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Researchers turn to deep learning to decode protein structures

Artificial intelligence is ushering in a revolution in structural biology. How far will it go?

Stephen Ornes, Science Writer

Twenty-eight years ago, computational biologists led by John Moult then at the
University of Maryland, Baltimore, launched an ambitious, large-scale experi-
ment designed to answer one of the most challenging open questions in biology:
How can researchers determine the structure of any protein?

Structure is key to understanding biological function because a the shape of a
protein directly determines what it does. But proteins are complex molecules
comprising linked chains of hundreds or even thousands of amino acids, wound
and folded into tortuous coils and pleats that bond and twist into myriad config-
urations. If that weren't enough, proteins can also change over time, further
bedeviling researchers’ efforts to define the structure of a protein in any given
context. “It's such a complicated problem with so many parameters, so many
ways to go wrong,” says structural biologist Andriy Kryshtafovych at the Univer-
sity of California, Davis, who since 2000 has been a co-organizer of Moult's
experiment. “We couldn't believe that it could be solved.”

In the 1970s, biologists ran experiments suggesting that the structure of a
protein could be predicted from its amino acid sequence alone. And over the
decades, protein structures have been laboriously determined, one by one, by
studying the molecules using experimental tools like X-ray crystallography. But
with no general how-to manual, researchers in fields ranging from biophysics to
chemistry to biological evolution have sought strategies for exploiting the
sequence-structure connection. Progress has often been incremental: for
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AlphaFold uses Al to predict the shapes of pro-
teins; structural biologists are using the pro-
gram to deepen our understanding of the big
molecules. This image shows AlphaFold's pre-
dicted structure (in magenta) of a glycoprotein
found on the surface of a T cell. Researchers
used other data to complete the structure (in
cyan). Image credit: Reprinted with permission
from Springer Nature: ref. 10.
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example, small assemblages of certain amino acids give
rise to predictable shapes that can serve as templates for
protein sub-structures. If a protein were a 1,000-piece
LEGO house, these templates might provide general plans
with details on how many rooms the house contains and
the arrangement of doors.

In 1994, when Moult and his colleagues launched their
computation-driven experiment, called CASP (for Critical
Assessment of protein Structure Prediction), researchers
had just begun to develop computer programs to tackle the
question. Its most recent iteration, however, has largely
upended Kryshtafovych's belief that the problem couldn’t be
solved—thanks in large part to a growing wave of artificial
intelligence (Al) approaches that use deep learning algo-
rithms to map out the structure of proteins. In 2020, the
frontrunner method in CASP used Al to predict protein
structures with an average accuracy approaching 90%, put-
ting it on par with the most sophisticated experimental tech-
niques. Most importantly, it showed that Al could do in a
matter of minutes what used to take years, if not decades.

“This advance is just phenomenal,” says Frances Arnold,
a chemical engineer at the California Institute of Technol-
ogy in Pasadena, who in 2018 was awarded a Nobel
Prize for her work using directed evolution to create
enzymes. “It will revolutionize structural biology.” However,
she notes, structure is just one piece in the much larger
puzzle of understanding how these large molecules
function.

Bolstered by the emerging trend among researchers to
make code and data repositories open access and freely
available, Al-driven acceleration of structure discovery is
spreading to uses far beyond the exploration of basic
protein structures. Many researchers are now harnessing
Al to guide related applications, such as designing pharma-
ceuticals, predicting how proteins will interact, and
mapping the structure of other biomolecules like RNA.
These efforts, in the future, could both answer big
questions about the micromachinery of life and enable
a more precise approach to health care and disease
treatment.

Finding the Problem

For most of its history, the field of structural biology has
been driven by advances in crystallography and other imag-
ing technologies that help researchers determine the shape
and structure of large, essential biomolecules, such as pro-
teins and RNA. But in the past, resolving a single structure
could take years of imaging, computation, and analysis.
Determining a structure requires finding clever ways to stabi-
lize and still proteins long enough to get a non-blurry image.

The quest to know those protein structures dates back
nearly 200 years. Proteins were first identified in the 19th
century by European chemists who recognized a distinct
class of macromolecules in substances like egg whites and
wheat gluten. The word “protein” initially appeared as a
description of these molecules in an 1838 letter from
Swedish chemist Jons Jacob Berzelius to Dutch chemist
Gerard Johann Mulder (1). It wasn't until the 20th century,
however, that researchers began to make headway on fig-
uring out how proteins were put together.
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In a landmark series of articles published in PNAS in
early 1951, Linus Pauling, Robert Corey, and Herman Bran-
son described a predicted structure of proteins. Their
approach was straightforward: They reasoned that if they
knew the basic ingredients and had information about
how those ingredients interacted at the atomic level, they
could predict the molecular architecture (2). They were the
first to recognize—a full decade before crystallographers
would image the proteins—that amino acids could bend
and bond into the alpha helix and the beta sheet, two tell-
tale structures in the backbone of almost every protein.
Experiments conducted in the 1960s confirmed their pre-
dictions, and their work remained unsurpassed in accuracy
for more than four decades.

