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Brief Stimuli Cast a Persistent Long-Term Trace in Visual
Cortex
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Visual processing is strongly influenced by recent stimulus history, a phenomenon termed adaptation. Prominent theories
cast adaptation as a consequence of optimized encoding of visual information by exploiting the temporal statistics of the
world. However, this would require the visual system to track the history of individual briefly experienced events, within a
stream of visual input, to build up statistical representations over longer timescales. Here, using an openly available dataset
from the Allen Brain Observatory, we show that neurons in the early visual cortex of the mouse indeed maintain long-term
traces of individual past stimuli that persist despite the presentation of several intervening stimuli, leading to long-term and
stimulus-specific adaptation over dozens of seconds. Long-term adaptation was selectively expressed in cortical, but not in
thalamic, neurons, which only showed short-term adaptation. Early visual cortex thus maintains concurrent stimulus-specific
memory traces of past input, enabling the visual system to build up a statistical representation of the world to optimize the
encoding of new information in a changing environment.
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Significance Statement

In the natural world, previous sensory input is predictive of current input over multisecond timescales. The visual system
could exploit these predictabilities by adapting current visual processing to the long-term history of visual input. However, it
is unclear whether the visual system can track the history of individual briefly experienced images, within a stream of input,
to build up statistical representations over such long timescales. Here, we show that neurons in early visual cortex of the
mouse brain exhibit remarkably long-term adaptation to brief stimuli, persisting over dozens of seconds, and despite the pre-
sentation of several intervening stimuli. The visual cortex thus maintains long-term traces of individual briefly experienced
past images, enabling the formation of statistical representations over extended timescales.

Introduction
Sensory processing not only depends on the current sensory
input but is influenced by the recent stimulus history. For
instance, neurons in visual cortex change their responsivity and
stimulus preferences following exposure to previous visual stim-
uli, commonly referred to as neural adaptation (Müller et al.,
1999; Dragoi et al., 2000, 2001; Kohn and Movshon, 2003, 2004).
Prominent theories of adaptation posit that changes in neural
responsivity can be explained by optimally efficient encoding of

visual information, given temporal regularities in recent input
(Barlow, 1961; Barlow and Földiák, 1989; Weber et al., 2019).
Indeed, the visual world exhibits strong temporal regularities
(Dong and Atick, 1995; Simoncelli and Olshausen, 2001;
Schwartz et al., 2007); for example, in natural viewing behavior,
orientation information tends to be preserved across successive
time points and is thus stable over extended timescales (Felsen et
al., 2005; van Bergen and Jehee, 2019). These temporal correla-
tions in natural visual input can therefore be exploited by the vis-
ual system by adapting the encoding of new sensory information
to the history of recent visual input. Crucially, however, it is
unclear over which timescales the visual system can track the his-
tory of previous input to exploit natural temporal correlations
during sensory encoding.

In the natural world, previous sensory input is predictive of
current input over extended timescales of multiple seconds (van
Bergen and Jehee, 2019), and the visual system could exploit
these predictabilities by adapting current visual processing to the
long-term history of visual input. Although several previous
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studies have indeed found evidence for long-term adaptation in
early sensory cortical areas lasting up to minutes, these studies
measured neural adaptation following long stimulus presenta-
tions of dozens of seconds (Dragoi et al., 2000; Patterson et al.,
2013) or in response to many brief presentations of the same
stimulus (Ulanovsky et al., 2004; Kuravi and Vogels, 2017; Peter
et al., 2020), both reflecting very untypical sensory input under
natural conditions. In contrast, neural adaptation in response to
individual briefly presented stimuli has been found to be short
lived, rarely observable beyond time lags of a few hundred milli-
seconds in primary visual cortex (V1) of macaque monkeys and
mice (Patterson et al., 2013; Jin et al., 2019; Kim et al., 2019; Jin
and Glickfeld, 2020). This begs the question of whether the visual
system can track the history of briefly experienced images over
extended timescales to exploit the temporal correlations present
in natural input. Furthermore, it is unclear whether the visual
system can maintain memory traces of the long-term history of
previously experienced stimuli in the face of intervening input,
or whether traces of temporally remote stimuli are eradicated by
new visual inputs. Persistent memory traces, surviving the
encoding of intervening visual input, would be crucial to build
up robust statistical representations of the world over longer
timescales.

To test whether neurons in early visual areas maintain long-
term traces of briefly presented past stimuli, which are robust to
intervening visual input, we leveraged a large and unique dataset
of electrophysiological recordings in the mouse visual system
(Allen Brain Observatory, Visual Coding—Neuropixels; Siegle et
al., 2021). We characterized the recovery time course of neural
adaptation in response to brief drifting and static grating stimuli
across the visual system of awake mice. Neurons in the mouse
primary visual cortex exhibit selectivity for orientation (Niell and
Stryker, 2008; Liu et al., 2011; Tan et al., 2011) and undergo ori-
entation-specific adaptation, tuned to the orientation difference
between the previous and current stimulus (Jin et al., 2019). This
makes the mouse visual system suitable for probing the time-
scales of orientation-specific adaptation. The use of high-density
extracellular electrophysiology probes (Jun et al., 2017) further
enabled us to study the temporal dynamics of adaptation across
multiple brain areas across the visual hierarchy in the thalamus
and primary and extrastriate visual cortex. It has been previously
proposed that temporal integration timescales increase along the
cortical hierarchy (Hasson et al., 2008; Lerner et al., 2011; Honey
et al., 2012; Murray et al., 2014). Beyond testing whether neurons
in early visual areas exhibit long-term adaptation, we therefore
further investigated whether a similar hierarchy of temporal dy-
namics may exist for stimulus-specific adaptation in the mouse
visual system. Importantly, although long-term adaptation, also
in the face of intervening input, has been observed in higher-
order visual areas in inferotemporal cortex (McMahon and
Olson, 2007), this form of adaptation appears to be task depend-
ent (Henson et al., 2002; Henson, 2016) and related to memory
recall (Meyer and Rust, 2018). Here, we focus on the early and
automatic sensory encoding of the environment, taking place in
both primary and higher-order visual areas while mice viewed
the stimuli passively without an explicit task.

To preview, we found remarkably long timescales of stimu-
lus-specific adaptation in response to brief visual stimuli in corti-
cal visual areas, persisting over dozens of seconds, despite the
presentation of several intervening stimuli. Although the decay
of adaptation was long lived across primary and extrastriate vis-
ual cortex, neurons in the thalamus only showed short-lived ad-
aptation to drifting gratings, limited to the processing of

temporally adjacent stimuli. Long-term adaptation in visual cor-
tex is thus not inherited from the thalamus and likely relies on
cortical plasticity. This long-term adaptation was also evident af-
ter the exposure to more rapidly presented brief static gratings,
albeit with a less clear difference in temporal decay between cor-
tex and thalamus. This replication of long-term adaptation to
briefer, more rapidly presented stimuli underlines the robustness
and ecological validity of the long-term temporal dependencies.
Our results indicate that early visual cortex maintains concurrent
stimulus-specific memory traces of past briefly experienced input
that are robust to intervening visual input. This dependence on
the broader temporal context may enable the visual system to
efficiently represent information in a slowly changing environ-
ment (Schwartz et al., 2007; Weber et al., 2019).

