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Abstract

Purpose—Molecular similarities have been reported between basal-like breast cancer (BLBC) 

and high-grade serous ovarian cancer (HGSOC). To date, there have been no prognostic 

biomarkers that can provide risk stratification and inform treatment decisions for both BLBC 

and HGSOC. In this study, we developed a molecular signature for risk stratification in BLBC and 

further validated this signature in HGSOC.

Methods—RNA-seq data was downloaded from The Cancer Genome Atlas (TCGA) project 

for 190 BLBC and 314 HGSOC patients. Analyses of differentially expressed genes between 

recurrent vs. non-recurrent cases were performed using different bioinformatics methods. Gene 

Signature was established using weighted linear combination of gene expression levels. Their 

prognostic performance was evaluated using survival analysis based on progression-free interval 

(PFI) and disease-free interval (DFI).

Results—63 genes were differentially expressed between 18 recurrent and 40 non-recurrent 

BLBC patients by two different methods. The recurrence index (RI) calculated from this 63-gene 

signature significantly stratified BLBC patients into two risk groups with 38 and 152 patients in 

the low-risk (RI-Low) and high-risk (RI-High) groups, respectively (p = 0.0004 and 0.0023 for 

PFI and DFI, respectively). Similar performance was obtained in the HGSOC cohort (p = 0.0131 

and 0.004 for PFI and DFI, respectively). Multivariate Cox regression adjusting for age, grade, and 
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stage showed that the 63-gene signature remained statistically significant in stratifying HGSOC 

patients (p = 0.0005).

Conclusion—A gene signature was identified to predict recurrence in BLBC and HGSOC 

patients. With further validation, this signature may provide an additional prognostic tool for 

clinicians to better manage BLBC, many of which are triple-negative and HGSOC patients who 

are currently difficult to treat.
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Introduction

Breast cancer is the most common cancer in women around the world. While early detection 

by mammography has greatly reduced the mortality of breast cancer, patients continue 

to develop recurrences many years after diagnosis. Basal-like breast cancer (BLBC) is 

one of the intrinsic subtypes of breast cancer and is often negative for estrogen receptor 

(ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), 

the so-called triple-negative breast cancer (TNBC) [1]. This subtype, only accounting for 

10–20% of breast cancer, is more aggressive than hormone receptor-positive breast cancer 

(ER+ and/or PR+) in that it grows and spreads to lymph nodes or other distant organs 

more quickly and more frequently [2, 3]. While anti-estrogen and anti-HER2 therapies do 

not work for BLBC, BLBC does respond better to platinum-based chemotherapy regimens 

than hormone receptor-positive breast cancer, yet it does have a higher risk of developing 

recurrence within 5 years of treatment [3, 4]. Newer targeted therapies (PARP inhibitors and 

PD-L1 immunotherapy) are emerging treatment paradigms for BLBC/TNBC [5, 6].

On the other hand, ovarian cancer is diagnosed in fewer women than breast cancer, but it 

ranks 5th in cancer deaths among women and causes more deaths than any other female 

gynecological cancer [7]. High-grade serous ovarian cancer (HGSOC) accounts for 70% 

of all ovarian cancer cases and is the most malignant form of ovarian cancer [8]. A 

substantial proportion of HGSOC has inherited mutations in the BRCA1/2 genes, and by 

the time of becoming symptomatic, they are usually at an advanced stage with poor outcome 

[9]. Similar to BLBC, HGSOC responds to platinum-based chemotherapy, and for those 

with BRCA1/2 mutations, targeted therapy with a PARP inhibitor is recommended [10]. 

Nevertheless, effective treatment of BLBC/TNBC and HGSOC remains a challenge.

Development of gene expression-based signatures for assessment of the risk of recurrence 

has been of great interest across many cancer types. Particularly in hormone receptor-

positive breast cancer, several multigene expression signatures have been commercialized to 

provide prognostic information on individual risk of recurrence and predictive information 

on the likelihood of benefit from chemotherapy and extended endocrine therapy [11–15]. 