The 2000s brought a surge of interest in using com-
puter algorithms to improve understanding of protein
shapes, but progress was slow, as documented by CASP
results, says Kryshtafovych. By the early 2010s, researchers
were experimenting with more sophisticated computa-
tional methods and Al tools like artificial neural networks.
These algorithms, inspired by and named for the wiring of
the brain, use large training datasets to develop abstract
rules that connect inputs to known outputs. This is how Al
systems can identify objects in photos—or, in the case of
structural biology, put amino acids together to build a
protein.

Early efforts, however, were laborious and largely ineffec-
tive, says Kryshtafovych. It wasn't until the recent explosion in
accuracy in the CASP experiments that Al began to deliver by
exploiting deep learning architectures. That's largely because
structural biology is simultaneously delicate and complicated,
says Amir Farimani at Carnegie Mellon University in Pitts-
burgh, PA, who has been using deep learning to design syn-
thetic antibodies against severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The number of possible combi-
nations of amino acids in peptides or proteins can lead to
mathematical questions that invoke thousands of dimen-
sions—an ideal task for deep learning, which excels at recog-
nizing patterns and applying them to new cases. A protein
made of 10 amino acids entails 10%° different possible
combinations.

“The design space is just enormous,” says computa-
tional biologist Arvind Ramanathan at Argonne National
Laboratory in Lemont, IL. “The Al revolution allows us to
peer inside something that is not visible to us from the
outset,” he says.

Hints of a Revolution

CASP, run like a contest to spur innovation, pulled deep
learning from the fringes of structural biology into the
leading edge of research. Here's how it works: Over the
course of a few months, competing research groups
develop models to predict the structure of a few dozen tar-
get proteins selected by CASP organizers. Entrants receive
only the amino acid sequences of each target. The process
is double-blind, so the organizers don't know the protein
shapes beforehand, and the targets are proteins that
have been recently solved but not yet submitted to the
Protein Data Bank, a database of known large molecule
structures. At the end of the contest, the organizers rank
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The revolution in structural biology isn't attributable to Al alone; the algorithms have to train on big datasets of high-resolution crystal structures
generated by technologies such as nuclear magnetic resonance spectroscopy or cryogenic electron microscopy (cryo-EM), which produced the
above image of a protein complex called g-galactosidase. Image credit: Veronica Falconieri and Sriram Subramaniam (National Cancer Institute,

Bethesda, MD).

the entrants by the accuracy of their models in a few
categories.

Since Moult and his colleagues launched CASP, the exper-
iment has been held every two years. Until 2016, entrants
rarely achieved higher than 20% accuracy. Then Al entered
the scene. That year, during CASP12, computational biologist
David Jones from the University College London, UK, more
than doubled previous accuracy levels using a model pow-
ered by deep learning algorithms. In the wake of his work,
neural networks took the CASP community—and the
broader field of structural biology—by storm.

By CASP13, in 2018, most groups were using deep learn-
ing to predict protein structures, pushing accuracy levels up
to about 60%. Top marks that year went to AlphaFold, a
model designed by researchers at DeepMind, a London-
based Al company owned by Alphabet Inc., which also owns
Google. (Frances Arnold sits on the board of Alphabet, which
is the parent company of AlphaFold.) At CASP14, AlphaFold
achieved scores above 90% on many of the target proteins.
Other Al-driven entrants in the contest reached accuracies
above 70%, which just two years earlier would have been
unimaginable.
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With AlphaFold, “if you give us the sequence, I'll give you
the structure,” says Farimani. He notes that the revolution
isn't attributable to Al alone; the algorithms have to train
on big datasets of high-resolution crystal structures gener-
ated by sophisticated technologies such as nuclear mag-
netic resonance (NMR) spectroscopy or cryogenic electron
microscopy (cryo-EM). “They go hand in hand,” he says,
noting that Al models are nearly as good at predicting
structure as those advanced experimental methods. “Now,
the problem is basically solved,” Kryshtafovych adds.

Putting Al to Work

Since the debut of AlphaFold, a growing chorus of groups
around the world have been rolling out new Al-based
applications and advances that continue to push structural
biology forward. In July 2021, DeepMind, in collaboration
with the European Bioinformatics Institute, publicly
released the structures of hundreds of thousands of
proteins, including not only those from CASP but all of
the roughly 20,000 known human proteins, as well as
the entire proteomes of other scientifically important
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organisms such as mice and fruit flies. (For comparison,
approximately 100,000 protein structures were known in
2016.)

Other big breakthroughs followed. That same July, a
group at the University of Washington in Seattle unveiled
RoseTTAFold, a program that uses neural networks to
predict protein structures based on scant genomic infor-
mation (3). In August, computer scientists at Stanford
University, CA, debuted a machine-learning approach that
predicts the structure of RNA using very little training data
(4, 5). Prediction of RNA structure has been challenging
owing to a lack of experimental data for training, says
Stanford computer scientist Ron Dror, who led the
machine learning work, but a new deep learning method
addresses this challenge. “Structure prediction is especially
valuable for types of molecules for which it's hard to deter-
mine structures experimentally,” like RNA, he says.

