recent 

milestone in this effort was when machine intelligence was shown to be at par or beyond 

human perception that showed to identify image groups in a database of over 10,000 

categories in natural images [15].

The success of recent deep networks represented a paradigm shift from conventional ML 

algorithms that relied on human extracted features. In deep neural network learning, the use 

of convolutional layers, prior to which use of fully connected layers for traditional detection 

or classification layers have fully automated the learning process. In addition, algorithmic 

development of better optimization methods for back propagation based adaptive learning 

has been fundamental to improved network based learning [16, 17]. Although these ML 

methods provided the ability to solve complex problems, there has been a checkered 

history for their usage. That included the backbox stigma, requirement of contextual 

data and complexity in implementation. These challenges have led to instances of missed 

expectations, sometimes referred to in the literature as AI winters [18, 19].
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There has been a tremendous growth in medical data that is regularly collected at clinical 

centers across the world. Resurgence of AI methods and its application in medicine has 

opened many possibilities of improved diagnosis. Patients’ privacy and data security are 

legitimate concerns when dealing with medical data. Hence, clinical records have been 

traditionally restricted due to Health Insurance Portability and Accountability Act (HIPPA) 

guidelines in the USA and the General Data Protection Regulation (GDPR) in Europe. Most 

often patient records are non-accessible for research, though de-identified access is possible 

with an institutional protocol, resulting in minimal availability for data mining, increased 

overhead in data processing and limiting development of ML applications by the general 

research community compared to other data resources.

In the USA, most of the human genomic data efforts have been initiated through the 

National Institute of Health (NIH)’s centers, specifically, the National Center of Biomedical 

Information (NCBI). This center maintains about 39 distinct databases with over 2.9 billion 

records. The genome database, GeneBank is over 6.25 trillion base pairs from over 1.6 

billion nucleotide sequences for 450,000 formally described species, occupying 1057GB of 

uncompressed disk storage, all of which are open for public access [20, 21]. Similarly, The 

Cancer Imaging Archive (TCIA) houses open imaging data about 126 imaging studies (CT, 

PET, MRI, etc.) datasets available to be public [22–24].

In this review, we highlight the evolution of AI/ML methods, outline the challenges 

in using them for medical applications and focus on factors that contribute to their 

reliable use in medicine in general and oncological science, to be specific. We then 

provide recommendations for appropriate AI/ML model development to improve reliability, 

reproducibility, and user’s confidence for clinical research and care adoption.

2. Evolution of Machine Learning Methods in Oncology

Learning patterns and dependency trends derived from the data has been a fundamental 

discipline of ML methods in AI [25, 26]. Clinical sciences have traditionally been following 

a conservative quasi-quantitative approach to understand the disease physiology, biological 

processes; while use of quantitative methods has shown utility in the last decade [27–29]. 

The first notable application of AI in medicine was the development of MYCIN, as a rule-

based system in the 1970s at Stanford University. The system would use patient information 

and lab measurement for diagnosis of potential bacterial infections and recommend 

treatment options accordingly [30]. This initial success led to the development of initial 

AI methods in medicine and specifically in radiology, which saw initial use of computer-

aided diagnosis/detection using image analysis in the 1980s and 1990s [31]. However, this 

optimism[32] went through a dormant period, while computer technology went through 

a steep developmental period, coupled with the development of the information age, this 

mindset has transformed into possibility of advancement in most and skepticism in a few 

others [33].

The recent advancement of AI methods and its application in medicine, especially the 

use of machine intelligence has rejuvenated excitement. Despite many, it has also raised 

various concerns among clinical practitioners, patients and public on the issues related to 
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data protection, ethical use of the technology, biases in future care and more importantly 

algorithmic limitation and its influence [34] We outline some of the common concerns 

among the medical practitioners and thought leaders in AI/ML :

Can ML replace a physician?

