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A B S T R A C T   

This paper uses spatial statistical techniques to reflect on geographies of COVID-19 infections in metropolitan 
Melbourne. We argue that the evolution of the COVID-19 pandemic, which has become widespread since early 
2020 in Melbourne, typically proceeds through multiple built environment attributes – diversity, destination 
accessibility, distance to transit, design, and density. The spread of the contagion is institutionalised within local 
communities and postcodes, and reshapes movement practices, discourses, and structures of administrative 
politics. We demonstrate how a focus on spatial patterns of the built environment can inform scholarship on the 
spread of infections associated with COVID-19 pandemic and geographies of infections more broadly, by high
lighting the consistency of built environment influences on COVID-19 infections across three waves of outbreaks. 
A focus on the built environment influence seeks to enact visions of the future as new variants emerge, illus
trating the importance of understanding geographies of infections as global cities adapt to ‘COVID-normal’ 
living. We argue that understanding geographies of infections within cities could be a springboard for pursuing 
sustainable urban development via inclusive compact, mixed-use development and safe public transport.   

1. Introduction 

Notwithstanding a rapid rise of urban research on COVID-19 
pandemic in recent times (Ahsan, 2020; Cornell et al., 2021; Dietz 
et al., 2020; Frumkin et al., 2004; Guan et al., 2020; Oldekop et al., 
2020), investigations into geographies of infections – i.e. how the 
location and relative arrangement of places and physical features impact 
on contagion spread – in cities have been less apparent. While sub
stantial attention has been directed towards how the pandemic has 
caused disruptions to businesses, national and regional economies, as 
well as human health and well-being (e.g., Cobbinah, 2021; Rojas-Rueda 
& Morales-Zamora, 2021), there is now a growing interest in under
standing the spatial patterns of infections and the built environment 
influences across cities (Hamidi, et al., 2020; Huang et al., 2020; B. Li 
et al., 2021; Liu et al., 2021). This paper contributes to this emerging 
body of knowledge by offering an understanding of geographies of in
fections, highlighting the multiple influences of the built environment 
on the spread of the contagion in cities, and the widely reported 
devastating outcomes. 

We acknowledge the positive outcomes such as reduction in waste 

generation, pollution, carbon emissions, and road traffic accidents 
(Benchrif et al., 2021; Basu et al., 2021). Other urban and household 
scale benefits including improved family relations, increased savings, 
and calmer environments due to reduced travel have been reported 
(Cornell et al., 2021). However, these occurred at the expense of sig
nificant disruptions to lifestyle, job losses and overall economic re
cessions (Rojas-Rueda & Morales-Zamora, 2021). Whereas the impacts 
of the COVID-19 pandemic have been experienced across the world, 
cities have inarguably witnessed the worst impacts and continue to 
remain the epicentres of outbreaks. And yet, earlier studies investigating 
the spread of infections and associated mortality heavily focused on 
urban variations at national scales (Chu et al., 2021; Aral & Bakir, 2022). 
Throughout, we focus on understanding the geographies of infections 
within cities which remains less explored (see Liu et al., 2021). 

Analysis of spatial patterns of infections answers a call among urban 
studies researchers for groundwork on how COVID-19 infections are 
geographically constructed, discussed, imagined, lived, and defended in 
cities (Li, et al., 2021; Whittle & Diaz-Artiles, 2020). As Frumkin et al. 
(2004, p.57) noted “cities are the incubators of infectious diseases from 
their origins as early settlements… through their growth in [recent] 

* Corresponding author: 
E-mail addresses: eric.gaisie@unimelb.edu.au (E. Gaisie), nana.oppongyeboah@unimelb.edu.au (N.Y. Oppong-Yeboah), patrick.cobbinah@unimelb.edu.au 

(P.B. Cobbinah).  

Contents lists available at ScienceDirect 

Sustainable Cities and Society 

journal homepage: www.elsevier.com/locate/scs 

https://doi.org/10.1016/j.scs.2022.103838 
Received 23 December 2021; Received in revised form 9 March 2022; Accepted 10 March 2022   

mailto:eric.gaisie@unimelb.edu.au
mailto:nana.oppongyeboah@unimelb.edu.au
mailto:patrick.cobbinah@unimelb.edu.au
www.sciencedirect.com/science/journal/22106707
https://www.elsevier.com/locate/scs
https://doi.org/10.1016/j.scs.2022.103838
https://doi.org/10.1016/j.scs.2022.103838
https://doi.org/10.1016/j.scs.2022.103838
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scs.2022.103838&domain=pdf


Sustainable Cities and Society 81 (2022) 103838

2

centuries”. History of urban planning suggests that serious respiratory 
infections, yellow fever, smallpox, and cholera outbreaks prompted 
rethinking of design guidelines for housing, sanitation systems and 
public spaces in Europe and the “New World” – i.e., North America – 
during the 19th century (Cobbinah, 2021; Frumkin et al., 2004). Simi
larly, global management responses of the recent COVID-19 pandemic 
have spurred built environment changes with the aim of reducing 
crowding, interactions, and movements across cities. These measures 
have renewed commentary about how the COVID-19 pandemic could 
influence the future of urban planning and the production of built 
environment modifications required to promote urban health outcomes 
and enhance the capacity of cities to cope with outbreak of contagion 
(Frumkin, 2021; Rojas-Rueda & Morales-Zamora, 2021). In this case, the 
COVID-19 pandemic calls into question many generations of established 
theses on the impacts of walkability, density, public transit use and other 
urban attributes on sustainability and health (Frank & Wali, 2021). A 
major concern in these discussions lies in the pandemic’s potential to 
induce aversion towards sustainable urban development strategies such 
as compact and dense development, public transportation, and pedes
trianised neighbourhood designs (Currie et al., 2021; Wali & Frank, 
2021). 

Within the context of the built environment, this paper highlights the 
similarities, differences, and connections between geographies of in
fections to pursue sustainable urban development futures aimed at 
creating effective contagion management. While the growing theme of 
built environment-infections link has framed public health response and 
urban planning and management interventions (e.g., Ahsan, 2020; 
Dietz et al., 2020; Huang et al., 2020; Li, et al., 2021; Whittle & Dia
z-Artiles, 2020), there is no consensus in the literature on the specific 
directions or significance of the influence of different built environment 
attributes on COVID-19 infections. Similarly, studies based on 
cross-sectional data conducted during initial COVID-19 outbreak do not 
demonstrate the dynamism of this relationship in a pandemic that is still 
evolving through virus mutations and changes in public health mea
sures. This paper demonstrates the value of reflecting across the city’s 
geography on the extent to which built environment configuration 
characterises spread of infections over time. Using neighbourhood 
(postcode) level data in metropolitan Melbourne (Australia), this paper 
answers three questions: 1) What are the spatial patterns of COVID-19 
infections during different outbreaks in metropolitan Melbourne? 2) 
What are the relationships between built environment attributes and 
COVID-19 infections across the different outbreaks in metropolitan 
Melbourne? and 3) How are these relationships distributed across 
metropolitan Melbourne? We address these questions using multiple 
regression, spatial autocorrelation, and geographically weighted 
regression to understand the geographies of spread and built environ
ment relationship at both city and neighbourhood levels (Fotheringham 
& Oshan, 2016). 