The Al revolution allows us to peer inside something

that is not visible to us from the outset.

—Arvind Ramanathan

The ultimate goal of these advances, says Ramanathan,
is @ machine learning tool “that will help biologists do their
experiments even better.” At Argonne, he uses deep learn-
ing to study protein interactions, such as how the SARS-
CoV-2 spike protein interacts with host cells, as well as
exceptionally complicated molecules called “intrinsically
disordered proteins.” These complex proteins don't reliably
fold into predictable three-dimensional shapes and are
associated with many diseases, including cancer, diabetes,
and neurodegenerative disorders. Ramanathan’s goal is to
use deep learning models to predict some of these irregular
protein structures, then verify them using diverse experi-
mental techniques including crystallography and electron
microscopy.

Recent predictions of complex protein interactions can
shed light on the mechanistic machinery underlying impor-
tant biological processes. In October 2021, DeepMind
researchers used an AlphaFold model to predict complexes
made up of multiple proteins (6). In November 2021, an
international group combined the strengths of AlphaFold
and RoseTTAFold to evaluate interactions among 8.3 million
pairs of proteins and predict large protein assemblies,
involved in important biological functions, in the yeast Sac-
charomyces cerevisiae (7). Advances like these have also
pushed the field further into protein design.

Researchers are also increasingly deploying deep learning
to predict structures that may bind target molecules, for
uses such as personalized cancer treatments or synthetic
antibodies able to neutralize SARS-CoV-2 (8, 9). Farimani's
work at Carnegie Mellon shows one way that Al can help
unearth new treatments for COVID-19. He and his collabora-
tors first amassed data on the amino acid sequences of anti-
bodies—proteins that can fight off an invader in the body—
against viruses including HIV, dengue, SARS, influenza, and
Ebola. They then trained a few candidate machine learning
models to identify antibodies able to neutralize the target
virus. Finally, they fed data about SARS-CoV-2 into the most
accurate of the models to identify sequences for antibodies
with the best chance of inhibiting the virus.

4 of 5 https://doi.org/10.1073/pnas.2202107119

What's remarkable about AlphaFold, says Farimani, is
that it can make accurate predictions based on the amino
acid sequence alone. “You don't need the mathematics or
the understanding of the physics of the molecule,” he says.
“It's really an amazing tool.” And because it's open-access,
he even has students in his classes use it for assignments.

Black Box Warnings

Al-driven advances in structural biology are not only pushing
forward the basic science but also exposing new questions
and opportunities. “I believe it's still early days,” says Dror.
“The recent results are really exciting and impressive, and at
the same time there's a great deal left to be done.”

For example, proteins in biological systems change
structure continuously. They wiggle and deform, changing
shape and moving with the system. Current methods—
both computational and experimental—yield average pro-
tein structures. “The average structure isn't
the only thing that's important,” Dror says.
“Itd be wonderful to go beyond that, to
predict whole sets of structures and deter-
mine which ones will be adopted in a cell
and under which conditions.” Al models will likely play a
role in answering that challenge as well, predicts
Ramanathan.

But structures tell only part of the story of how life's
machines work: Researchers will still need to connect
those structures with function of the molecules. “You can
get the structure of an enzyme and still have no clue
about how it works,” Arnold says. Deep learning will likely
help biologists crack open that mystery as well, she says,
but it's not going to happen right away. “We will at some
point have sufficient data and modeling requirements to
do the same for function,” she says. “But it's an orders-
of-magnitude more complex problem and requires
different kinds of data. Structure is just one part of that
data.”

There are also challenges associated with neural nets
themselves; namely, that researchers don't know exactly
how the algorithms make such accurate predictions. “We
don't know what the neural net learns,” Kryshtafovych
says. (See News Feature: What are the limits of deep learn-
ing?*) The algorithm generates its own abstract rules
based on the training data and not on natural laws, which
means its reasoning is likely impossible to decode, even if
one could crack open the program and peer inside. Taking
the model apart won't reveal the rules that the neural net
invented. “There is no mathematical function, no analytical
explanation of how this is able to make this complex con-
nection,” says Farimani.

Whatever the reasoning, it's likely that the neural net
doesn't use the natural, mechanical rules that guide pro-
tein shapes in biological systems. “Why does nature pick
this pathway and not that pathway?” Kryshtafovych asks.
“These recent successes don't help us know that.”

In the future, researchers see a role for deep learning
not only in understanding a protein’s shape but also how it
interacts within a living system. “Let's say | want to build a
protein and | have some idea of the shape, but | want to

*https://www.pnas.org/content/116/4/1074.
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insert it into an organism and make it functional,” says
Ramanathan. Deep learning models may predict not only
the sequence of amino acids that would produce the
needed shape, but also how they'll behave—and interact
with other molecules in their biological neighborhood—
once they're in place.
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Knowing the structure of proteins is a step toward
answering even bigger questions about how big molecules
interact, evolve, and drive life itself, says Arnold. “We need
a lot more to revolutionize our full understanding of
biology. It's more of a game than just solving a problem,”
she says, “but it's a fantastic game.”
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