There is a level of uncertainty that exists in accepting technological advancement related to 

ML applications and its implications for clinical care. One primary concern among clinical 

practitioners is being sidelined or replaced by the machines. While in a broader context, 

most clinical decisions are arrived at by consensus, in oncology tumor boards are classic 

working example. The role of ML will be to provide a decision aid to the practitioner, like 

having a personal smart assistant that can swiftly run through enormous numbers of records, 

make comparisons in real time and provide recommendations. The clinical expert may still 

need to interact with the human patient, understand their personal events and choose an 

option in consultation with the patients accommodating personal, cultural, social needs and 

preferences. Machine decisions to most extent will be complementary, most often deferring 

the final clinical decision to the experts [35]. False decisions may have serious ramifications, 

which could be overriding (non-action) an AI finding (false negative) or acting on a spurious 

AI finding (false positives). Recent consensus reports reviewed the use of these technologies 

in medicine in general and oncology in particular and have emphasized the trustworthy 

(ethical) use of AI methods [36]. It is expected that new technologies may need the right 

context of use, which is based on appropriate training cohorts and unbiased algorithms, to 

mitigate errors, it may still be helpful to have a human expert in the loop. This expert can 

understand the broad aspects of the model (as a non AI expert) and take a role to interact 

with the patients, most importantly take responsibility for the outcome [36, 37].

Human oversight in AI decision support.

It is widely believed that human experts could possibly identify spurious findings (false 

positives) better than an AI system, this is to offset wrong decisions due to contextual 

differences in the test population or other biases in training [36]. It is also argued that human 

knowledge is subjective and limited to visible traits in the data, that may lead to biased 

decisions. Machines follow a set rules learnt from observable and unobservable (non-linear) 

patterns, complete automation in the decision process would provide best utilization of an AI 

system [8, 38, 39]. Most neural architectural based AI systems still to date are heavily based 

on corporate developed codebase, that would ideally require varied train/test and validation 

across medical centers to reduce over treatment (false negatives), till then human experts in 

the loop may be unavoidable.

Examples of AI Systems in Oncology and Limitations.

The image concentric sciences (radiology/pathology) were pioneers to use AI methods with 

the advent of deep learning networks [15, 40, 41]. One example of a translational application 

of deep learning convolutional neural network (CNN) was to detect skin lesions (melanoma) 

using pictures [42], this application is projected to attract/benefit billions of users with 

the deployment of mobile applications [43]. These applications are stated to be a frontline 

virtual diagnostic care and a screening aid. Another notable application of AI method is the 

ability to detect diabetic retinopathy using retinal fundus photographs, which has shown to 
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be useful to scale up in regions with lower medical resources [44, 45]. Deep networks have 

been successfully shown to be useful in detecting polyps in colonoscopy images [46]. There 

are several applications in pathology, one recent work shows detection of breast mitosis in 

whole slides[47], in an another application investigators have shown the ability to detect 

tumor-infiltrating lymphocytes (TIL) in different cancer types [48]. HistoQC and DeepFocus 

are some practical use cases of AI methods to standardize and improve the quality of whole 

slide imaging that could improve the detection ability [49, 50]. There have been many useful 

applications in radiology [51, 52], one recent work shows ability to detect malignant nodules 

in screening CT images [53]. Though much of the promise to use these methods to improve 

detection and patient care has impeded by the lack of “high quality” curated datasets, limited 

ability to share data across institutions due to understandable privacy compliance regulations 

and in some cases it has practical implementational limitations [54].