Metropolitan Melbourne offers a unique case for exploring these is
sues given its recent experiences of definable outbreaks characterised by 
distinct waves, responses, and outcomes. The Melbourne study provides 
understanding of how the built environment influences the spread of 
COVID-19 infections in three periods with different extenuating condi
tions – i.e., experimental management, stringent lockdown, and delta- 
vaccine period. The longitudinal approach is useful for verifying the 
consistency of results over successive outbreaks. As cities begin 
reopening, research addressing geographies of infections is timely and 
tenable, yet little is known about this, particularly in Australia. Such an 
understanding is critical for policymaking on how to interact with 
different aspects of our cities during the recovery phase, particularly 
regarding planning considerations for sustainable and healthy futures. 

The paper is structured into five sections. Section 2 reviews current 
research on the influence of the built environment on the spread of the 
COVID-19 pandemic to consolidate the contributions of this present 
study in the literature. Section 3 presents the methods and approach 
adopted for the study including the data sources and methods of 

analysis. Section 4 presents the results and Section 5 discusses the results 
and presents the conclusions. 

2. Built environment and health outcomes: exploring the Janus- 
faced relationships 

Research (e.g., Frumkin et al., 2004) on the evolution of urban health 
has documented how cities historically grappled with infectious diseases 
in (pre-) industrial Europe and the early settlement of the Americas. 
From management of household garbage, industrial waste and pollut
ants, water and air contamination to substandard housing, de
velopments in the built environment have long been associated with 
outbreaks of infectious diseases and its management (Cobbinah, 2021; 
Frumkin et al., 2004). These episodes influenced responses to declutter 
cities, reduce crowding and densities, to address persistent outbreaks of 
diseases such as cholera, yellow fever, smallpox, and typhoid. Conse
quently, urban density and settlement design were intensely scrutinised 
due to their roles in accelerating infection rates (McFarlane, 2021). 
Advancement in economic development and mobility technology 
contributed to the exodus of residents away from the city-cores igniting 
suburban development and urban sprawl and their associated urban 
health concerns. Complicating matters further, the de-densification of 
urban centres sparked noncommunicable diseases such as obesity, car
diovascular illnesses, asthma, diabetes, and mental health issues. 

The COVID-19 pandemic was declared a pandemic by the World 
Health Organisation on 11 March 2020 and has since reignited interests 
among urban sustainability and public health scholars towards under
standing the association of its outbreak with the built environment. A 
series of review studies have synthesised the empirical evidence sug
gesting that compact and dense urban environments with accessible 
greenspaces encourage interactions and promote physical activity that 
are essential for alleviating noncommunicable ailments (Jackson, 2003; 
Renalds et al., 2010). Yet, with recent infectious diseases such as SARS, 
H1N1, and COVID-19, the impacts of density and other built environ
ment attributes on urban health outcomes have stimulated academic 
debate. While some studies (see Hamidi, et al., 2020; Liu et al., 2021) 
warn that dense urban environments promote more interactions and 
greater proximity among people thereby increasing the risk of 
spreading, others found negative or non-significant association with 
density (Wali & Frank, 2021; J. Wang et al., 2021). 

In fact, initial interests in understanding national and international 
hotspots shaped research on the influence of spatial and built environ
ment factors in the diffusion of infections among countries, cities, and 
regions. For example, Sigler et al. (2021) examined global geographical 
diffusion across six early weeks of the pandemic and found spatial fea
tures such as population density and accessibility of smaller settlement 
to cities – used as proxies for human interactions – to positively affect 
infections across countries but the impacts declined in successive weeks. 
Li, et al. (2021) also examined the role of connection and mobility to the 
Hubei Province – reported as recording the first case in the world – by air 
and rail, centrality of and accessibility to railway stations, concentration 
of activities, and population density. Others have examined the influ
ence of specific built environment features on COVID-19 infections 
within cities. For example, Tribby and Hartman (2021) arguing that 
parks and sidewalks offset crowding and density influences on infections 
found infections to be significantly inversely related with sidewalks but 
not parks. Frank and Wali (2021) in examining the role of chronic dis
eases in mediating the impacts of built and natural environment on 
COVID-19 mortality found that residential density and greenspace ac
cess mitigate deaths. Wali and Frank’s (2021) assessments of 
neighbourhood-level active or sedentary travel confirmed that more 
walkable design can be useful for combating COVID-19 severity as it 
reduced hospitalisation and mortality. Some studies also explored the 
effect of medical and commercial facilities (B. Li et al., 2021), mobility 
and physical interactions (Manout & Ciari, 2021), land use diversity 
(Nguyen et al., 2020), nodal accessibility, greenspace access and density 
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(Huang et al., 2020; Tomasso et al., 2021), city size and density (Hamidi, 
et al., 2020) and governance capacity (Chu et al., 2021). 

While findings from these past studies offer important insights into 
understanding the built environment influence on the novel coronavirus 
disease, they are limited in at least two ways. First, they mostly assume 
consistent relationship due to their focus on single outbreak. However, 
epidemiological evidence suggests that different mutations of the virus 
over time have led to different waves of outbreaks creating varying 
impacts even in the same locations (Herrero, 2021; Twohig et al., 2021). 
In each of these waves, many cities and countries have had to change 
their response measures due to the virulent impacts by successive vari
ants. For example, Singapore and Vietnam which were among the global 
success cases of the initial pandemic management had to introduce 
stricter restrictions to slow subsequent infections. Second, these studies 
usually overlook the public health measures and conditions associated 
with the management of different outbreaks in cities. Since the 
pandemic began, cities around the world have adopted test and isolate, 
quarantining, social distancing, and complete lockdowns which may 
have yielded different results. Moreover, the steady roll-out of vacci
nations may have varied the built environment impacts, the consistency 
of which has received limited research attention. At the time of this 
study only few studies have, to a limited extent, examined this pattern of 
consistency under different conditions. For example, Yip et al. (2021) 
examined the relationship between built environment and COVID-19 
infections before and during social distancing measures in the initial 
outbreak in Hong Kong. Wang et al., (2021) undertook similar study 
under lockdown and reopening scenarios across several counties in the 
United States and found that in addition to population density, mobility 
significantly increased infections when lockdowns were eased in July 
2020. While these studies offer enormous insights, they did not focus on 
different waves of outbreaks. Their results further necessitate the ur
gency to continue developing lessons across different waves of breaks 
over time. 