To date, there have been some reports of developing gene signatures for TNBC recurrence 

or progression, but there have been no gene signatures able to predict recurrence in both 

BLBC/TNBC and HGSOC [16–18]. In this paper, we report the development of a prognostic 

Zhang et al. Page 2

Breast Cancer Res Treat. Author manuscript; available in PMC 2022 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gene expression signature, based on The Cancer Genome Atlas (TCGA) RNA-seq data, 

specifically for BLBC and the evaluation of its prognostic performance in HGSOC.

Methods

Study patients and data

The TCGA program (https://cancergenome.nih.gov/) generated and characterized genomic, 

epigenomic, transcriptomic, and proteomic profiles for over 11,000 primary cancers and 

matched normal samples across 33 cancer types. Genome-wide mRNA-seq raw count 

data for breast cancer and HGSOC were downloaded from TCGA harmonized database 

via the GDC data portal using the TCGAbiolinks package using Bioconductor. Data 

derived from recurrent tumors and matched normal samples were excluded from this study. 

Clinicopathologic data were obtained from the TCGA Pan-Cancer Clinical Data Resource 

(TCGA-CDR) [19]. PAM50 intrinsic subtype classification was performed following the 

method by Parker et al. [20].

Data processing

To reduce noise from no/low expression genes, genes that had 10 or less raw counts in 

more than 90% of the samples were excluded from further analyses. Raw count data were 

normalized using the method of trimmed mean of M-values (TMM) prior to the calculation 

of recurrence index based on developed gene expression signatures [21]. Gene annotation 

was done via BioMart databases (https://www.biomart.org) using Bioconductor package 

biomaRt [22].

Differential gene expression analysis

Three RNA-seq analysis methods were used to identify gene features that were differentially 

expressed between those patients that showed progression within 2 years versus those 

having no progression events for at least 5 years. DESeq2 and edgeR were based on 

negative binomial generalized linear models for count-based expression data. DESeq2 uses 

gene-specific dispersion parameters, while edgeR includes both common and gene-specific 

dispersion parameters moderated by empirical Bayes to borrow information across genes 

[23, 24]. The voom/limma method does not assume negative binomial distribution for the 

RNA-seq data [25, 26]. Instead, it estimates a mean–variance relationship of the log-counts, 

generating a precision weight for each normalized observation. As such, the normalized 

log-counts and the associated precision weights can be used with any statistical methods that 

are precision weight aware. Therefore, voom/limma methods open the analysis of RNA-seq 

data to a wide variety of statistical techniques that were previously developed for microarray 

data analysis. The multiple testing adjustment was done by Benjamini & Hochberg False 

Discovery Rate (FDR) [27]. Thresholds for determining statistical significance are provided 

in the Results section. Common differentially expressed genes were identified among the 

three analysis methods as the basis for developing prognostic gene signatures.

GO enrichment analysis

Gene ontology (GO) enrichment analysis was performed using The Gene Ontology 

Resource (https://geneontology.org/). Gene IDs from the prognostic gene signature were 
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entered into the search engine for GO Enrichment Analysis on the GO homepage using 

the GO aspect of biological process. Analysis performed by the PANTHER Classification 

System provided a list of GO terms that were over- and under-represented from the 

submitted gene list using the Fisher’s exact test to determine significance (p < 0.05) [28, 

29].