3. Validation and Reproducibility of ML Methods

Recent advancement of deep learning analysis has shown promise in clinical research, 

but actual impacts on routine clinical care may still be anticipatory. To date most of 

the studies that claim to have clinical translation are based on retrospective data, likely 

to belong to prior technologies and medical research continues to evolve at a rapid 

phase[55]. It may be necessary that ML methods follow a series of internal and external 

validation for ML related clinical applications to improve chances of being useful for routine 

patient care with some extent of prospective (or live) training [56, 57]. There are several 

recommendations that outline best practices to develop and implement AI in medicine. One 

such recommendation that has relevance provides reliability score for multivariate analysis, 

called the Transparent reporting of a multivariable prediction model for individual prognosis 

or diagnosis (TRIPOD) [58]. More specific recommendations for radiological application 

have been proposed, such as the Checklist for Artificial Intelligence in Medical Imaging 

(CLAIM) [59]. Additional guidelines relevant to oncological applications were proposed 

in MI-CLAIM (Minimum information about clinical artificial intelligence modeling) [60]. 

There are various other domain specific applications proposed in respective societies, such 

as radiation oncology/medical physics and others [61, 62]. it is likely the conformance of 

these recommendation will apply to AI/ML in oncology.

Clinical Implementation and Economic Impact.

Clinical validation of ML methods would require close partnership with the clinicians, 

who need to understand the system, and a functional overview of the method both as a 

non-expert, which will allow them to spot and identify possible spurious results, i.e., results 

that may be technically accurate but clinically meaningless. Recent review of AI related 

publications shows no or limited economic clinical assessment, most published work has no 

inclusion criteria or consistency that allows comparison between studies [63]. In a clinical 

context the core element of the implementation process will involve initial investment cost, 

operational cost for an AI system and a tangible benefit in terms of patient care which may 

involve reduction in medical errors etc. Analysis of these characteristics will be critical and 

plays a role in clinical adoption. Additionally, comparisons need to be made with existing 
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technologies, like finer genomic analysis down to the cell level and other similar methods 

with contrasting technologies to achieve the desired improvement in patient care.

In a clinical context, adoption of AI systems to current care will need to be seamlessly 

integrated into the current Electronic Medical Record (EMR) workflow. Any small addition 

to clinician’s time that may involve system review or additional staff time to the current 

workflow will become a real challenge and most often requires a clinical cost-benefit 

analysis at the institutional level. As an example, Breast and Genitourinary Oncology suites 

perform several targeted biopsies during an office visit. Additional AI system interaction 

will result in an overhead that causes lost time to accommodate fewer patients during the 

day, roughly this may trigger 3 to 4 lost appointments in a day (assuming a workload of 10 

visits/day) and such decisions typically trigger hospital management evaluation. Certainly, 

AI systems will come with renewed hope of improved care, reduced or enhanced clinical 

decisions based on adaptive learning will play a role in disease management.

Interpretability and Governance of AI Models.

There has been renewed debate about governance and interpretability of AI models in 

medical sciences, these concerns have been exacerbated due to unexplainable models using 

deep networks [64, 65].Although it is expected that medically relevant models need to 

be interpretable, open to investigate and expected to provide a level of confidence to the 

practitioner that allows informed decision. Contrarily, most practitioners are not expected 

to understand the mechanics of the system. As an analogy, a driver is expected to operate 

a vehicle, with just operational experience. While a mechanic is considered a specialist, 

who understands the intricacies of the system. It is common to have users operate a vehicle 

(mechanical or AI driven) without needing to have any knowledge about the system.

Reliability of ML Methods.

A reliable model needs to perform a stated function that will improve clinical decisions 

and to reduce unknown spurious consequences with a goal to protect human life. In recent 

consensus statements that provide criteria to evaluate multivariate statistical methods have 

been well documented, below are a list of widely accepted contenders TRIPOD, CLAIM, 

MI-CLAIM [58–60], which were developed by a large survey of scholars and industrial 

experts’ opinions. The ML methods are yet to follow suit, in a recent review of ML methods 

in oncology provides insights and best practices [34]. However, to be a reliable method 

performance accuracy along with added clinical value are considered, these aspects are well 

emphasized in the recent Food and Drug Administration’s (FDA) regulations on AI systems 

[66, 67].