In summary, while available literature has generated insights into 
the transmission influences of built environment and justifiably 
informed public health management responses in the early days of the 
pandemic, further research in other contexts is critical for deepening 
understanding about the association of built environment attributes on 
COVID-19 infections. Secondly, given the urgency with which research 
had to be undertaken to inform early responses, many of the empirical 
investigations focused on the initial outbreaks. Our research draws in
sights from three waves/outbreaks in Melbourne, two years since 
recording its first local case (10 March 2020), to examine the geogra
phies of infections and to establish whether the association between 
built environment and COVID-19 is constant under different conditions 
and neighbourhoods. 

3. Research methods 

This research focuses on Melbourne, the second largest city in 
Australia and capital of the south-eastern state of Victoria (Figure 1). It 
has an estimated population of approximately 5.1 million residents and 
is projected to overtake the country’s most populous city, Sydney, in the 
next two decades. Melbourne’s attraction is partly influenced by its 
reputation as one of the most liveable cities in the world, winning the 
world’s most liveable city accolade consecutively from 2011 to 2017. 
Victoria is the worst affected state in Australia recording 55.8% of the 
194,119 cases and most COVID-related deaths in Australia as of 18 
November 2021 (Australian Government Department of Health, 2021). 
Melbourne being the epicentre of the pandemic has endured numerous 
restrictions and arguably been described as the most locked down city in 
the world with stay-at-home orders lasting a total of 267 days since the 
pandemic (Bond, 2021). It recently ended its sixth lockdown amidst 
easing of restrictions – such as night curfew, limits on movements, 
shopping hours, social activities, among others – in what was a bold step 
in a road map towards reopening. Having endured the worst outbreaks 

Figure 1. Context map of Metropolitan Melbourne 
Source: Authors 
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in the country, Melbourne provides the best conditions for exploring the 
geographies of infections and built environment influences. 

3.1. Research design 

This research analyses the association of the built environment on 
COVID-19 infections under three outbreaks characterised by different 
infection rates, variants, and public health responses (Table 1). Phase 1 – 
experimental management phase - covers the initial outbreak beginning 
from 10 March 2020 when the first locally acquired cases were recorded. 
Public health responses were incremental primarily involving test, 
isolate, and quarantine. Some social housing buildings and postcode 
areas were locked down briefly, but life across the city was generally 
close to pre-pandemic normality. Phase 2 – the Second Wave – marks the 
period when stringent measures were imposed to restrict movements 
within one’s local neighbourhood and for limited duration and pur
poses. Mask mandates, stay-at-home orders, night curfews, and move
ments restrictions were imposed with the state government essentially 
(though unofficially) targeting outright elimination. Phase 3 – the Delta/ 
Vaccination Phase – is the third wave driven by the highly infectious 
Delta variant despite an initial take-up of vaccinations. Restrictions were 
similar to Phase 2 but the enforcement was limited and began easing as 
vaccination levels increased. This phase concluded on 21 October 2021 
when the government announced the official end of the lockdown seeing 
management measures going off as vaccination rates increased despite 
rising cases. It is worth noting that periods in between these phases do 
not necessarily signify no cases. Rather a few outbreaks emerged but 
were quickly controlled with snap lockdowns lasting few days. Given the 
limited variability, these periods are excluded from the analysis. 

3.2. Data collection and specification of variables 

The built environment refers to the human-made surroundings that 
provide the setting for human activities and ranges from buildings, 
infrastructure, to parks (Kaklauskas & Gudauskas, 2016). We con
ceptualised different attributes of the built environment to have varying 
relationship with COVID-19 infections. Therefore, based on Ewing and 
Cervero’s (2010) 5D framework, we selected eight built environment 
attributes including land-use mix (Diversity), access to the central busi
ness district (CBD) and major activity centres (MAC) (Destination 
accessibility), proximity to train station and bus stops (Distance to transit), 
intersection density and greenspace access (Design) and population 
density (Density). 

We used infection cases per thousand population – case rate – as the 
dependent variable in our study. The COVID-19 infection data were 
obtained from the Victorian Department of Health and Human Services 
(DHHS) (2021) which publishes daily updates on de-identified case data 
with the date of diagnosis, source of acquisition (i.e., local, interstate, or 
foreign), residential postcode and local government area. Consequently, 
we used postcodes as the unit of analysis for this study. We analysed only 

locally acquired cases due to our interest in understanding spatial pat
terns and influence of built environment on infections within Mel
bourne. However, given that postcodes only indicate the residential 
location of cases, it cannot be assumed that infections were acquired 
within the specified postcodes. Actual places of infections are compli
cated to determine especially during major outbreaks and so were not 
collected by the DHHS. 

The independent variables comprised built environment attributes 
and other control (socioeconomic) variables and were obtained from 
multiple sources. Population data which were used in calculating the 
case rates and densities involved the resident population recorded in the 
2016 census by the Australian Bureau of Statistics (ABS). Urban (pop
ulation) density is considered as a major determinant of infections, an 
argument that has intensified because of the devastating impacts of the 
COVID-19 pandemic in large cities across the world (Hamidi, et al., 
2020). Recent studies have suggested that neighbourhoods with highly 
diversified land uses may foster greater congregation and interactions 
and therefore quickly spread COVID-19 (Nguyen et al., 2020). In this 
study, land use data were sourced from the Department of Environment, 
Land, Water and Planning (DELWP) through the state government’s 
open data portal (DELWP, 2021). We then calculated land use mix/di
versity based on the Shannon diversity index for each postcode. Shannon 
index is widely used in ecological studies to assess the diversity of spe
cies in a community but has been recently applied in urban studies 
(Brown et al., 2014). The land use categories include residential, com
mercial, educational, medical, industrial, greenspace, and others. The 
land use diversity was calculated as 

H = −
∑

pi ∗ lnpi (1) 

Where pi is the proportion of ith land use type and ln is the natural 
logarithm. The Shannon index ranges between 0 and 1, representing low 
to high diversity, respectively. 