Statistical analysis

Prognostic risk models were built based on the commonly identified differentially expressed 

genes, and a raw recurrence index was calculated based on log2 transformed TMM 

normalized count data by weighted linear combination using Wald statistic for each gene 

from DESeq2 analysis as the weight [30]. The calculated raw recurrence index was then 

linearly scaled to between 0 and 10 to derive the final recurrence index (RI). For BLBC, the 

threshold to classify patients into RI-Low (less than the threshold) vs. RI-High (at or above 

the threshold) groups was determined to ensure there were minimal recurrent cases within 

the stratified RI-Low group, because the clinical utility for the generally considered high-

risk BLBC was to identify those with relatively low risk of recurrence to avoid aggressive 

treatments. On the other hand, for HGSOC that is highly aggressive, the selection of the 

threshold was to identify a relatively small, yet reasonable proportion of patients (e.g., 20%) 

as clinically super-high risk of recurrence to warrant new regimens of even more aggressive 

therapies.

The primary study endpoint was progression-free interval (PFI) with events including 

local or distant recurrences, new primary tumor in the breast, or death from disease; the 

secondary endpoint was disease-free interval (DFI) which had the same endpoint as PFI 

but required that the patient first achieve disease-free status after receiving the first course 

of treatment. Kaplan–Meier analysis with log-rank test was used to assess the equality of 

the survival curves of the prognostic risk groups [31]. Cox proportional hazard regression 

was used to derive hazard ratios (HRs) for comparing the risks of differential risk groups 

[32]. All analyses were conducted using R statistical package (version 3.5.2; https://www.r-

project.org).

Results

RNA-seq raw counts were downloaded from TCGA for 1102 breast cancer samples and 314 

high-grade serous stage I-III ovarian cancer samples with clinical outcome data available 

for 1090 breast cancer and all ovarian cancer samples. The median number of total reads 

per library was 58 million, ranging from 13 to 114 million. The breast cancer data included 

563 luminal A, 215 luminal B, 82 Her2-enriched, 190 basal-like and 40 normal-like breast 

cancer patients. Among the 190 BLBC patients that were the focus of this study, 62% of 

patients were postmenopausal, 86% had T1 or T2 tumors, 62% had lymph node negative 

disease, 87% had only primary tumors, while 2% had metastatic disease, and 85%, 89% and 

95% were ER, PR, and HER2 negative, respectively (Table 1). For the HGSOC dataset, the 

median age was 59 years old, 93% were stage III, and 87% had grade 3 tumors (Table 2).

The RNA-seq datasets examined 56,963 annotated genomic features (terminology “genes” 

used in the following for simplicity). To remove low expressing genes, 31,375 genes (55% 
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of all genes) that had ≤ 10 counts in 90% of the samples were excluded, leaving 25,588 

genes for the analyses. To identify those genes that were differentially expressed between 

recurrent and non-recurrent patients with BLBC, 18 patients who had progression events 

within 2 years were compared to 40 patients who had no progression events for at least 5 

years using three RNA-seq specific analysis methods: DESeq2, edgeR and voom/limma.

DESeq2 identified 3295 (13%) genes as differentially expressed with a p value < 0.05. 

Using Benjamini & Hochberg FDR adjustment, 307 genes remained significant with an 

adjusted p value < 0.05. edgeR analysis identified 3296 (13%) differentially expressed genes 

(p < 0.05), and 343 genes remained significant (adjusted p < 0.01) after Benjamini & 

Hochberg FDR adjustment. The voom/limma method appears to be the most conservative 

in this analysis, identifying 1152 and 228 genes as differentially expressed with p < 0.05 

and p < 0.01, respectively; no genes were statistically significant (adjusted p < 0.05) after 

Benjamini & Hochberg FDR adjustment. To avoid the bias of one method over the other 

when building the prognostic signatures, an approximately similar number of differentially 

expressed genes for each method were obtained as guided by differing thresholds for 

p-value or adjusted p-value. Gene sets from the three analysis methods (n = 307, 343 

and 228 from DESeq2, edgeR and voom/limma, respectively) were intersected to derive 

common differentially expressed genes for building prognostic gene signatures. 63, 58 and 

21 genes were commonly differentially expressed by DESeq2/edgeR, DESeq2/limma and 

edgeR/limma analysis, respectively (Fig. 1). Due to the fewer number of common genes 

between edgeR and limma analyses and no differentially expressed genes by voom/limma 

after FDR adjustment, only the 63-gene set was examined further for its prognostic ability in 

BLBC and HGSOC. Annotation information and differential expression analysis results for 

the 63 genes are available in Supplemental Table S1.