It is widely accepted that models need to be developed using a diverse population and 

the methods to be validated in an independent dataset that allows developing an unbiased 

generalizable model. While in ML, complexity of these models, especially deep learning 

networks are non-interpretable and may pose a challenge to model transparency in oncology. 

The conventional wisdom of training and validation are traditionally used to develop a 

model that works in the context of a disease or a molecular subtype. This conventional 

wisdom is in contention with the new suite of AI based methods. Where-in models trained 
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on common object images (cats, dogs, toilets, etc.) that are from mixed context have been 

used to pre-trained deep network models and successfully claimed to provide disease risk 

assessment in oncology [41, 68]. It has been broadly accepted that the data requirements 

to train a large deep network are certainly high, successful AlexNet [15] had over 650,000 

neurons and about 60 million parameters, which certainly poses a challenge. Due to limited 

curated public datasets in oncology has led to use of disparate disease types to train the 

network and used to discriminate against other disease types follows an approach called 

the transfer learning [40]. These approaches may have an acceptable technical basis to train 

large deep networks, but this direction is certainly a deviation from conventional wisdom.

Transparency of Models.

It is an implicit requirement that any clinical model needs to be interpretable or transparent 

and has an ability to describe its functioning, describe its structure, underlying parameters 

and explicitly state its assumptions. Recent consensus statement describes the expectations 

of a decision making model in healthcare [69], which states that transparency can be 

achieved by explicit model definition followed by a model validation. The black box 

approach is often associated with the ML model algorithms; there is a conscious effort 

to identify features and characteristics that may be responsible for a machine decision 

[70]. It may be necessary for the models to document the shortcoming, quantify risk of 

false detection or uncertainty. Several methods have been developed under the umbrella 

of explainable (XAI), which is a higher order of expectation than being transparent and 

interpretable. Efforts have been originally spearheaded by the Defense Advanced Research 

Agency (DARPA), some of these methods employ approximations methods such as LIME 

(Local Interpretable Model-Agnostic Explanations), others have focused on visualization 

efforts such as saliency or activation maps[38, 71]. An interesting approach that gets traction 

to mitigate bias is the utilization of SHAP values, this concept originated in game theory that 

tends to assign an importance value for a feature, in a specific prediction. In this approach 

both local and global interpretability requirements are being satisfied [72]. It has to be 

emphasized that interpretability is just one step towards better explaining the model and 

does not necessarily imply causality, although it may be needed towards an optimal clinical 

decision support system [39].

Repeatability and Reproducibility of findings.

Reproducibility of clinical models by an independent research group either by re-

implementing the method or using the same code base to achieve (close to) similar results 

would be a critical need in clinical sciences and would fulfill at the highest level (level 4) as 

assessed by the TRIPOD statement [73]. Repeatability of a method in a technically repeated 

cohort may be the first step in the process of quantifying variability to gain confidence 

in the use of a method. In most methods, such as imaging, scanning an individual patient 

twice will result in some differences in extracted metrics due to variations in the patient 

placement, culminated by reconstruction methods and delineations procedure. In case of 

imaging, estimating reproducible metrics in repeated patient scans was most fundamental 

to evaluate the volume metrics [74] and other quantitative imaging features (radiomic) [75, 

76]. It is well recognized that quantitative features may be altered due to patient factors 

(motion, breathing) and other physiological causes. It is a clinical requirement that features 
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obtained at the lesion level can withstand a certain level of variation and that does not alter 

the clinical decision, detection or risk assessment. In comparison, a biomarker developed in 

basic sciences, omics-based do have a level of experimental variability in the lab. The larger 

development phase has allowed assay refinement, that has improved the variability to a small 

acceptable percentage of coefficient of variation [77, 78]. Thus, it is necessary that the ML 

methods follow an evolution to obtain a level of acceptable reproducibility and repeatability 

[79].

Central versus distributed model training.