B. Li et al. (2021) observed that commercial vitality and access to 
economic centres were key drivers of flow and congregation of residents 
potentially driving up infections. They also found that transportation 
infrastructure which improves accessibility significantly influence in
fections clustering in the Huangzhou district of China. In a similar way, 
greenspace has a mixed association with infections as it may improve 
immunity to COVID-19 through physical activity but also the use of it 
during the pandemic may promote close contacts and increase the risk of 
infections (J. Wang et al., 2021; Frank & Wali, 2021). We therefore used 
data from Melbourne’s strategic planning document – Plan Melbourne 
2017-2050 – to specify the location of employment centres in the city [i. 
e., CBD and MAC] (Victoria State Government, 2017). We then esti
mated the average distance of residential parcels in each postcode to the 
economic centres as our measure of accessibility to CBD and MAC var
iables. MACs are designed as concentrations of activities offering goods 
and services at sub-metropolitan levels (Victoria State Government, 
2017). We applied a similar approach to estimate the distance to public 

Table 1 
Summary of key features of the three outbreaks (phases)  

Phase Phase 1 Phase 2 Phase 3 

Date 10 March to 8 July 2020 9 July to 9 November 2020 16 July to 21 October 2021 
Total number 

of cases 
1,972 16,112 71,230 

Key features First wave 
Experimental responses; No sharp 
lockdowns; Generally unrestricted 
movements 
Test, isolate and quarantine; 
Short period of targeted lockdowns of 
buildings and neighbourhoods; 
Lives close to pre-pandemic normal 

Second wave with rapidly rising cases; 
Strict enforcement of lockdowns and stay-at-home orders; 
Only four permitted reasons to leave home (care or caregiving, 
exercises, essential shopping, and work/study that cannot be done 
from home); 
Only two-hours for exercises and shopping; 
Curfews imposed; 
Elimination strategy largely pursued; 
No vaccinations 

Third wave driven by new ‘Delta 
variant’; 
Vaccinations underway but strict 
lockdown like Phase 2 imposed; 
Curfew imposed 
Weaker enforcement of lockdown rules; 
Gradual easing of restrictions as 
vaccinations increases despite rising 
cases 

Source: Authors 
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transport (i.e., bus stops and train stations) and greenspace access but 
the location data were sourced from PSMA Australia Transport and 
Topography dataset via the Australian Urban Research Infrastructure 
Network (AURIN) portal. 

Intersection density improves connectivity and facilitates move
ments within neighbourhoods (Wali & Frank, 2021). 
Pedestrian-oriented intersections enhance walkability whereas 
auto-oriented intersections promote movements despite being barriers 
to active transportation. In Melbourne, sidewalks are integrated with 
most local roads ensuring shared access to motorists and pedestrians. We 
did not account for this distinction because our interest was in assessing 
how street connectivity design influences movements of people leading 
to the spread of COVID-19. Besides, car-dependency has increased in 
Australian cities even when smart mobility agenda intensified (Yigit
canlar & Kamruzzaman, 2019). We obtained intersection data from 
PSMA via AURIN and calculated the intersection density using the ESRI 
line and junction tool in ArcGIS. Only three-way intersections or above 
were used excluding dead-end junctions that do not enhance local 
connectivity. 

3.3. Control variables 

To improve the accuracy of our results, we controlled for socioeco
nomic status, median age, and household size, due to their reported 
associations with infectious outbreaks. We used the Index of Relative 
Socioeconomic Disadvantage (IRSD), an index created by the ABS to 
measure relative (dis)advantage of locations based on the economic and 
social conditions of residents as a proxy for socioeconomic status. We 
used the decile ranks for ease of interpretation. Together with the me
dian age and average household sizes, the control variables were 
collected from the ABS community profiles on the 2016 census. Table 2 
presents summary statistics on the variables. Appendix 1 illustrates the 
spatial distribution of the independent variables. 

3.4. Data analysis 

We used global spatial autocorrelation (Moran’s I) and Local In
dicators of Spatial Association (LISA) to assess for clustering in the 
spatial distributions of case rates. Both results confirmed spatial clus
tering with the LISA identifying hotspots and cold spots. As a result, we 
sought to understand the relationship between built environment and 
COVID-19 infections at both global (metropolitan) and local (postcode) 
scales. Metro-level analysis was conducted using multiple regression 

(MR) whereas local analysis was done using geographically weighted 
regression (GWR). While the MR model assumes that relations among 
variables are constant across the study area, the GWR examines the re
lations among variables in geographic space by conducting a regression 
model for individual observations located near each other in space 
(Yoon et al., 2016). The MR model was formulated as follows: 

y = β0 + β1BE + β2CV + ε (2) 

Where y is COVID-19 case rate, BE are the built environment vari
ables, CV are the control variables, βi denotes the regression coefficients 
for the intercept and independent variables and ε is the random error. 

The GWR model addresses the assumption of static relationship 
across the study area by accounting for spatial variations in the rela
tionship between dependent and independent variables (Brunsdon et al., 
1996; Fotheringham et al., 1998). The GWR constructs unique equations 
for each observation (postcode) as a function of the dependent and in
dependent variables that is within the extent of each target feature’s 
bandwidth (Mollalo et al., 2020; Oshan et al., 2020). We selected 
bandwidth based on fixed kernel that uses constant radius around each 
observation to select variables for the analysis, with the Akaike infor
mation criterion (AIC) used in determining the optimal bandwidth 
values. As per Fotheringham and Oshan (2016), the GWR model was 
formulated as follows: 

yi = βi0 +
∑p

k=1
βik BEik + βikCVik + εi (3)  

where yi is the rate of Covid-19 case at postcode i, βi0 represents the 
intercept, βik denotes kth regression parameter, BEik represents the kth of 
the independent variable, CVik denotes kth control variable and εi 
random error term. The parameter estimates were also derived as: 

β̂(i) = (X′ W(i)X)
− 1X′ W(i)y (4)  

where X denotes the matrix of the chosen explanatory variable (n x k), 
β̂(i) parameter estimate vector, W(i) denotes the diagonal weights of the 
matrix related to each observation as a function of distance. 

4. Results 

We address the research questions in the subsequent sections as 
follows: 1) the spatial patterns of infections; 2) relationship of infections 
with built environment attributes; and 3) the spatial variations of the 
relationships among the neighbourhoods. This helps to easily examine 
the consistency of results across the three outbreaks and determine the 
geographies of infections across metropolitan Melbourne. 

4.1. Spatial patterns of COVID-19 infections in metropolitan Melbourne 

We explored the spatial distribution of COVID-19 infections in 
metropolitan Melbourne using choropleth (Figure 2) and the LISA 
cluster maps (Figure 3). As shown in Figure 2a, the neighbourhood – (i. 
e., North Melbourne) – with the highest infections (5.287 per thousand) 
during Phase 1 was located in inner Melbourne. However, most of the 
next highest case rates were found in the northern suburbs (e.g., Tul
lamarine, Gladstone Park, and Beveridge). Conversely, the lowest rate of 
infections could be found in the southern and eastern parts of the city. 
This result is reinforced by the LISA cluster analysis which shows the 
hotspots to be clustered in the inner and northern suburbs whereas the 
cold spots (i.e., lowest case rates) cluster in the eastern and southern 
areas (Figure 3a). 