Materials and Methods
Dataset
All analyses were conducted on the openly available Neuropixels visual
coding dataset of the Allen Brain Observatory (Siegle et al., 2021). This
dataset surveys spiking activity from a large number of neurons across a
wide variety of regions in the mouse brain, using high-density extracellu-
lar electrophysiology probes (Neuropixels silicon probes; Jun et al.,
2017). Experiments were designed to study the activity of the visual cor-
tex and thalamus in the context of passive visual stimulation. Here, we
focused on a subset of experiments, termed the Brain Observatory 1.1
dataset, which comprises recordings in 32 mice (16 C57BL/6J wild-type
mice and three transgenic lines; six Sst-IRES-Cre x Ai32, five Pvalb-
IRES-Cre x Ai32, and five Vip-IRES-Cre x Ai32 of either sex). The three
transgenic lines were included to facilitate the identification of inhibitory
interneuron subclasses using optotagging. For the purpose of the current
research question, we analyzed the data of all 32 mice, regardless of
transgenic lines. Mice were maintained in the Allen Institute for Brain
Science animal facility and used in accordance with protocols approved
by the Institutional Animal Care and Use Committee of the Allen
Institute. For a detailed description of the entire Neuropixels visual cod-
ing protocol see Siegle et al. (2021). All data are openly available through
the Allen Software Development Kit (AllenSDK; https://allensdk.
readthedocs.io/en/latest/visual_coding_neuropixels.html).

Stimuli
During Brain Observatory 1.1 experiments, mice passively viewed a vari-
ety of different stimulus types. Here, we focused on a subset of stimuli:
full-field drifting and static grating stimuli (Fig. 1B; see Fig. 6A).
Visual stimuli were generated using custom scripts based on
PsychoPy (Peirce, 2007) and were displayed using an ASUS PA248Q
LCD monitor, with 1920 � 1200 pixels (21.93 in wide, 60Hz refresh
rate). Stimuli were presented monocularly, and the monitor was posi-
tioned 15 cm from the right eye of the mouse and spanned 120 � 95°
of visual space before stimulus warping. Each monitor was gamma
corrected and had a mean luminance of 50 cd/m2. To account for the
close viewing angle of the mouse, a spherical warping was applied to
all stimuli to ensure that the apparent size, speed, and spatial fre-
quency were constant across the monitor as seen from the the per-
spective of the mouse (Siegle et al., 2021).

Full-field drifting gratings were shown with a spatial frequency of
0.04 cycles/degree, 80% contrast, eight directions (0, 45, 90, 135, 180,
225, 270, 315°, clockwise from 0° = right to left) and five temporal fre-
quencies (1, 2, 4, 8, and 15Hz), with 15 repeats per condition, resulting
in a total number of 600 drifting grating presentations, divided across
three blocks. Drifting gratings were presented for 2 s, followed by a 1 s
interstimulus interval (gray screen). Gratings of different directions and
temporal frequencies were presented in random order and were inter-
leaved by the presentation of 30 blank trials, in which only a gray screen
was shown.

Static gratings were shown at six different orientations (0, 30, 60, 90,
120, 150°, clockwise from 0° = vertical), five spatial frequencies (0.02,
0.04, 0.08, 0.16, 0.32 cycles/degree), and four phases (0, 0.25, 0.5, 0.75).
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They were presented for 0.25 s, with no intervening gray period.
Gratings with each combination of orientation, spatial frequency, and
phase were presented ;50 times in a random order, resulting in a total
of 6000 grating presentations, divided across three blocks. There were
blank sweeps (i.e., mean luminance gray instead of grating) presented
roughly once every 25 gratings.

Data analyses
All data analyses were performed using custom code written in
Python, MATLAB, and R. All code are openly available on the
Donders Institute for Brain, Cognition and Behavior repository at
https://doi.org/10.34973/kpt9-y956.

Unit exclusion. To filter out units (i.e., putative neurons) that
were likely to be highly contaminated or missing lots of spikes, we
applied the default quality metrics of the AllenSDK. This entailed
excluding units with interstimulus interval violations larger than
0.5 (Hill et al., 2011), an amplitude cutoff larger than 0.1, and a
presence ratio smaller than 0.9 (https://allensdk.readthedocs.io/
en/latest/_static/examples/nb/ecephys_quality_metrics.html). For
the analysis of drifting gratings, we defined visually responsive
units as those units whose average firing rate during the first
100 ms of stimulus presentation of the preferred orientation of the
unit (eliciting the highest firing rate) was larger than 5 Hz and
larger than 1 SD of the firing rate during the first 100 ms of gray
screen presentations. For the analyses of static gratings, we applied
the same inclusion criteria but computed firing rates over the

whole stimulus duration (i.e., 250 ms). We chose to use a longer
time window for analyzing static grating adaptation because with
the back-to-back presentation of the static gratings, visual
responses to the previous stimulus overlapped with the initial time
window of the current stimulus, thereby increasing response vari-
ability in this early time window. However, largely similar results
were obtained when performing the analyses on the same time
window used in the drifting grating experiment (0–100 ms). To
assess whether the choice of the minimum firing rate threshold of
5 Hz had a substantial impact on our results, we repeated the anal-
yses with a more conservative (10 Hz) and less conservative
(2.5 Hz) threshold but obtained qualitatively similar results. In our
further investigation of sensory adaptation, we focused on those
regions that contained a minimum of 50 visually responsive units
(Fig. 1D and see Fig. 6C for an overview of included regions and
unit counts per region). All subsequent analyses were performed
on visually responsive units only.

Orientation-specific adaptation to drifting gratings. To investigate
orientation-specific adaptation, for each unit we compared firing
rates in response to a current grating when this grating was preceded by
a grating with the same orientation (repeat) or by its orthogonal orientation
(orthogonal), regardless of the temporal frequencies of current and previous
gratings. Note that repeat trial pairs could consist of gratings with opposite
drifting directions but with the same orientation. Investigating orientation,
rather than direction-specific adaptation, had the advantage of maximizing
the number of repeat and orthogonal trial pairs occurring across the

Figure 1. Visual cortex and thalamus exhibit orientation-specific adaptation to the immediately preceding (1-back) grating. A, Schematic of Neuropixels probe insertion trajectories through
visual cortical and thalamic areas, adapted with permission from Siegle et al. (2021). B, Presentation sequence of drifting grating stimuli. Mice were shown drifting gratings with a duration of
2 s, separated by a 1 s gray screen. Gratings were drifting in one of eight different dire ctions (0, 45, 90, 135, 180, 225, 270, 315°) and were presented in random order. For the analysis of ori-
entation-specific adaptation, we contrasted activity to gratings preceded by gratings of the same orientation (repeat, blue) with that elicited by gratings preceded by a grating of the orthogonal
orientation (orthogonal, red). C, Population peristimulus time histograms of neurons in V1 for repeat and orthogonal conditions. The transient response is reduced when the same orientation is
successively repeated, indicating orientation-specific adaptation. Subsequent analyses focused on this transient response (0–100 ms, green shaded area). Vertical dashed lines denote stimulus
onset and offset, respectively. Bin width = 25ms. Error bars indicate SEM. D, One-back adaptation ratios of transient responses across visual areas. Adaptation ratios were computed by dividing
the firing rate of each neuron for repeat by that for orthogonal stimulus presentations and therefore express the response magnitude to a repeated stimulus orientation relative to that elicited
by the same stimulus orientation but preceded by a grating with the orthogonal orientation. Adaptation ratios smaller than one indicate adaptation. All visual areas show significant 1-back ad-
aptation. Error bars indicate bootstrapped 95% confidence intervals. White numbers indicate the number of neurons in each area. E, The average firing rate to a stimulus preceded by a stimulus
with the same orientation (x-axis) is consistently smaller than the firing rate to a stimulus preceded by a stimulus with the orthogonal orientation (y-axis) across mice (gray dots denote differ-
ent mice; size scaled by the number of neurons of each mouse) in both thalamus (left) and cortex (right), as indicated by data points positioned above the diagonal. F, Histograms of single-
neuron adaptation ratios (log transformed) in thalamus (left) and cortex (right). Negative x values indicate adaptation, and the red dashed line marks zero adaptation (i.e., equal firing rates for
repeat and orthogonal conditions). The triangle shape indicates the mean adaptation across the population of neurons with p-value indicating the significance of the population mean. AL,
Anterolateral; AM anteromedial, LM, lateromedial; PM, posteromedial; RL, rostrolateral.
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random trial sequence. Adaptation was quantified in the form of an adapta-
tion ratio as follows:

adaptation ratio ¼ frrepeat
frorthogonal

;

where frrepeat and frorthogonal are the firing rates in response to a repeated
and orthogonal stimulus, respectively. The adaptation ratio expresses the
response magnitude to a repeated stimulus orientation relative to that eli-
cited by the same stimulus orientation but preceded by a grating with the
orthogonal orientation. Adaptation ratios smaller than one indicate a rela-
tive response reduction for orientation repetitions. Importantly, this analysis
quantifies orientation-specific adaptation as the stimulus features
between repeat and orthogonal condition are the same (on aver-
age), with the only difference being the relative orientation of the
adaptor stimulus. An initial exploratory analysis in one mouse sug-
gested strongest adaptation effects for the early transient response
(0–100ms from stimulus onset). Therefore, we limited our analysis
to this time window. This analysis choice was made while blind to
adaptation effects beyond the 1-back grating that were of main in-
terest to the current study. Adaptation induced by n-back gratings

was quantified in a similar manner as described above by condi-
tioning the data on the orientation difference (repeat or orthogo-
nal) between the current and n-back gratings, where n indicates
the number of stimulus presentations by which the previous gra-
ting preceded the current grating. For each region, we statistically
compared log-transformed adaptation ratios of 1- to 10-back gra-
tings to zero (indicating no adaptation) using two-tailed t tests,
while controlling the false discovery rate (FDR) at an alpha level of
0.05 using the Benjamini–Hochberg procedure.

To quantify the recovery time course of adaptation, we fitted expo-
nential decay models to the 1- to 50-back adaptation ratios of each
region. The recovery of adaptation in cortical areas was signifi-
cantly better fit by a double exponential, compared with a single-
exponential decay model, with a fast and slow decay component of
the following form:

r nð Þ ¼ 1� afastpe
�ðn�1Þ=t fast1aslowpe

�ðn�1Þ=t slow ;

where r(n) denotes the adaptation ratio conditioned on the n-back stim-
ulus orientation, afast, t fast, aslow, and t slow determine the magnitude and
recovery time of the fast and slow adaptation components, respectively.

Figure 2. Adaptation depends on orientation tuning and adaptor/test orientation. A–C, Orientation tuning curves in V1 for units of low (A), medium (B), or high (C) orientation selectivity (tertile split;
see above, Materials and Methods), following adaptation to different 1-back grating orientations (colored arrows). Stimulus and adaptor orientations are expressed relative to the preferred orientation of
each neuron. Tuning curves show local response reductions to the adapted orientation. D–F, Adaptation ratios as a function of the adaptor and test orientation relative to the neuron’s preferred orienta-
tion. For instance, the adaptation ratio for a relative stimulus orientation of 0° compares the visual response to a test grating with the preferred orientation of the neuron when it is preceded by an adap-
tor grating with the same (preferred) orientation, versus when it is preceded by the orthogonal (nonpreferred) adaptor orientation (illustration in A). In V1 (D–F, far left columns), adaptation was
strongest when adaptor and test stimuli corresponded to the preferred orientation of the neuron and decreased when adapting and testing with less preferred orientations (significant main effect of rela-
tive orientation, p = 4e-11). This relationship was particularly strong in neurons exhibiting high orientation selectivity (significant interaction between relative adaptor/test orientation and orientation selec-
tivity, p = 0.005; for definition of orientation selectivity see above, Materials and Methods). Nevertheless, there was clear adaptation for all adaptor orientations as indicated by 1-back adaptation ratios
consistently smaller than one (all p values, 0.004, corrected for multiple comparisons), except for nonpreferred (90°) adaptor and test stimuli of highly selective units (F, far left column, 90°, p = 0.88).
This overall pattern of adaptation effects was qualitatively similar across cortical visual areas (D–F, columns 2–5). In thalamic areas (D–F, two far right columns), there was no evidence for a dependence
of adaptation on orientation preference (no significant main effects of relative adaptor/test orientation: LGN, p = 0.28; LP, p = 0.91; no significant interactions between relative adaptor/test orientation
and orientation selectivity: LGN, p = 0.24; LP, p = 0.92), likely because of the overall lower degree of orientation selectivity of thalamic neurons.
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Adaptation in thalamic regions was more parsimoniously explained by a
single-exponential decay model of the following form:

r nð Þ ¼ 1� ape�ðn�1Þ=t :

For each region, we statistically compared single- and double-expo-
nential decay models with an F test. We used an F test as the two decay
models are nested; the single-exponential decay model is a restricted ver-
sion of the double-exponential decay model. As adaptation ratios were
not normally distributed, all models were fit to log-transformed adapta-
tion ratios by analogously log transforming model predictions. We
obtained the 95% confidence intervals of the parameter estimates with a
bootstrapping procedure. In particular, for each region we resampled units
with replacement and refitted the exponential decay model. We repeated
this procedure 1000 times and recorded the resulting parameter estimates
of the bootstrapped sample. The 95% confidence interval was taken as the
2.5 and 97.5 percentile of the bootstrapped parameter distribution. We re-
stricted parameter values to a wide range of plausible values (afast = aslow =
[�Inf, 0.5], t fast = t slow= [�50, 50]) and discarded bootstrapped estimates
that lay on the boundary of the parameter range, indicating implausible fits
(0.3% of bootstrapped fits).

Additionally, we investigated to which degree 1-back adaptation was
dependent on the relationship between the orientation preference of a
unit and the adaptor/test orientation. For instance, one may expect
strongest adaptation when the repeated stimuli match the preferred ori-
entation of the unit because of the strong response during the adaptation
period. To shed light on this question, we first binned units into three
equally sized subgroups per region, based on their orientation selectivity.
Orientation selectivity was quantified as

OSI ¼ frpreferred � frnon�preferred

frpreferred 1 frnon�preferred
;

where frpreferred and frnon-preferred refer to the firing rates of the unit to its
preferred orientation (eliciting the highest average firing rate) and the
orthogonal orientation, respectively. The orientation selectivity index (OSI)
ranges from 0 to 1, where 0 indicates no selectivity (identical firing rates to
preferred and nonpreferred orientations), and 1 indicates maximal selectiv-
ity (zero firing rate to nonpreferred orientation). Subsequently, for each sub-
group of units we computed adaptation ratios as a function of the previous
(adaptor) and current (test) stimulus orientation relative to the preferred
orientation of the unit (see Fig. 2). To statistically test the influence of the
relative adaptor/test stimulus orientation on adaptation ratios and to test
whether this influence depended on the degree of orientation selectivity of
the units, we conducted a 3 � 3 mixed ANOVA, with repeated measures
factor relative adaptor/test orientation (0, 45, and 90°) and between-unit fac-
tor orientation selectivity (low, medium, and high OSI).