Model training from a diverse data source has been traditionally used to sample different 

populational distributions [25]. Need for diverse data sources for Machine/Deep learning 

models has been restricted in the medical clinical domain, some are due to various patient 

privacy related concerns, institutional restrictions and unavailability of standardized data, 

all of this has limited clinical translation. Recently, there has been an extensive effort to 

learn localized data at multiple sources in a federated fashion that encouraged decentralized 

learning [80]. There has been a larger effort to find a compromise solution that would enable 

usage in the clinical context that has allowed use of distributed or federated learning in 

oncology [81] and has shown initial success [82] and holds promise for the future.

Model Reliability and Evaluation.

The use of AI in medicine has brought various challenges starting with postulation of the 

evaluation criteria, sufficient datasets to test varying approaches and establish comparable 

tools to create standards for clinical translation [83, 84]. Model reliability in a clinical 

setting involves accuracy of the system, relevance for clinical translation, ethical fairness 

in its decision and expert/patient trust or acceptance of these systems [85]. Challenges for 

translation of AI systems in health care include logical difficulties in the implementation, 

barrier to adoption, sociocultural related issues and non-amenable for workflow changes 

[86]. On the other hand, it is estimated that human error related cost of over/under diagnosis 

and missed medical procedures accounts for a large portion of incurred medical costs [87]. 

AI based medical support system would improve better diagnosis, treatment and have a 

greater potential to mitigate wrong inferences in highly stressful environments like intensive 

care facilities (ICU) and clinical trials [88, 89]. To have a reliable AI system in medicine, 

we could divide the lifecycle of the application into three phases. First early phase would 

start with a concept, leading to a discovery where an algorithm is established with an initial 

cohort study. In the mid phase level will allow the system to be established and tested in a 

larger population (clinical trial) with a limited product test. At every step in the process the 

methods are refined based on response and algorithms altered with an intention to reduce 

biases. In the last phase (late) will be when the AI based product is ready to be launched for 

adoption in a population. Figure 1 describes our broad workflow.

Ethical Use of AI methods.

Machine intelligence and widespread use of AI methods have evoked a larger discussion 

on its ethical use of the technology. It has been argued that AI methods are subjected to 

inaccurate and discriminatory outcomes that lead to biases as reported in recent UNESCO 

review[90]. Most prevalent use of AI technology has been in surveillance of the population, 
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where AI tools are widely used to identify potential social disruptors and provide leads on 

wanted individual. Most often, like in the US, certain groups are vulnerable to be identified 

as potential matches. There have been instances that have resulted in false identification that 

has resulted in social and human distrust on the use of technology [91, 92].

4. Discussion

The complexity of human biology and heterogeneous nature of oncological disease 

has allowed multifold investigation, starting with physiology of the diseases, deep dive 

exploration at the cellular level using genetic, epigenetics to epidemiological analysis at the 

population level, all of which has allowed generating enormous amounts of information. 

Most of the learning methods that are used in most studies falls under supervised and 

unsupervised [93, 94]. The recent advancement of deep networks [95] has brought about 

new advancements in machine intelligence that shows promise to go beyond human 

perception. Early applications of these methods were in radiological sciences [53, 96, 

97] and has made inroads in other oncological -omics datasets[98, 99]. Most of the deep 

learning networks have been trained using small data sets, randomly iterate multiple times 

to train the weights of the network or in other cases the network is trained using unrelated 

context and primed for the context of interest using a smaller cohort. Recently advancement 

of Few-Shot learning methods provide promise to use these AI methods in small data 

applications[100].

There is a significant challenge among users and clinical practitioners to assess the 

reliability of these network approaches for clinical use. Implementational challenges for 

AI technology does exist, recent retinopathy detection system had several ground level 

problems that include missed expectations due to quality and user level issues [54]. 

Certainly, common for any technological implementations, to date automotive recalls are 

accepted as proper correction procedure and other technologies enhance any shortfall [101]. 

Though human perception, future adoption will be at stake, but reliability of the technology 

depends on consequential steps taken to mitigate the current and future problems.