There was a more visible pattern during Phase 2 when most in
fections were recorded in the western and northern parts of the city (e.g., 
Ardeer and Plenty) with moderate incidence observed in the south and 
inner suburbs (Figure 2b). The eastern suburbs mainly showed low 
infection levels. The LISA cluster analysis confirms these results showing 
the hotspots of infections in the northern and western areas whereas 

Table 2 
Summary statistics of dependent and independent variables  

Variable Mean Min Max 

Dependent variables    
Case rate (per 1,000 population)    
Phase 1 0.368 0.000 5.287 
Phase 2 2.966 0.000 35.127 
Phase 3 13.068 0.000 89.992     

Independent variables    
BE attributes    
Land use mix (0-1) 0.379 0.152 0.696 
Accessibility to CBD (km) 26.490 0.681 84.886 
Accessibility to major activity centres (km) 4.36 0.405 33.003 
Distance to train station (km) 3.195 0.355 31.043 
Distance to bus stop (km) 1.019 0.132 28.746 
Intersection density (n/ha) 0.026 0.000 0.465 
Distance to parks, open space, playgrounds (km) 0.316 0.091 6.758 
Population density (p/ha) 17.393 0.032 152.475     

Control variables    
Median age (yrs.) 38.99 22 67 
Socioeconomic status (IRSD decile) 7.06 1 10 
Average household size 2.64 1.8 3.5  

E. Gaisie et al.                                                                                                                                                                                                                                   



Sustainable Cities and Society 81 (2022) 103838

6

cold spots emerged in the eastern and southernmost suburbs (e.g., 
Mornington Peninsula areas; Figure 3b). 

The pattern of cases distribution in Phase 3 largely follows what was 
observed in Phase 2 but there was more obvious concentration in the 
northern suburbs with areas such as Broadmeadows, Meadow Heights, 
and Campbellfield ranked at the top. Interestingly, a postcode in the 
southern region (i.e., 3978 – Clyde, Clyde North and Cardinia) – also 
recorded high cases (Figure 2c). However, the cluster analysis showed 
this was isolated. The hotspot of the infections still emerged in the 
northern and western regions, with the eastern and southernmost areas 
mainly being the cold spots (Figure 3c). 

4.2. The built environment drivers of COVID-19 infections in 
metropolitan Melbourne 

As earlier indicated, we focused on testing the association between 
built environment attributes and COVID-19 infections across the three 
different outbreaks. As a result, we developed three MR models with 
each modelling one outbreak/phase (Table 3). A check of the model 
diagnostics indicated no problems with multicollinearity given that 
none of the variance inflation factors (VIF) exceeded the 5 to 10 cut off 
range (Chatterjee & Yilmaz, 1992). 

The results indicate that only three of the nine built environment 
features had statistically significant relationships with COVID-19 
infection rate during Phase 1. Population density and distance to train 
stations had a positive relationship with case rate whereas accessibility 
to CBD showed an inverse association. Thus, neighbourhoods with 
longer distances from train stations or more densely populated recorded 
more infections of COVID-19. In other words, neighbourhoods with 
better access to train transportation were less likely at risk of COVID-19 
infections. The negative coefficient estimate for access to CBD indicates 
that the farther a neighbourhood is from the CBD, the less cases they 

recorded. This result is intuitive given the assumption that greater 
accessibility to activity centres fostered more interactions which were 
likely to expose residents to more infections (B. Li et al., 2021). 

The built environment effect was observed for only one attribute 
during Phase 2. Only accessibility to the CBD maintained a statistically 
significant association with COVID-19 infections, similarly, showing 
that neighbourhoods close to the CBD had higher risks of infections. 
Unlike Phase 1, distance to the train station and population density did 
not have statistically significant associations with cases during this 
outbreak. 

On the contrary, as observed during the first outbreak, the original 
three built environment variables had significant associations with in
fections during Phase 3 outbreak. The distance to train station still had 
positive association with infections, suggesting that the easier a neigh
bourhood could access public transport, the less likely it recorded 
COVID-19 infections. Also, the same relationship was recorded for 
accessibility to CBD in this phase as it was during the first and second 
waves (Phases 1 and 2). In contrast, the relationship with population 
density changed during the third wave. Unlike Phase 1, findings indicate 
that dense neighbourhoods were less likely to record more cases. The 
results suggest that the impacts of built environment attributes on 
COVID-19 infections may not be constant across different outbreaks. 

These findings are intriguing considering the increased aversions of 
urban populace and commentators to public transportation use (Rahimi 
et al., 2021), density (Hamidi, et al., 2020; McFarlane, 2021) and eco
nomic centres (B. Li et al., 2021) during the pandemic. Increasingly, 
urban observers have lamented about rethinking public transportation, 
urban density, and activity clustering in post-pandemic urban develop
ment planning. Our results indicate that there might not be a straight
forward implication of these built environment attributes for health 
promotion, infection control and healthy city development. We inves
tigated the geographic differentiation (in Section 4.3) briefly after 

Figure 2. Spatial distribution of COVID-19 infection in Melbourne (per 1,000 residents)  
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discussing the role of socioeconomic features. 

4.2.1. The impacts of socioeconomic features on infections 
Our analysis revealed some intriguing results regarding the associ

ation between socioeconomic characteristics of Melbourne neighbour
hoods and COVID-19 infections (Table 3) which offer insights for urban 
planning and public health policy. It shows that socioeconomic advan
tage (i.e., IRSD index) negatively correlated with COVID-19 infections. 
Thus, in the study area, socioeconomically disadvantaged neighbour
hoods were highly likely to record more COVID-19 infections. And this 
result was consistent across all three outbreaks of COVID-19 in the city. 
Similarly, household size also had consistent association across all out
breaks with larger households more likely to have driven far more in
fections than expected in their neighbourhoods. This result is intuitive 
considering the highly contagious nature of the coronavirus which 
makes households highly susceptible once a member contracts the dis
ease. Interestingly, the impact of age was only observed during the delta 
outbreak (Phase 3) where neighbourhoods with relatively younger 
population experienced more infections. This may be partly explained 
by the fact that vaccination rates (where initial eligibility was based on 
age) were lower in localities with more youthful population. However, it 
might also indicate the exuberance of younger people in being less 
careful which may have driven up infections of the more virulent variant 
of the virus. 

4.3. Spatial variations of built environment association with COVID-19 
infections 

The foregoing analysis revealed that some built environment fea
tures were associated with COVID-19 infections in metropolitan Mel
bourne. However, these MR results assume that the associations are 
constant across all neighbourhoods (i.e., postcodes). As the LISA maps 

suggest, the clustering of infections at certain areas may indicate spatial 
variations of association. The Moran’s I test confirmed that all the 
dependent and independent variables (except greenspace) were not 
randomly distributed (Table 4). Consequently, we conducted GWR an
alyses to explore the spatial variations in the association between the 
built environment and COVID-19 infections. 