Because we found that adaptation was indeed strongest when the
repeated orientations matched the preferred orientation of the unit, we
repeated our analysis of the recovery time course of adaptation for these
trial types. That is, we computed adaptation ratios on a subset of trials,
for which the current orientation matched the preferred orientation of
the unit and the previous orientation either matched (repeat) or was or-
thogonal (orthogonal) to the preferred orientation. Although this
approach had the advantage of quantifying adaptation to the most effec-
tive adaptor stimulus, it had the disadvantage of limiting the analysis to
a much smaller set of trials compared with computing adaptation for all
orientations. We did not observe qualitative differences between the two
analysis approaches.

Figure 3. Visual cortex, but not thalamus, exhibits long-term adaptation. A, Adaptation ratios of neurons in V1 as a function of the n-back trial. Strongest adaptation occurred in response
to the 1-back stimulus, but stimuli encountered up to eight presentations in the past (seen 22 s ago) still exerted significant adaptation effect on the current visual response, despite the pre-
sentation of intervening stimuli (red bars, p, 0.05, corrected for multiple comparisons). The decay of adaptation over n-back trials was well captured by a double-exponential decay model
with a fast- and slow-decaying adaptation component (black dashed line; afast = 13.99%, t fast = 0.85 trials, aslow = 3.45%, t slow = 6.82 trials). Error bars denote bootstrapped 95% confi-
dence intervals. B, Adaptation ratio as function of n-back trial for different visual areas (color coded). Although adaptation decays similarly and slowly across cortical visual areas (square sym-
bols) and are generally significant for up to 6–8 trials back (symbols with black border, p , 0.05, corrected for multiple comparisons per area), it decays more rapidly in thalamic areas LGN
and LP (circles). Black and lilac/green lines illustrate the best fitting exponential decay models for cortex and thalamus. Error bars indicate SEM. C, Average firing rates per mouse when the 4-
to 8-back orientation was repeated (x-axis) or orthogonal (y-axis) relative to the current orientation. Mice exhibit consistent long-term adaptation in cortex (right) but not in thalamus (left). D,
Histograms of single-neuron adaptation ratios (log transformed) in thalamus (left) and cortex (right).
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Dissociating adaptation to repeated and orthogonal drifting gratings.
Thus far, we have quantified adaptation as the ratio between responses
to repeated and orthogonal stimulus orientations. This analysis does not
reveal whether adaptation effects are because of suppression of response
when the current orientation matches that of past orientations, facilita-
tion of response when the current orientation is orthogonal to past ori-
entations, or a mixture of the two. The stimulus set included randomly
interspersed trials during which no stimulus was presented, so we
repeated the analysis described above, but quantified adaptation by com-
paring responses when a stimulus preceded the current trial with
responses when no stimulus was presented in the preceding trial. We
computed the following sets of adaptation ratios: (1) the ratio between
visual responses when the n-back stimulus had the same orientation as
the current stimulus (n-back repeat) and trials in which no stimulus was
presented at the same n-back position (n-back blank trial) and (2) the ra-
tio between visual responses when the n-back stimulus was orthogonal
to the current stimulus (n-back orthogonal) and n-back blank trials. As
blank trials were much less frequent than repeat and orthogonal trials
(30 blank trials vs ;150 repeat/orthogonal trials), for these analyses we
randomly subsampled repeat and orthogonal trials to match them to the
lower number of blank trials.

Orientation-specific adaptation to static gratings. Analyses of adapta-
tion to static gratings were similar to the analysis of the drifting grating
data, with two exceptions. First, we quantified adaptation based on neu-
ral responses during the entire stimulus presentation period (0–250ms).
As discussed above, we chose to use a longer time window for analyzing
static grating adaptation because with the back-to-back presentation of
the static gratings, visual responses to the previous stimulus overlapped
with the initial time window of the current stimulus, thereby increasing
response variability in this early time window. However, largely similar
results were obtained when performing the analyses on the same time
window used in the drifting grating experiment (0–100ms). Second, we
only analyzed adaptation to all orientations, regardless of the orientation
preferences of the units. This analysis was similar to the main analysis of
drifting grating adaptation described above. Because of the rapid presen-
tation of the static gratings, without intervening gray periods, responses
persisted into the presentation period of the next grating. Because subse-
lecting data according the preferred orientation of the units led to
response differences in the adaptation period (i.e., larger response to pre-
ferred than orthogonal adaptor), the bleeding of the previous response
into the current stimulus time window strongly biased the response to

the current grating, thereby confounding genuine adaptation-induced
changes in the response to the current grating. Conversely, when analyz-
ing adaptation for all orientations, regardless of the orientation tuning of
the units, the relationship between the adaptor orientations and the pre-
ferred orientations of the units were balanced across repeat and orthogo-
nal trials and therefore did not bias the analysis of the current response.

Data availability
All data are openly available through the AllenSDK (https://allensdk.
readthedocs.io/en/latest/visual_coding_neuropixels.html). The Neurodata
Without Borders files are also available on the DANDI Archive (https://gui.
dandiarchive.org/#/dandiset/000021) and as an AWS public dataset (https://
registry.opendata.aws/allen-brain-observatory/). All analysis code is openly
available on the Donders Institute for Brain, Cognition and Behavior reposi-
tory at https://doi.org/10.34973/kpt9-y956.

Results
Orientation-specific adaptation in visual cortex and
thalamus
To investigate orientation-specific adaptation in the mouse visual
system, we analyzed responses from a total of 2365 visually re-
sponsive neurons in the visual cortex and thalamus of 32 mice
(Fig. 1A) while they were presented with sequences of drifting
gratings (Fig. 1B). We separately analyzed visual responses to
gratings that were preceded by a grating of the same orientation
(repeat) or orthogonal orientation (orthogonal). We found that
the immediate repetition of stimulus orientation led to a marked,
orientation-specific reduction in spiking activity in primary vis-
ual cortex (V1), predominantly during the early visual response
(0–100ms from stimulus onset, n = 562; Fig. 1C, green shaded
area). We quantified this orientation-specific adaptation of the
transient visual response by calculating the response to a
repeated orientation, relative to that following the orthogonal
orientation (1-back adaptation ratio; see above, Materials and
Methods). Adaptation reduced the response by 17% in V1 (1-
back adaptation ratio = 0.83, p = 4e-57, 95% CI [0.81, 0.84]) and
had a similar impact in higher-level extrastriate visual areas (Fig.
1D; 1-back adaptation ratios between 0.80 and 0.88, all p values