A prognostic gene signature was developed based on the 63 genes and the RI was calculated 

by linear combination weighted by the Wald statistic for each gene derived from DESeq2 

analysis. The cut-point for BLBC was chosen to stratify 20% of patients as the RI-Low 

group to ensure a minimal number of recurrent cases in this low-risk group. In the cohort 

of 190 BLBC patients, those classified as RI-High (n = 152) by the 63-gene signature had 

a statistically significantly higher risk of PFI events than those classified as RI-Low (n = 

38) with no PFI events in the low-risk group (p = 0.004) (Fig. 2A). The RI remained to be 

statistically significant (p < 0.0001) after adjusting for age, T stage and N stage. Even in 

the subset of BLBC patients that excluded those used in the training and model building, 

the 63-gene signature remained to be prognostic with clear separation of the survival curves 

of the two risk groups (Fig. 2B), even though the p-value was only close to marginally 

significant (p = 0.057), apparently due to a limited number of events in this subset. Using 

the secondary endpoint of DFI, the 63-gene signature also significantly stratified all BLBC 

patients into different prognostic risk groups (Fig. 2C, p = 0.0023). Similarly, in the subset 

excluding those used in the training, the signature showed a clear trend in stratifying patients 

into different prognostic risk groups, even though the p-value is not statistically significant 

(Fig. 2D, p = 0.08). As a continuous risk score, the 63-gene signature derived RI showed 

increased risk of recurrence as its value increased (Fig. 3).
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In the HGSOC cohort, the cut-point was chosen to classify approximately 20% of patients 

as clinically super-high risk. Those classified as RI-High (n = 57) by the 63-gene signature 

had a statistically significant higher risk of PFI events than those classified as RI-Low (n = 

255) (Fig. 4A; HR: 1.49, 95% CI 1.09–2.06; p = 0.0131) and remained to be statistically 

significant after adjusting for age, clinical stage and grade (p = 0.0259). Using the secondary 

endpoint of DFI, the clinical outcome difference between the two risk groups was even 

larger, with those classified as RI-High having double the risk of recurrence than those 

classified as RI-Low (Fig. 4B; HR: 2.16, 95% CI 1.40–3.34; p = 0.0004). Even after 

adjusting for age, tumor grade and clinical stage, the RI remained a statistically significant 

prognostic factor (HR: 2.18, 95% CI 1.41–3.37; p = 0.0005) in HGSOC. RI, derived from 

the 63-gene signature, as a continuous risk score, showed increased risk of recurrence as its 

value increased (Fig. 5).

To further explore the biological processes underlying the prognostic gene signature, GO 

enrichment analysis was performed on the 63-gene signature. Forty-one out of 63 genes 

in the gene signature (63 total genes including 10 long non-coding RNA (lncRNA) genes 

and 11 unmapped genes) mapped to the human whole-genome reference database (20,996 

IDs). One hundred fifty-six GO terms were found to be significantly over-represented (p 
< 0.05) in the prognostic gene signature with 18 of these GO terms having a p-value less 

than 0.01. Among the most significant GO terms are vascular endothelial growth factor 

signaling pathway, cell–cell signaling, and peptide hormone processing (Supplemental Table 

S2). The hierarchical clustering of BLBC and HGSOC datasets based on 63 genes are shown 

in Supplemental Figs. S1 and S2.