The percentage of explained variances in COVID-19 outbreak models 
increased in the GWR compared with the MR (see Table 3). The 
explained variances increased from 17.6% to 21.8% in Phase 1, 30.8% to 
34.5% in Phase 2, and 46.7% to 52.4% in Phase 3. The corrected Akaike 
Information Criterion (AICc) factors decreasing in the GWR models also 
confirm that they outperform the MR models. Figures 4 to 6 mapping the 
GWR results reveal spatial variations of the coefficient estimates of the 
independent variables that had statistically significant association with 
case rates. 

4.3.1. Phase 1 
Population density had positive coefficients across all postcodes 

confirming the MR results that the denser neighbourhoods recorded 
more cases of infections in Phase 1 (Figure 4a). The strongest was, 
however, found in the southernmost areas followed by the western 
suburbs. In contrast, the north-eastern areas recorded the weakest in
fluence. While proximity to train station showed positive associations 
with infections in all postcodes (Figure 4b), this impact was strongest in 
the western suburbs (0.023) and declined as one moved towards the 
southern suburbs (0.016). The suburbs surrounding the CBD recorded a 
moderately strong association with proximity to train station. 

Figure 4c illustrates the distribution of the coefficients of the acces
sibility to CBD in Phase 1 depicting a north-south gradual decline in the 
significance of the relationships with COVID-19 infections. All the 
neighbourhoods recorded negative coefficients confirming the results of 
the MR that neighbourhoods with better access to the CBD tended to 

Figure 3. LISA cluster map of COVID-19 infections across the phases of outbreaks  
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report higher cases of infections. However, the magnitude of this in
fluence was stronger in the northern than the southern suburbs. Thus, at 
a similar change in distance from the CBD, suburbs in the northern part 
were likely to record more cases than in the south. 

The spatial pattern of the impact of socioeconomic status (IRSD) is 
depicted in Figure 4d which shows the strongest inverse relationship 
with infections to be found in the western suburbs (-0.053) but weak in 
the southern part (-0.034). Also, the strongest influence of household 
size on infections were found in the north and north-western parts 
(0.346) which declined gradually towards the south (0.139) (Figure 4e). 

4.3.2. Phase 2 
Since accessibility to CBD was the only built environment feature 

significantly associated with COVID-19 infections in Phase 2, the GWR 
analysis was restricted to that. As shown in Figure 5a, access to CBD 
although had negative coefficients across all suburbs, the impacts were 
stronger in the west (-0.107) and lowest in south-easternmost region 
(-0.077). This pattern differs from Phase 1 where a north-south decline 
was primarily observed. 

Figure 5b depicts the spatial distribution of the coefficients of the 
IRSD and reveals a similar pattern as the accessibility to CBD. The 
western suburbs appear to have far stronger inverse coefficients (-0.619) 
and declining to the lowest levels in the south-easternmost area (-0.446). 
This indicates that given a similar degree of change in socioeconomic 
status, suburbs in the west were likely to record more cases of COVID-19 
than any other areas. Thus, while the western suburbs are generally poor 
(i.e., suburbs have lower IRSD scores), differences in socioeconomic 
status created greater influence on infections when compared with the 
relatively well-to-do southern suburbs. The positive coefficients of 
household sizes were stronger in the western and northern suburbs 
(3.147) declining to the lowest in the southern areas (2.164; Figure 5c). 
This spatial pattern is similar to what was observed in Phase 1 (see 
Figure 4e). 

4.3.3. Phase 3 
Unlike Phase 1, population density was inversely related with 

COVID-19 infections in Phase 3 indicating that in all neighbourhoods, 
dense populations led to lower infections. But this impact was strongest 
in the north-eastern part (0.111) and weakest in the southernmost 
suburbs in the Mornington Peninsula (0.087; Figure 6a). The impacts in 
the western and central belt (including areas around the CBD) was closer 

Table 3 
Estimation results of multiple regression and geographically weighted regression models    

Phase 1 Phase 2 Phase 3    
MR 
Coefficient 

GWR Coefficient MR 
Coefficient 

GWR Coefficient MR 
Coefficient 

GWR Coefficient  
VIF Median Min Max Median Min Max Median Min Max 

Intercept  0.216 0.246 0.205 0.285 2.963 3.107 2.681 3.711 7.768 8.370 6.725 10.725               

Built environment 
variables              

Land use 
diversity 

1.677 0.507 0.539 0.498 0.590 2.705 3.101 2.407 3.385 -2.244 -1.249 -2.982 0.574 

Population 
density 

2.579 0.007** 0.006 0.006 0.007 -0.018 -0.018 -0.019 -0.016 -0.103* -0.100 -0.111 -0.087 

Distance to bus 
stop 

2.129 -0.011 -0.009 -0.023 0.002 0.056 0.068 0.009 0.120 -0.008 -0.006 -0.238 0.170 

Distance to train 
station 

2.695 0.020* 0.021 0.016 0.022 0.105 0.099 0.072 0.108 0.500** 0.476 0.323 0.515 

Accessibility to 
CBD 

3.588 -0.011*** -0.013 -0.015 -0.009 -0.093*** -0.096 -0.107 -0077 -0.347*** -0.366 -0.427 -0.261 

Accessibility to 
MAC 

4.015 0.013 0.014 0.004 0.025 -0.005 0.003 -0.028 0.068 0.257 0.326 -0.001 0.722 

Intersection 
density 

2.234 -1.391 -1.430 -1.483 -1.334 6.450 5.924 5.552 6.878 39.135 37.633 34.006 40.518 

Proximity to 
greenspace 

1.113 0.00 0 0 1.0e6 1.1e5 1.2e5 1.0e5 1.5e5 2.6e5 3.1e5 1.7e5 4.4e5               

Control variables              
IRSD 1.411 -0.044*** -0.047 -0.053 -0.033 -0.536*** -0.547 -0.619 -0.446 -2.600*** -2.654 -2.887 -2.176 
Median Age 2.694 -0.007 -0.008 -0.012 -0.004 -0.059 -0.064 -0.079 -0.047 -0.291** -0.314 -0.375 -0.252 
Household size 1.483 0.245*** 0.263 0.139 0.347 2.736*** 2.761 2.164 3.147 16.238*** 16.383 12.771 18.949               

R2  0.176 0.218   0.308 0.345   0.467 0.524   
Adjusted R2  0.141 0.175   0.278 0.308   0.444 0.497   
AICc  455.265 445.195   1437.295 1426.437   2085.943 2059.329   
Bandwidth   124.401    124.401    124.401   
N  271    271 271   271 271   