Figure 4. Cumulative adaptation effects in V1. Random sequences of grating orientations, as the ones used in the current experiment, prevent any systematic accumulation of adaptation
across multiple stimulus presentations. Although this allows us to study the influence of individual n-back stimuli on the current visual response, it underestimates the influence of long-term
adaptation in natural environments, in which orientations tend to remain stable over prolonged time periods (van Bergen and Jehee, 2019), therefore leading to an accumulation of adaptation.
A, Illustrates that the adaptation effects of 2- to 8-back stimuli (red bars), albeit small when taken individually, together may lead to a considerable reduction of the current response (19%
reduction, red-striped bar) that even outweighs the adaptation effect of the 1-back stimulus (17% reduction, light red bar). Importantly, the cumulative influence of repeating 2- to 8-back gra-
ting orientations could not be estimated empirically in the current dataset as such streaks of orientation repetitions are exceedingly rare for random sequences (probability of;0.006%). Here,
we inferred the cumulative response reduction by assuming that the adaptation effects of previous stimuli accumulate approximately linearly. The inferred cumulative adaptation ratio was

then calculated as ar2�8 ¼
Y8

n¼2
arn; where ar2-8 is the cumulative adaptation ratio of 2- to 8-back stimuli, and arn denotes the empirically estimated adaptation ratio of an individual n-

back stimulus. B, To evaluate whether the assumption of a linear accumulation of adaptation approximately holds, we compared the empirically observed adaptation effect when two previous
adjacent stimuli had the same orientation as the current stimulus (dark gray bars,;6.25% of all trials) to the cumulative adaptation effect inferred from individual n-back adaptation estimates
(light gray bars). The empirically observed adaptation effect of two successive stimuli roughly matched the predicted adaptation effect, suggesting that adaptation accumulates approximately
linearly in the current setting. All error bars indicate 95% CIs.
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, 2e-21, two-sided t tests, corrected for multiple comparisons).
We also found orientation-specific adaptation in the dorsolateral
geniculate nucleus (LGN) of the thalamus (n = 140; 1-back adap-
tation ratio = 0.93, p = 8e-7, 95% CI [0.91, 0.96]), and the lateral
posterior (LP) nucleus of the thalamus (n = 90; 1-back adapta-
tion ratio = 0.83, p = 3e-10, 95% CI [0.79, 0.88]). Of note, in this
analysis, we focus on stimulus-specific adaptation, sensitive to
the orientation difference between previous and current stimulus
(repeat vs orthogonal). This analysis is not sensitive to additional
untuned adaptation effects, which occur in response to previous
stimuli of any orientation and thus do not track the history of
previous orientations. See Figure 5 for a complementary analysis
quantifying adaptation to repeat and orthogonal stimuli, sep-
arately, versus adaptation in response to a blank gray
screen. This may explain why the current response reduc-
tions are slightly smaller than previous reports of adapta-
tion that comprise both orientation-specific and unspecific
adaptation (Patterson et al., 2013; Jin et al., 2019; Jin and
Glickfeld, 2020). The orientation-specific response reduc-
tions for immediate stimulus repetition were highly consist-
ent across mice (Fig. 1E). Although 1-back adaptation was
generally strongest when neurons were tested with their
preferred orientation, neurons also showed robust orienta-
tion selective adaptation when probed at nonpreferred ori-
entations (Fig. 2). In our subsequent analyses of long-term
adaptation, we therefore averaged adaptation across all
stimulus orientations, regardless of the orientation prefer-
ence of the neurons, but qualitatively similar results were
obtained when only considering trials in which stimuli
matched a preferred orientation of the neurons. Overall,
these findings indicate robust orientation-specific adapta-
tion of neurons in visual cortex and thalamus to gratings
presented in the immediate past.

Long-term adaptation in visual cortex but not in thalamus
To investigate the timescale over which adaptation influences
subsequent visual processing, we computed adaptation ratios
based on the orientation difference (i.e., repeat vs orthogonal)
between the current grating and gratings at different n-back time
points. Surprisingly, we found that neurons in V1 exhibited sig-
nificant adaptation effects to stimuli seen up to eight presenta-
tions (or 22 s) in the past, despite the presentation of multiple
intervening stimuli (Fig. 3A). It is worth noting that although
individual past stimuli had subtle effects on the current response,
cumulative adaptation to the remote stimulus history out-
weighed the immediate adaptation effect (17% response reduc-
tion to 1-back stimulus vs 19% cumulative response reduction to
2- to 8-back stimuli; Fig. 4). In natural temporally correlated
environments, long-term adaptation may thus have even greater
weight than immediate adaptation effects. Therefore, the joint

long-term stimulus history exerts a considerable influence on
current sensory processing.

In contrast to adaptation in cortex, adaptation in the thala-
mus appeared to be limited to the 1-back (LGN) or 2-back trial
(LP; Fig. 3B). Indeed, adaptation to temporally remote stimuli
was significantly stronger in V1 compared with LGN (2-, 4-, and
9-back stimulus, two-sided Welch’s unequal variances t test, all p
values , 0.02) and LP (3-back stimulus, p = 0.001, corrected for
multiple comparisons), even after accounting for differences in
the initial strength of adaptation between thalamus and V1 (i.e.,
normalizing to the 1-back adaptation ratio). The temporal decay
of adaptation in higher-level extrastriate areas was similar to the
decay in V1 (Fig. 3B), and long-term adaptation in cortical areas
was very consistent across mice (Fig. 3C, right).

We further characterized the timescale of recovery from ad-
aptation in visual cortex and thalamus by fitting exponential
decay models to the n-back adaptation ratios in the respective
areas. Recovery in cortical visual areas was better explained by
double-exponential decay models, with a fast and a slow-decay-
ing adaptation component compared with a single-exponential
decay (F tests, all p values , 0.006, except RL, p = 0.072).
Recovery from adaptation was slowest in V1 with an exponential
time constant t slow of 6.82 trials (bootstrapped 95% CI [3.39,
13.50]; Fig. 3A, black dashed line), but was relatively similar for
extrastriate areas (t slow ranging from 3.12 to 5.52 trials, all 95%
CI intervals overlapping; Table 1). In contrast, the recovery of
adaptation in the thalamus was most parsimoniously captured
by a single-exponential decay model (F tests, p = 1 for both LGN
and LP), and the time constants of the single-exponential decays
were very short (LGN, t fast = 0.02 trials, 95% CI [0.004, 0.63];

Table 1. Best fitting parameters of exponential decay models fitted to adaptation ratios (drifting gratings)

Region of interest afast t fast aslow t slow

V1 13.99 [10.73, 16.14] 0.85 [0.59, 1.13] 3.45 [1.71, 6.64] 6.82 [3.39, 13.50]
AL 10.19 [8.14, 12.71] 0.01 [1e-3, 0.47] 6.84 [4.90, 8.54] 4.08 [3.10, 5.94]
AM 9.96 [6.88, 14.30] 0.39 [5e-3, 0.87] 8.03 [3.83, 11.04] 3.39 [2.37, 6.50]
LM 13.35 [10.37, 16.07] 0.46 [0.02, 0.72] 3.71 [1.89, 5.84] 5.52 [3.42, 10.60]
PM 13.20 [10.43, 16.32] 0.02 [2e-3, 0.45] 6.50 [3.91, 9.26] 4.43 [2.75, 9.28]
RL 4.58 [1.97, 12.00] 0.26 [5e-3, 1.83] 7.40 [0.7, 9.82] 3.12 [2.19, 34.41]
LGN 6.51 [4.04, 8.85] 0.02 [4e-3, 0.63] — —
LP 16.76 [12.68, 21.02] 0.71 [0.03, 0.93] — —

Amplitude parameters a are expressed in %-response reduction of firing rate to repeat with respect to orthogonal trials. Exponential time constants t are expressed in units of trials. The decay of adaptation in thalamic areas LGN and LP was
significantly better fit by single-exponential decay models. Therefore, no parameters for the second exponential component are provided for these areas. Values in parentheses indicate bootstrapped 95% confidence intervals.