Discussion

In this study, we were able to develop a gene expression-based prognostic signature, based 

on 63 genes, to quantify the likelihood of recurrence events in BLBC. Out of the 63 genes, 

there were 39 protein coding genes, 10 lncRNA genes involved in bone development, DNA 

repair, cell adhesion, proliferation, signal transduction etc. Among the genes were known 

biomarkers for breast (PGF, KLK12) and ovarian cancers (PAX1, OLFM4) [33–36]. PTHLH 

is a marker for bone metastasis in breast cancer patients whose overexpression upregulates 

P2RX6 which is specific for the calcium signaling pathway [37]. Several known epigenetic 

markers like KLHDC7B, SCGB3A1 and PRMT8 that catalyzes the transfer of methyl 

groups on proteins were also present in our signature [38–40]. Some of the 63 genes in our 

signature have been reported to be related to both breast cancer and ovarian cancer tumors. 

For example, SLC5A5 was upregulated in breast cancer and was also reported as a poor 

prognostic factor in ovarian cancer [41, 42]. HSPB1 is involved in breast cancer causing 

drug resistance, and it was also reported to be associated with aggressive ovarian cancer with 

inherent resistance to chemotherapy [43, 44]. SCGB3A1 is a methylation marker for both 

breast and ovarian carcinoma [39, 45]. Recent studies show that lncRNAs play a significant 

role in cancer progression and may serve as an independent predictor for patient outcomes 

[46]. Similarly, numerous studies have reported that non-coding genes can also act as cancer 

driver genes by affecting gene expression [47].
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The signature was able to classify 20% of BLBC patients, clinically considered high risk, 

as genomically low risk who experienced minimal recurrence clinically. More interestingly, 

this signature was also able to stratify HGSOC patients into risk groups with significantly 

different risks of recurrence. To our knowledge, this is the first report of a gene expression 

signature that showed prognostic activity in both BLBC and HGSOC. The fact that this gene 

panel not only can predict a lower chance of recurrence when the recurrence rate is not very 

high (for BLBC, c.f. PFI events in Supplemental Figure S1), but also can discern a more 

risky group for recurrence when the recurrence rate is high (for HGSOC, c.f. PFI events in 

Supplemental Figure S2), demonstrates its potential robustness in predicting different risks 

of recurrence depending on clinical needs.

A few of the 63 genes in our signature overlap with other reported gene signatures for BLBC 

or HGSOC. Finkernagel et al. reported CLEC11A in the protein signature for HGSOC 

recurrence [48]. PAX1 was present in the DNA methylation signature associated with serous 

ovarian cancer progression [35]. Another interesting observation in this study is that the 

majority of the recurrences in the BLBC dataset occurred prior to 3 years after diagnosis, 

which is consistent with a previous study on TNBC showing that the risk of recurrence 

peaked at 3 years and declined rapidly afterwards, and that TNBC had increased likelihood 

of recurrence than hormone receptor-positive breast cancer within 5 years but not thereafter 

[2].

Considerable effort has been invested to seek appropriate public gene expression datasets 

to validate the signature in BLBC and HGSOC. Unfortunately, the vast majority of the 

available gene expression profiling studies were based on microarray platforms; no other 

RNA-seq datasets with adequate clinical follow-up were found available at this time. For 

example, we had access to the microarray dataset (Illumina HT-12 v3) from the METABRIC 

project [49]. However, due to the platform difference, only 34 out of the 63 genes can be 

successfully mapped to the METABRIC dataset. Even with the significantly reduced number 

of genes, there was a clear trend of prognostic stratification of the 297 TNBC patients 

from the METABRIC project by the partial signature (data not shown), although statistical 

significance was not reached (P = 0.14).

Currently, the main treatment modality for TNBC is cytotoxic chemotherapy. While there 

has been some progress with new targeted therapies such as PARP inhibitors and immune 

check point inhibitors in TNBC, due to high disease heterogeneity, BLBC/TNBC has not 

seen the same level of success with targeted therapies as other cancer types [5, 6, 50]. 