Notes: 
* p < 0.10 
** p <0.05 
*** p < 0.01, bandwidth in km 

Table 4 
Summary of spatial autocorrelation results  

Variable Moran’s Index z-score p-value 

Infection rate: phase 1 0.181 16.857 <0.001 
Infection rate: phase 2 0.208 19.067 <0.001 
Infection rate: phase 3 0.265 23.859 <0.001 
BE variables    
Land use diversity 0.089 8.159 <0.001 
Population density 0.758 67.935 <0.001 
Distance to bus stop 0.085 8.193 <0.001 
Distance to train station 0.213 19.376 <0.001 
Accessibility to CBD 0.683 60.124 <0.001 
Accessibility to MAC 0.257 23.080 <0.001 
Intersection density 0.523 49.826 <0.001 
Proximity to greenspace 0.002 1.140 0.254 
Control variables    
IRSD 0.224 19.952 <0.001 
Median age 0.160 14.560 <0.001 
Household size 0.216 19.582 <0.001  
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to the median coefficient. The differences in the direction and distri
bution of the coefficients in Phases 1 and 2 suggest that the influence of 
population density on COVID-19 infections is not simply defined. 

While the MR revealed that a kilometre-long change in distance to a 
train station was associated with 0.5 per thousand increases in infections 
in Phase 3, the magnitude ranged from 0.32 to 0.52 per thousand across 
the neighbourhoods. This degree of influence increased in an east-west 
direction (see Figure 6b), with western suburbs more likely to record 
more cases if they had poor access to train service compared to the 
eastern suburbs. The influence of accessibility to the CBD on COVID-19 
infections in Phase 3 (Figure 6c) depicts a north to south decline, 
generally like the pattern observed in Phase 1. The negative coefficients 
in the northwest suburbs appear stronger (-0.427) than that in the south- 

easternmost areas (-0.261). However, unlike Phase 1 where the south
ernmost area (i.e., Mornington Peninsula) had a weak association, the 
association is moderate in Phase 3. 

The spatial pattern of coefficient estimates of IRSD in Phase 3 is 
identical to what was observed in Phase 1 showing higher influences in 
the northwest (-2.886) and declining to -2.176 in the southern areas 
(Figure 6d). This differed slightly from Phase 2 where the strongest re
lationships were more obvious in the western suburbs and the weakest 
found in the southeast (the southernmost areas had modest weak co
efficients). Household size also depicted a pattern similar to the IRSD in 
Phase 3 although their relationship with infections was positive across 
all suburbs. A unit increase in household size resulted in 18.949 per 
thousand more cases in the northwest compared to about 12.771 cases 

Figure 4. Spatial variation of the coefficients of the statistically significant variables in Phase 1  
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in the southern regions (Figure 6f). Also, it was only during this outbreak 
that median age had a statistically significant influence on COVID-19 
infections. Figure 6e illustrates the distribution of coefficients of me
dian age depicting the northern suburbs with stronger inverse associa
tion (-0.375) compared with the southernmost area (Mornington 
Peninsula) where the effect was the weakest (-0.252). Thus, neigh
bourhoods with younger population recorded more cases during the 
delta outbreak in Phase 3, but this effect was more seriously felt in the 
northern part of Melbourne. 

5. Discussion and conclusion 

5.1. Future of cities: complexities of built environment influence in 
COVID-19 spread 

This paper explored COVID-19 infections in metropolitan Melbourne 
during three different outbreaks, and the implications on the city’s 
sustainable future. The research design reflecting distinctive waves of 
outbreaks, public health measures and associated conditions of living in 
the city allowed for understanding the consistency in geographies of 
infections, the spatial patterns and relationships with built environment 
and socioeconomic features. This understanding is paramount in 
responding and adapting to current and future pandemics, recognising 
that the city-scape is not a homogenous space. During Phase 1 (the initial 
outbreak), management responses were mainly experimental involving 
testing, isolation, and quarantine, with residents’ interaction with built 
environment largely uncurtailed. On the contrary, Phases 2 and 3 
involved more substantial waves with more decisive restrictions, 

significantly altering urban life. Phase 3 differs from Phase 2 mainly for 
being driven by a more infectious Delta variant, vaccinations, and less 
enforced albeit similar stringent restrictions. What do these mean for the 
built environment and for developing sustainable cities? 

This paper makes the following contributions. First, the patterns of 
infections and the built environment influence are complex and do not 
show a simple predictable direction across outbreaks/waves despite 
commonalities of urban features in the city. The complexity of the built 
environment’s influence on infections implies that for policy responses 
to be effective and sustainable, they need to be tailor-made for the 
different communities within the cities rather than a city-wide whole
sale approach. For example, while more cases were recorded in the 
northern and western suburbs during all three outbreaks, locations in 
the southern region only experienced high case rates during the third 
wave. That notwithstanding, the northern region emerged as a hotspot 
during all outbreaks whereas the western areas became hotspots during 
Phases 2 and 3. On the contrary, the eastern suburbs became the cold 
spots but exhibiting slightly distinct spatial patterns across outbreaks. 
Apart from Phase 1, the southernmost suburbs (e.g., in the Mornington 
Peninsula) also showed significant cluster of lower cases. The spatial 
patterns of infections are important for controlling and reducing spread 
during a pandemic (Aral & Bakir, 2022). However, our findings show 
that these patterns differ in separate outbreaks necessitating contextual 
responses in different episodes to guarantee effectiveness and ensure 
that the city continues to thrive in a sustainable manner. This is a major 
contribution from our research highlighting the dynamism of different 
waves of the COVID-19 pandemic, in terms infections, management 
responses and how the built environment responded to this evolving 

Figure 5. Spatial variation of the coefficients of the statistically significant variables in Phase 2  
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situation. In fact, this contextualised understanding based on the 
dynamism of different waves of the contagion is even more relevant 
considering the inconsistency of the built environment influences on 
COVID-19 infection rates. This research shows that the built environ
ment can not only have contrasting impacts in different outbreaks (as 
was evident with population density) but also spatial variation of asso
ciations in different neighbourhoods during the same outbreak (see Li, 
et al., 2021; Liu et al., 2021). Within this context, for any policy response 
to be sustainable and effective, it needs to reflect the built environment 
requirements considering neighbourhood dynamics. 