Figure 5. Cortical long-term adaptation is driven by repeated stimulus orientations. We
expressed the response modulation of neurons across all cortical areas by n-back repeated
and orthogonal trials relative to a neutral baseline in which no stimulus was presented on
the n-back trial. To this end, we computed adaptation ratios by dividing the firing rate of
each neuron for repeat stimulus presentations by that of blank stimulus presentations (blue
data points) or orthogonal divided by blank stimulus presentations (red data points).
Although the suppressive effects of orthogonal stimuli decay quickly, repeated stimuli exert
long-term suppression for up to eight trials. Error bars indicate bootstrapped 95% confidence
intervals.
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LP, t fast = 0.71 trials, 95% CI [0.03, 0.93]). Together, these results
indicate that adaptation in response to relatively brief 2 s stimuli
decays surprisingly slowly in cortical visual areas, over the course
of dozens of seconds, and survives the presentation of multiple
intervening stimuli. Conversely, although adapting to the imme-
diate stimulus history, neurons in the thalamus exhibit a fast re-
covery from adaptation, in line with a shorter temporal
integration timescale for low- compared with high-level visual
areas.

Cortical long-term adaptation is because of suppression
following stimulus repetitions
Thus far we have quantified adaptation as the ratio of neural
responses following repeated versus orthogonal stimuli.
Although this quantification revealed orientation-specific
long-term traces of past stimuli in visual cortex, they do not
reveal the relative contribution of response suppression (when
a past orientation is repeated) and response enhancement
(when the current and past orientations are orthogonal). To
assess this, we leveraged the presentation of randomly inter-
spersed blank trials during which no stimulus was presented.
In particular, we used trials for which the past n-back stimulus
was a blank trial to establish a baseline adaptation effect
against which to compare trials for which the n-back stimulus
was repeated or orthogonal. We found that 1-back repeated
and orthogonal stimulus presentations both suppressed neural
response (Fig. 5). Importantly, the suppressive effect of or-
thogonal orientations decayed quickly and was limited to the

1-back trial, whereas the suppressive effect of repeated stimuli
decayed more slowly and remained significant for up to eight
trials back (Fig. 5). This suggests that long-term adaptation
effects are mainly driven by response suppression to repeated
stimulus orientations.

Long-term adaptation following exposure to brief static
gratings
So far, we have shown that neurons in mouse visual cortex ex-
hibit long-lived adaptation to 2 s presentations of drifting gra-
tings, influencing subsequent visual processing over the time
course of dozens of seconds and multiple intervening stimuli.
However, it is unclear to what degree the existence of such long-
term adaptation effects depends on the particular stimulus type
(drifting gratings) and duration (2 s). We therefore tested
whether similar long-lived adaptation effects can be elicited by
the presentation of brief, static gratings. Mice were presented
with a rapid stream of static gratings, presented back-to-back for
250 ms each (Fig. 6A). Similar to our previous analyses, we
probed orientation-specific adaptation by contrasting visual
responses to gratings that were preceded by a grating of the same
or orthogonal orientation. In V1 the repetition of stimulus orien-
tation led to a clear reduction of the visual response to the cur-
rent grating (Fig. 6B, green shaded area; n = 530; adaptation
ratio = 0.90, p = 2e-81, 95% CI [0.89, 0.91]). Very similar adapta-
tion effects were found for extrastriate areas (Fig. 6C; 1-back
adaptation ratios between 0.89 and 0.93, all p values, 8e-9, two-

Figure 6. Visual cortex exhibits adaptation in response to immediately preceding briefly presented static gratings. A, Presentation sequence of static grating stimuli. Mice were shown static gratings
with a duration of 250ms with no intervening gray period. Gratings had one of six orientations (0, 30, 60, 90, 120, 150°), five spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree), and four
phases (0, 0.25, 0.5, 0.75). The order of grating presentations was randomized. Similar to the analysis of drifting gratings, we contrasted activity to gratings preceded by gratings of the same orientation
(repeat, blue) with that elicited by gratings preceded by a grating of the orthogonal orientation (orthogonal, red). B, Population peristimulus time histograms of neurons in V1 for repeat and orthogonal
conditions. The visual response to the current stimulus (green shaded area) was reduced when the previous stimulus had the same orientation as the current stimulus (repeat), indicating orientation-spe-
cific adaptation. Vertical dashed lines denote onset and offset of the current stimulus, respectively. Bin width = 25ms. Error bars indicate SEM. C, One-back adaptation ratios across visual areas. All areas
show significant 1-back adaptation. Error bars indicate bootstrapped 95% confidence intervals. White numbers indicate the number of neurons in each area. D, Mice show consistently reduced firing rates
after a repeated versus orthogonal orientation, as indicated by data points falling above the diagonal. Same conventions as in Figure 1E. E, Histograms of single-neuron adaptation ratios (log transformed)
in thalamus (left) and cortex (right).
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sided t tests, corrected for multiple comparisons) and adaptation
was consistent across mice (Fig. 6D). Although there were only
relatively few responsive neurons in the thalamus (LGN, n = 60;
LP, n = 16), both LGN and LP exhibited significant adaptation
effects (LGN � adaptation ratio = 0.93, p = 0.004, 95% CI [0.93,
0.98]; LP – adaptation ratio = 0.85, p = 0.01, 95% CI [0.85, 0.96]).
Overall, these findings of orientation-specific adaptation, exerted
by the immediately preceding static grating stimulus, parallel
those found for adaptation to drifting gratings.

Next, we investigated the timescale over which adaptation to
briefly presented static gratings affected subsequent visual proc-
essing. Neurons in V1 showed significant adaptation effects to
stimuli presented as far as 20 presentations (5 s) in the past (Fig.
7A,C, showing consistent adaptation across mice). Again, the
decay of adaptation was well described by a double exponential
decay model with a long time constant t slow = 9.12 trials (95% CI
[6.09, 14.82]; Fig. 7A, black dashed line). Higher-level extrastriate
cortical areas showed similar decay dynamics (Fig. 7B), with decay
time constants ranging from 6.54 (AM) to 21.78 trials (PM; all 95%
CI intervals overlapping; Table 2). Although all cortical areas were
significantly better fit by a double exponential decay model (F tests,
all pvalues , 1e-5), neurons in LGN were more parsimoniously
described (p = 0.22) by a single exponential decay with a shorter
time constant (t fast = 2.93 trials, 95% CI [1.36, 7.32]), replicating the

experiment using drifting gratings. However, in this experiment,
the difference in long-term adaptation of cortex and thalamus was
less pronounced than in the experiment using drifting gratings. We
did not include thalamic nucleus LP in this analysis because of the
low number of visually responsive neurons in this area (16 neurons
across 32 mice). These findings demonstrate that even briefly pre-
sented static grating stimuli, which are embedded in a rapid stream
of stimulus presentations, still elicit robust long-term cortical adap-
tation effects that persist despite the encoding of many intervening
stimuli.