Molecular subtyping of BLBC/TNBC and biomarkers predictive of therapeutic response 

are critically needed [51]. Many of the prognostic/predictive gene expression signatures 

developed for breast cancer have been mainly for hormone receptor-positive breast cancer; 

much less work has been done on BLBC or TNBC [11, 12, 20, 52, 53].

Notably, Lehmann et al. identified 6 TNBC subtypes (2 basal-like [BL1 and BL2], 

immunomodulatory [IM], mesenchymal [M], mesenchymal stem like [MSL], and luminal 

androgen receptor [LAR]) using 587 TNBC tumors from public microarray datasets [54]. 

These subtypes appeared to have differential responses to various therapies based on cell 

line models. However, validation studies of these molecular subtypes in clinical samples 
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are still lacking. Rody et al. showed that a signature associated with the high B-cell 

metagene and low IL-8 metagene demonstrated prognostic ability in TNBC [55]. Similarly, 

Iglesia et al. found that increased metastasis-free survival is correlated with B-cell gene 

expression signatures, which was mainly limited to BLBC and immunoreactive ovarian 

cancer. Another immune-related signature of 4 genes was identified by Criscitiello et al. 

that showed significant association with distant recurrence-free survival in a cohort of 

115 patients [56]. Al-Ejeh et al. established an 8-gene signature based on the Oncomine 

database that was shown to be prognostic in TNBC [57]. Hallett et al. identified a 14-gene 

signature from a training set of 85 BLBC patients and validated it in a small cohort of 49 

patients to identify those who recurred within 5 years versus those who showed excellent 

long-term outcome [58]. Yau et al. developed a 5-gene predictor termed the Integrated 

Cytokine Score (ICS) for TNBC based on 2 previously identified signatures and confirmed 

its prognostic value in two public microarray datasets of 95 TNBC patients [17]. More 

recently, a comprehensive whole-genome sequencing study based on 254 TNBC tumors 

was completed. This study showed that a previously developed mutational-signature-based 

algorithm HRDetect for homologous recombination repair deficiency (HRD) had prognostic 

value in 144 TNBC patients who had received adjuvant chemotherapy [59]. In another study 

based on a signature of 36 genes measuring MHC class II (MHCII) pathway expression, 

Stewart et al. showed that in an independent cohort of 56 TNBC patients, the signature was 

significantly associated with longer disease-free survival [16]. Compared to these studies, 

the signature identified in this study is unique in that this signature classified low-risk 

patients with very low risk of recurrence so that they can be safely and sufficiently treated 

with standard chemotherapy, while those classified as high risk may be considered as 

candidates for new targeted treatments. We would like to note that although our signature 

does contain a few immune response genes (OLFM4, IGHV1–3, VSIG8), no immune 

signaling-related biological processes were found enriched within our signature.

A substantial proportion of ovarian cancer patients achieve complete response to initial 

platinum and paclitaxel-based chemotherapy; however, most of those with advanced disease 

will develop recurrence within 18 months [60]. Traditional prognostic factors, such as age, 

performance status, FIGO stage, tumor grade and initial surgery results, are insufficient 

to predict therapeutic response and survival. Currently, there are no biomarkers that can 

predict which patients will benefit from systemic first-line platinum and taxane-based 

chemotherapy. Thus, nearly all women are given the same regimen although they will 

not display the same response and have the same outcome. Like TNBC, epithelial ovarian 

cancer is a heterogeneous disease with each subtype harboring different genetic mutations 

that can be molecularly targeted for improved treatment. HGSOC is characterized by 

mutations in p53, BRCA1, BRCA2, NF1, CDK12, as well as abnormalities in NOTCH 

and FOXM1 signaling pathways. Of note, nearly all ovarian cancers that harbor deleterious 

mutations in BRCA1 and BRCA2 are HGSOC [61]. While PARP inhibitors have been 

approved for ovarian cancer patients who carry mutations in BRCA1 and BRCA2, no 

other predictive biomarkers have been validated for routine clinical use. Large-scale gene 

expression profiling studies have been performed to identify biomarker/gene signatures for 

responses to specific chemotherapy regimens and prognosis [62–69]. However, no multigene 

genomic signatures are currently commercially available either as predictive or prognostic 
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tests. The gene expression signature discovered in this study, although preliminary in 

validation, has the potential to provide prognostic utility in these difficult-to-treat HGSOC 

patients.