Second, our analysis shows that population density had the most 
complicated relationship with case rates by registering positive associ
ation during Phase 1, non-significant in Phase 2 and negative during 

Phase 3. This result confirms findings from earlier studies showing 
contrasting relationships between urban density and COVID-19 infec
tion rates in different regions. For example, higher population density 
were found to be positively correlated with infection rates in India 
(Bhadra et al., 2021) and Germany (Ehlert, 2021) whereas the reverse 
was observed during the early outbreaks in China (Liu, 2020). Other 
findings show no significant relationship as in the case of the United 
States (Hamidi, et al., 2020). Our results further add that even in the 
same city, this relationship can differ depending on prevailing outbreak 
and accompanying public health measures. During Melbourne’s first 
wave, physical distancing measures were generally absent which 
allowed greater interactions explaining how infections in dense neigh
bourhoods soared. However, on the two occasions where lockdowns 

Figure 6. Spatial variation of the coefficients of the statistically significant variables in Phase 3  
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were introduced to enforce physical distancing, the impacts were either 
non-significant (phase 2) or inverse (phase 3). Thus, density in itself may 
not be a problem in driving infectious diseases. Rather, crowding 
defined as many people gathering close together may be the critical 
driver as confirmed by Hamidi and Hamidi (2021) in their study 
comparing the density with crowding. In general, densely populated 
areas have better access to services and facilities such as bars, restau
rants, etc. and so without restrictions, it is expected for these areas to be 
more crowded and become exposure sites for infections. 

Third, while this research did not focus on the mitigatory role of 
physical distancing measures in relation to the potential effect of public 
transport on spread of infection, the findings suggest that public trans
port usage may not necessarily drive infections contrary to recent con
cerns. This finding is important for public policy and sustainable future 
of cities as during Phases 1 and 3, neighbourhoods with improved access 
to train services recorded less infections. It is possible that access to 
public transport service may not necessarily equate actual usage, but 
evidence elsewhere suggests that proximity to service drives usage 
(Badland et al., 2014; Murray, 2001). The fact that public transport 
service relationship with infections was similar during the two out
breaks suggests the different management conditions did not impact 
infection spread through this means. This finding contradicts expecta
tions and results from earlier studies suggesting that public transport use 
is associated with higher infections (Liu, 2020), highlighting the 
importance of recognising diversity of cities in policy responses. It is true 
that public transportation use declined during the pandemic (Curie 
et al., 2021) due to concerns that it fostered more contacts, interactions, 
crowding and had shared surfaces which increased infections. None
theless, we speculate that even in this general decline, areas with 
improved public transport access still used more train services than the 
areas with lower access. Thus, the results offer key insights into concerns 
of aversion to public transport usage which is expected to persist 
post-pandemic and remains a threat to sustainable urban transport 
development. In a recent study, Currie et al. (2021) suggested that while 
‘working-from-home’ is expected to slow recovery of public transport 
ridership, some commuters expressed their resolve for modal shifts due 
to public health concerns. In this situation, our finding showing that 
better access to trains is related to lower cases in both normal and 
lockdown periods in Melbourne may boost public confidence in the 
safety of public transport use and spur public policy response that en
courages the use of sustainable forms of transport, particularly public 
transport. This finding is strongly supported by the non-significant re
lationships of access to bus services with infections. Moreover, the result 
reveals that with necessary control measures, public transport will still 
be an important feature of sustainable post-pandemic cities. 

This research also showed that neighbourhoods with better access (in 
terms of proximity) to the CBD recorded highest infection rates and this 
was consistent across all three outbreaks. In contrast, access to major 
activity centres which decentralise jobs across Melbourne was not 
significantly related to infections. Better access to services from eco
nomic centres relating to higher infections is validated in the literature 
(B. Li et al., 2021). Yet, during the outbreaks in Melbourne, the legal 
enforcement of working-from-home resulted in less movements in the 
CBD and other employment centres. Therefore, the consistent associa
tion during outbreaks with lax restrictions (Phase 1) and stringent 
lockdowns (Phases 2 and 3) was unexpected. Perhaps, examining the 
relationship with different sectoral employment clusters (i.e., 
manufacturing, service, retail, and commerce) may help to decompose 
the relationship with infections, but this remains a subject for further 
research. 

Relatedly, this research revealed the implications of socioeconomic 
inequality for COVID-19 spreading. The results support studies indi
cating that socioeconomic disadvantages were significantly related to 

infections (Whittle & Diaz-Artiles, 2020; Liu et al., 2021). In the same 
way, neighbourhoods with large household sizes were found to be 
having more cases during all three waves of outbreaks (see Liu et al., 
2021). As argued by Leach et al. (2021), this pandemic has exposed the 
shortcomings of the unruly economic goals that entrench inequality 
across multiple scales of society. The fact that poor neighbourhoods in 
Melbourne persistently recorded the worst cases during all three waves 
of outbreaks underscores the urgency for radical public policy trans
formation towards promoting sustainable and inclusive development at 
all levels. The GWR analysis confirmed that where some built environ
ment variables (e.g., population density) were associated with more 
cases, the impacts were stronger for the more disadvantaged neigh
bourhoods in the west and north, questioning the inclusive and sus
tainable urban development policy agenda for the city. Age only became 
an influential factor during Phase 3 which was driven by more infectious 
variant and vaccination eligibility. Unlike observations elsewhere (e.g., 
Frank & Wali, 2021), neighbourhoods with younger population expe
rienced more infections but this might be because they were last to be 
vaccinated in Australia. 

5.2. Conclusion 

This study provides interesting perspective for sustainable urban 
planning and development in post-pandemic period. Using the unique 
quasi-experimental conditions presented by three different COVID-19 
outbreaks in metropolitan Melbourne, we studied the geographies of 
infections to examine the consistency of built environment influences on 
infections. The results provide evidence to continue supporting advo
cacy of sustainable design practices such as compact, dense, walkable, 
and mixed-use development as well as public transportation investments 
that promote liveable and healthy cities. The understanding that these 
features do not necessarily drive infections is important in a post-COVID 
world where serious rethinking of the ways cities are designed and 
organised is being pursued. However, as previously discussed, any ef
forts for urban sustainability cannot overlook the systemic socioeco
nomic inequalities existing in major cities. 

Finally, we acknowledge the following limitations. While the 
different public health measures allowed for longitudinal analysis in this 
study, the phasing (start and end dates of waves of outbreaks) were 
artificially bounded depending on prevailing government policies and 
may not necessarily match the natural end or transition from one wave 
to another. Further studies may address this concern. Also, future studies 
exploring the consistency of built environment influences on COVID-19 
infections could include variables such as air quality, density of bars and 
restaurants that have been found to have significant influences in cross- 
sectional studies (Travaglio et al., 2021; Yip, et al., 2021). The recom
mended future research is critical to unravel the relationships as new 
waves (such as Omicron) emerge and cities and countries reopen to 
‘COVID-normal’ living. 
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Appendix 1. Spatial distribution of built environment and socioeconomic varaibles in metropolitan Melbourne
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