Figure 7. Visual cortex exhibits long-term adaptation following briefly presented gratings. A, Adaptation ratios of V1 as a function of the n-back trial. Although adaptation was most strongly
driven by the previous stimulus (1-back), stimuli encountered up to 20 presentations in the past (5 s ago) still exerted significant adaptation effects on the current visual response (red bars,
p, 0.05, FDR corrected). Similar to drifting grating adaptation, the decay of adaptation over n-back trials was well captured by a double-exponential decay model with a fast- and slow-decay-
ing adaptation component (black dashed line; afast = 8.17%, t fast = 0.54 trials, aslow = 2.04%, t slow = 9.12 trials). Error bars indicate bootstrapped 95% confidence intervals. B, Adaptation
ratios as a function of n-back trial for different visual areas (color coded). In cortical areas (squares) there is significant adaptation to stimulus orientations presented up to 20 trials back (sym-
bols with black border, p, 0.05, FDR corrected per area), whereas in thalamic areas (circles) long-term adaptation is less evident. Error bars indicate SEM. Black and orange/green lines denote
the best fitting exponential decay models for cortex and thalamus, respectively. Adaptation was computed over the whole stimulus interval (0–250 ms) because with the back-to-back presen-
tation of static gratings, visual responses to the previous stimulus overlapped with the initial time window of the current stimulus, thereby increasing response variability in this early time win-
dow. However, largely similar results were obtained when performing the analyses on the same time window used in the drifting grating experiment (0–100 ms), except for a less clear
difference of the decay of adaptation between cortex and thalamus. C, Average firing rates per mouse when the 5- to 20-back orientation was repeated (x-axis) or orthogonal (y-axis) relative
to the current orientation in the thalamus (left) and cortex (right). D, Histograms of single-neuron long-term (average 5–20 back) adaptation ratios (log transformed) in thalamus (left) and cor-
tex (right).

Table 2. Best fitting parameters of exponential decay models fitted to adapta-
tion ratios (static gratings)

ROI afast t fast aslow t slow

V1 8.17 [7.11, 9.23] 0.54 [0.37, 0.71] 2.04 [1.33, 2.91] 9.12 [6.09, 14.82]
AL 7.38 [5.27, 8.64] 0.68 [0.02, 1.05] 1.49 [0.77, 3.25] 14.79 [5.24, 39.75]
AM 6.24 [4.46, 8.05] 0.48 [8e-3, 0.96] 2.77 [1.13, 4.43] 6.54 [3.82, 19.11]
LM 7.93 [6.14, 9.80] 0.40 [0.02, 0.61] 2.91 [1.89, 4.00] 7.74 [5.42, 13.36]
PM 8.46 [6.74, 10.30] 0.64 [0.36, 0.87] 1.57 [1.10, 2.25] 21.78 [13.07, 37.00]
RL 5.39 [3.50, 7.56] 0.66 [0.02, 1.09] 1.39 [0.87, 2.07] 19.58 [10.99, 37.51]
LGN 3.91 [1.80, 6.59] 2.93 [1.36, 7.32] - -

Amplitude parameters a are expressed in %-response reduction of firing rate to repeat with respect to or-
thogonal trials. Exponential time constants t are expressed in units of trials (250 ms duration). The decay of
adaptation in LGN was significantly better fit by single-exponential decay model. Therefore, no parameters
for the second exponential component are provided for LGN. Values in parentheses indicate bootstrapped
95% confidence intervals.
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Short-term adaptation does not
introduce spurious long-term
adaptation effects
Our analysis approach of quantifying ad-
aptation to the n-back stimulus by condi-
tioning the current visual response on the
orientation difference between current and
previous n-back stimulus (repeat/orthogo-
nal) relies on the assumption that the stim-
ulus sequence is uncorrelated. If the
presentations stimulus orientations were
correlated across trials, these correlations
may introduce spurious adaptation effects,
potentially causing short-term adaptation
to masquerade as long-term adaptation
(Maus et al., 2013). Although the presenta-
tion order of stimuli of the current experi-
ments was randomized, making such
spurious adaptation effects unlikely, we
nevertheless assessed this potential con-
found via the simulation of an artificial
neuron that only exhibited short-term (1-
back) adaptation. We observed no spuri-
ous long-term adaptation effects for this
artificial neuron when presented with the
drifting grating sequences (Fig. 8A), nor when presented with
the static grating sequences (Fig. 8B), markedly different from
the long-term adaptation effects we observed in the empirical
data.

Discussion
We observed that neurons in mouse visual cortex exhibit
remarkably long timescales of adaptation effects after brief visual
stimulation, influencing the processing of subsequent input over
dozens of seconds and outliving the presentation of several inter-
vening stimuli. The long-term adaptation effect was stimulus-
specific—tuned to the orientation differences between past and
current stimuli—indicating that the visual cortex maintains a
lasting memory trace of individual briefly experienced stimuli.
Although adaptation to individual past stimuli was subtle, the
expected cumulative adaptation effect of the long-term stimulus
history outweighed short-term adaptation to the immediately
preceding stimulus. This suggests that long-term adaptation can
have a profound influence on sensory processing, especially
when visual input is temporally correlated, as is the case for natu-
ral environments (van Bergen and Jehee, 2019). Although adap-
tation to drifting gratings decayed at a similar rate in primary
and extrastriate visual cortex, and was still observable for stimuli
seen eight trials (or 22 s) in the past, adaptation in the thalamus
decayed more quickly, limited to the 1- or 2-back stimulus (expe-
rienced 1–4 s prior). This demonstrates that the long-term com-
ponent of adaptation observed in the visual cortex is not
inherited from the thalamus but is maintained in cortical circuits.
Finally, we replicated our findings of cortical long-term adapta-
tion to drifting gratings with a different stimulus set of rapidly
presented static gratings, underlining the robustness and ecologi-
cal validity of the long-term temporal dependencies. However, in
this experiment, the difference in long-term adaptation of cortex
and thalamus was less pronounced than in the experiment using
drifting gratings. The back-to-back presentation of static gratings
may interfere with our measurement of adaptation effects
because responses during stimulus presentation are likely to

include both responses to the onset of that stimulus and
responses to the offset of the previous stimulus. Together, our
findings show that visual cortex maintains concurrent stimulus-
specific memory traces of briefly presented input, which allow
the visual system to build up a statistical representation of the
world over longer timescales. We speculate that this may enable
the visual system to exploit temporal input regularities over
extended timescales to efficiently encode new visual stimuli
under natural conditions (Barlow and Földiák, 1989; Müller et
al., 1999; Wainwright, 1999; Clifford et al., 2000; for review, see
Schwartz et al., 2007; Weber et al., 2019).

There is ample evidence that sensory cortex can exhibit long-
term adaptation following long exposure to a stimulus. For
instance, long stimulus presentations lasting from dozens of sec-
onds to several minutes can alter visual responses of neurons in
monkey and cat primary visual cortex over similarly long time-
scales, persisting for several minutes (Dragoi et al., 2000;
Patterson et al., 2013). Furthermore, stimulus-specific adaptation
effects can accumulate over many brief intermittent presenta-
tions of the same stimulus (Kuravi and Vogels, 2017) and subse-
quently show a persistence of several seconds (Ulanovsky et al.,
2004; Peter et al., 2020). Crucially, in contrast to these previous
studies, here we tested the adaptation effects elicited by individ-
ual briefly presented stimuli. In the stimulus sequences of the
current experiments, all stimulus orientations occurred equally
often and in random order, precluding systematic accumulation
of adaptation to any particular orientation of higher prevalence.
Despite the absence of such accumulation effects, we find that
the presentation of brief individual stimuli alters subsequent vis-
ual processing over time spans of at least 22 s and affects the
processing of many subsequent stimuli. This demonstrates that
long-term adaptation effects are not contingent on long adaptor
durations or many repeated presentations of the same adaptor
stimulus but can occur in much more naturalistic settings that
are also frequently used in experimental designs, that is, in
response to brief individual visual experiences.