This decade has seen infiltration of the high-tech industry led methods that includes use of 

enormous code based that are painstakingly modified for oncological data, with unknown 

extent of pre-processing with a goal to discern and go beyond human levels of perception, 

some examples include ability to identify disease types, subtle traits in image sub-class 

categorization. These approaches have shown enormous promise but pose a grand challenge 

to reproduce findings across unseen diverse datasets. One such concern has been widely 

referenced in a recent effort to improve transparency and reliability of these deep network 

findings [102], which has outlined the need for open disclosure of codebase, datasets used 

for training and preprocessing steps to achieve desired outcome. It may be necessary to 

allow free and fair assessment of these method’s reliability and reproducibility.

In oncology, ML methods have brought us to a critical junction that has resulted in various 

contentions among the oncologists that the AI systems are a) unexplainable and b) it 

would replace their role as machines that can do a better job than humans. It may be true 

that these networks are unexplainable but certainly have utility once we provide extensive 
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training samples. Some successful examples include product support recommendation based 

on prior purchases and picture identification to find close family members. It is essential 

that clinical systems are transparent or at least interpretable and that would allow adaptable 

multi-expert involvement to be considered in the AI decisions. It has become apparent that 

AI technologies would have widespread impact on human society in many ways, ethical use 

of technology with some oversight becomes necessary for adaptation in our societies. AI 

technologies may have influence across borders with widespread implications, this has led to 

a recent report on ethical use of AI technologies under the auspices of UNESCO [90].

Model training using silos of data sources that could update the model in a federated model 

has shown promise in medicine. Recent use of distributed learning across multiple centers, 

spread across three continents shows enormous hope to build a robust clinical model.

Medicine in general and oncology in specific, due to its complexities; machines may not 

completely replace human’s role in diagnosis and treatment, certainly needs to follow 

a multi-phased approach with early invention, first user application to a period for 

technological adoption. There is a greater role for AI systems to support the oncologist 

and to provide decision support to enhance human understanding with enormous hope to 

discover cures for diseases and improve patient care.

5. Conclusion

We believe that AI methods will provide an ample opportunity to break the barrier to 

understand complex human cognitive ability to make decisions and to automate processes. 

These methods along with ML approaches are here in stay and will support the expert 

medical professions, specifically more in oncology due to disease complexity [103]. To 

improve reliability and transparency of ML and deep methods in medical sciences, we 

summarize the following checklist based on literature survey and research experiences 

discussed in this report.

• Diverse cohort of patient records for model training, achieved either through 

centralized or using federated/distributed learning models that uses silos of 

different data sources.

• Use of independent data cohort for testing, preferably in a distributed setting 

with diverse patient types.

• Transparency of deep network model architecture with confidence levels in its 

decisions.

• Ethically appropriate use of AI methods with some level of oversight.

• Assessment of reproducibility of AI models with test-retest type studies.

• Model transparent that discloses the architecture, data sets and trained weights 

for the network.

• Quality assurance program for implementation and continuous performance 

monitoring.
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Once the AI/ML systems are trained with large, diverse cohorts and the methods 

transparently reproduced, these models would be an asset to aid/train future medical 

professionals to advance knowledge that may be uncommon to human perception. As 

Heraclitus, a Greek philosopher would say, “Change is the only constant in life”, this era 

will see a renewed focus in building reliable AI/ML networks that will allow humans to 

learn from the machines. As Niels Bohr (Nobel Laureate), says ‘An expert is a man who 
has made all the mistakes which can be made in a very narrow field’, here we expect the 

network to be a specialist that has learned from examples and could help humans to discern 

facts. This approach is relevant in healthcare, especially oncology that shows great promise, 

and will have greater impact to improve quality of medicine and provide scalable medical 

access to the world population.
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Figure 1. 
Overview of different phases (early, mid, late) in developing a reliable AI application are 

outlined from discovery to market launch.
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