Importantly, integrated analyses from TCGA Research Network, based on genomic DNA 

copy number, DNA methylation, exome sequencing and mRNA expression, demonstrated 

that BLBC/TNBC tumors and HGSOC tumors shared many molecular commonalities (TP53 

mutations, RB1 and BRCA1 loss, MYC amplification, genomic instability and common 

copy number gains, etc.), indicating a related etiology and that common therapeutic 

approaches should be considered. This is further supported by the activity of platinum 

analogs and taxanes in both BLBC/TNBC and HGSOC [70]. Our study supported this 

commonality between these two cancers by, for the first time, identifying a common 

prognostic signature for both cancers.

Supplementary Material
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Fig. 1. 
Common differentially expressed genes among the three RNA-seq analytic methods
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Fig. 2. 
Prognostic performance of the 63-gene signature in basal-like breast cancer. A PFI of all 

patients; B PFI excluding patients in training set; C DFI of all patients; D DFI excluding 

patients in training set. RI-High high recurrence index (RI), RI-Low low recurrence index 

(RI)
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Fig. 3. 
Risk of recurrence as a function of continuous risk score by the 63-gene signature in 

basal-like breast cancer
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Fig. 4. 
Prognostic performance of the 63-gene signature in high-grade serous ovarian cancer. A PFI; 

B DFI. RI-High high recurrence index (RI), RI-Low low recurrence index (RI)
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Fig. 5. 
Risk of recurrence as a function of continuous risk score by the 63-gene signature in 

high-grade serous ovarian cancer
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Table 1

Patient characteristics of basal-like breast cancer cohort

Factors RNA-seq (N = 190)

N (%)

Age

 Median (min, max) 54 (29, 90)

Menopausal status Pre 38 (20%)

 Peri 10 (5%)

 Post 117 (62%)

 Indeterminate 11 (6%)

 Unknown 14 (7%)

Race White 111 (58%)

 Black 64 (34%)

 Asian 7 (4%)

 Unknown 8 (4%)

T stage

 T1 37 (19%)

 T2 127 (67%)

 T3 19 (10%)

 T4 6 (3%)

 Unknown 1 (1%)

N stage

 N0 118 (62%)

 N1 51 (27%)

 N2 15 (8%)

 N3 6 (3%)

M stage

 M0 165 (87%)

 M1 4 (2%)

 Unknown 21 (11%)

ER

 Positive 21 (11%)

 Negative 162 (85%)

 Unknown 7 (4%)

PR

 Positive 12 (6%)

 Negative 169 (89%)

 Unknown 9 (5%)

HER2

 Positive 6 (3%)

 Negative 180 (95%)

 Unknown 4 (2%)
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Factors RNA-seq (N = 190)

DFI

 Event 22 (12%)

 Event-free 148 (78%)

 Unknown 20 (10%)

PFI

 Event 29 (15%)

 Event-free 161 (85%)
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Table 2

Patient characteristics of high-grade serous ovarian cancer cohort

Factors RNA-seq (N = 314)

N (%)

Age 59 (30, 87)

 Median (min, max)

Race 269 (86%)

 White

 Black 23 (7%)

 Asian 9 (3%)

 Others or unknown 13 (4%)

Clinical stage

 I 1 (0%)

 II 21 (7%)

 III 292 (93%)

Grade

 G2 35 (11%)

 G3 273 (87%)

 GX 6 (2%)

DFI

Event 126 (40%)

Event-free 50 (16%)

Unknown 138 (44%)

PFI

Event 227 (72%)

Event-free 87 (28%)
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