The observation of long-term adaptation effects to brief stim-
uli is particularly surprising, as previous studies investigating the

Figure 8. Short-term (1-back) adaptation does not introduce spurious long-term adaptation effects for the particular stim-
ulus sequences used in the experiments. A, B, We simulated responses of an artificial neuron to the particular stimulus
sequences used in the drifting grating experiment (A) and static grating experiment (B). The artificial neuron responded
equally to all stimulus orientations, but selectively reduced its responses to a successive repeated orientation to mimic orien-
tation-specific 1-back adaptation. We chose the strength of this 1-back adaptation effect to match the empirically observed
1-back adaptation of V1. We subsequently analyzed the simulated responses with the same procedure used for the empirical
data. The analysis of the simulated responses recovered the ground truth 1-back adaptation effect (black data points). There
were no spurious adaptation effects for stimuli farther in the past, as indicated by the black data points being centered on
an adaptation ratio of one, markedly different from the empirically observed long-term adaptation effects (red data points,
adaptation in V1). Black error bars indicate 95% CIs of adaptation across the simulations of the 32 stimulus sequences. Red
error bars indicate 95% CIs of empirical adaptation across neurons in V1.
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recovery of adaptation following brief visual stimulation reported
only very fleeting adaptation effects. In V1 of anesthetized mon-
keys, adaptation to 4-s-long drifting gratings decayed with a half-
life of ;1 s, in the absence of any intervening visual input
(Patterson et al., 2013). This half-life is much shorter than the
;14 s we observed in the current study. We speculate that this
difference could be, at least partly, related to the anesthetized ver-
sus awake state of the animals in the respective experiments and
that long-term adaptation might be facilitated by deeper, recur-
rent stimulus processing in awake animals. Nevertheless, recent
studies in awake mice point toward similar short-lived adapta-
tion effects in V1. For instance, adaptation to 100ms gratings
has resulted in decay time constants of 0.5–1 s (Jin et al., 2019;
Jin and Glickfeld, 2020), and other studies have found no detecti-
ble effects of adaptation to 2 s drifting gratings after a 6 s delay
(King and Crowder, 2018) and no history dependencies beyond
1 s in response to 250 ms orientation patterns (Kim et al., 2019).
Notably, most of these previous studies have investigated adapta-
tion in the absence of any intervening visual input, making the
current observation of stimulus-specific long-term adaptation
despite intervening input even more astounding. One major
advantage of the current study is the large number of recorded
neurons (2365), which vastly increased our power to reveal
subtle but reliable long-term adaptation effects that may have
gone unnoticed in previous studies.

It should be noted that long-term adaptation, also in the face
of intervening visual input, has been observed in higher-order
visual areas in inferotemporal cortex of primates and humans,
when observers performed a task on repeated stimuli (Henson et
al., 2000, 2004; McMahon and Olson, 2007). Importantly, these
long-term adaptation effects, also known as repetition suppres-
sion (Grill-Spector et al., 2006; Barron et al., 2016), appear to be
highly dependent on attention (Murray and Wojciulik, 2004;
Henson and Mouchlianitis, 2007; Larsson and Smith, 2012) and
task (Henson et al., 2002; Henson, 2016) and have been related
to processes of memory recall (Meyer and Rust, 2018). Although
phenomenologically similar to the current adaptation effects
(reduction of neural activity), it is likely that these task-depend-
ent higher-level repetition suppression effects are distinct from
the automatic and early adaptation effects on sensory encoding
measured in the current experiments, which take place in both
primary and higher-order visual areas in the absence of an
explicit task. In support of this view, previous studies measuring
long-term repetition suppression effects in inferotemporal cortex
in the presence of a task did not observe concomitant long-term
effects in early visual cortex (Sayres and Grill-Spector, 2006;
Weiner et al., 2010), suggesting that these high-level repetition
suppression effects are at least partially distinct from automatic
and early adaptation effects on sensory encoding. In contrast,
here we show that even in the absence of an explicit task, the ear-
liest stages of cortical visual processing automatically adapt to
the long-term history of individual briefly presented stimuli.

It has been previously proposed that temporal integration
timescales increase along the cortical hierarchy (Hasson et al.,
2008; Lerner et al., 2011; Honey et al., 2012; Murray et al., 2014).
Here, we show that the integration window of temporal context,
in the form of adaptation, increases from the thalamus to cortex,
broadly in line with these proposals. However, we did not find
different integration times between lower-level primary and
higher-level extrastriate visual cortex, congruent with a recent
study in humans (Fritsche et al., 2020a; but see Zhou et al.,
2018). Since we measured adaptation in the early feedforward
response (0–100 ms), it appears unlikely that long-term

adaptation in V1 was inherited from higher-level visual areas
through feedback connections but rather suggests that long-term
temporal context already influences the earliest stages of cortical
processing. The similar decay of adaptation across cortical areas
could either be because of the comparatively flat hierarchical
structure of mouse visual cortex (for review, see Glickfeld and
Olsen, 2017) or may reflect an important difference between the
temporal tuning of adaptation and previously reported temporal
integration timescales.

Importantly, although the current study focused on the early
feedforward response (first 100ms for drifting gratings, 250ms
for static gratings), adaptation has been found to alter neural
responses beyond the early response epoch, further interacting
with factors such as stimulus size and adaptation duration
(Patterson et al., 2013), pointing toward more complex inhibi-
tory and excitatory population-level coordination (Solomon and
Kohn, 2014). To obtain a full understanding of the sources and
the long-term consequences of adaptation, future studies will
therefore need to investigate further properties of the long-term
adaptation effects reported here, such as their dependence on
stimulus parameters and response epoch.

Psychophysical studies in humans have revealed long-lived
repulsive perceptual biases following briefly presented gratings,
biasing subsequent orientation perception over dozens of sec-
onds (Chopin and Mamassian, 2012; Suárez-Pinilla et al., 2018;
Gekas et al., 2019; Fritsche et al., 2020b). Our current findings of
long-term orientation-specific adaptation in early visual cortex
suggests a potential neural mechanism underlying these percep-
tual biases. Interestingly, a recent behavioral study in rats
revealed similar long-term dependencies in a vibrissal vibration
judgment task (Hachen et al., 2020), suggesting potential paral-
lels of long-term perceptual adaptation between rodents and
humans. An important future goal will be to quantitatively relate
such behavioral adaptation biases to the present long-term his-
tory dependencies at the neural level.

To conclude, our findings highlight the ubiquitous influence
of the short- and long-term stimulus history on current sensory
processing in visual cortex. This dependence on the broader tem-
poral context may enable the visual system to efficiently repre-
sent information in a slowly changing environment (Schwartz et
al., 2007; Weber et al., 2019).
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