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Neuroimmunometabolism is an emerging field that examines the intersection of immunologic and metabolic cascades in the
brain. Neuroinflammatory conditions often involve differential metabolic reprogramming in neuronal and glial cells through
their immunometabolic sensors. The impact of such bioenergetic adaptation on general brain function is poorly understood,
but this cross-talk becomes increasingly important in neurodegenerative disorders that exhibit reshaping of neuroimmunome-
tabolic pathways. Here we summarize the intrinsic balance of neuroimmunometabolic substrates and sensors in the healthy
brain and how their dysregulation can contribute to the pathophysiology of various neurodegenerative disorders. This review
also proposes possible avenues for disease management through neuroimmunometabolic profiling and therapeutics to bridge
translational gaps and guide future treatment strategies.
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Significance Statement

Neuroimmunometabolism intersects with neuroinflammation and immunometabolic regulation of neurons and glial cells in
the CNS. There is emerging evidence that neuroimmunometabolism plays an essential role in the manifestation of CNS degen-
eration. This review highlights how neuroimmunometabolic homeostasis is disrupted in various neurodegenerative condi-
tions and could be a target for new therapeutic strategies.

Introduction
Neuroimmunometabolism is a broad umbrella term for an
emerging area of research that involves understanding how
reprogramming of cellular metabolism can alter immune
responses in the CNS (Larabee et al., 2020). The interface of
immune regulation and metabolic states is essential for
maintaining dynamic cellular balance in an organism
(Watts et al., 2018; Larabee et al., 2020).

Metabolic control (also conventionally referred to as neuroe-
nergetics) is essential in the brain, where there is a high meta-
bolic demand. Despite comprising ;2% of the body mass, the

brain consumes ;20% of energy substrates at rest, mainly to
reverse ion fluxes that mediate synaptic and action potentials;
this demand is elevated during activity-dependent processes
(Mink et al., 1981; Attwell and Laughlin, 2001; Harris et al.,
2012). Neurons are responsible for most of these energy
demands, while glial cells serve as energy suppliers (Jha and
Morrison, 2018). Efficient energy shuttling requires metabolic
flexibility in microglia, astrocytes, and oligodendrocytes (Philips
and Rothstein, 2017; Morita et al., 2019; Bernier et al., 2020).
This is achieved through robust regulation by metabolic sensors,
such as receptors, transporters, and enzymes that allow glial cells
to expend energy in response to elevated neuronal demands.
These regulators also modulate glial inflammatory responses
through crosstalk between metabolic and immune signaling
pathways (Robb et al., 2020a).

Neuroinflammation is an important cellular defense mecha-
nism that involves an immune response to noxious and harmful
stimuli (Mitra et al., 2020). The triggering, activation, and per-
sistence of inflammation, mediated by glial cells, are influenced
by environmental factors and genetic predispositions (Lucas et
al., 2006). Circadian rhythms, age, and lifestyle choices (diet,
exercise, drug abuse, etc.) also affect the glial metabolic and
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inflammatory profile and thus influence glial function (Marpegan
et al., 2011; Garcia-Caceres et al., 2012; Camandola and Mattson,
2017; Lacagnina et al., 2017; Chi-Castaneda and Ortega, 2018; Jin et
al., 2020; X.Wang et al., 2020). Neuroinflammatory responses entail
reprogramming of several transcriptional and translational path-
ways in glial cells, resulting in the production of inflammatory cyto-
kines and reactive oxygen species (ROS) and reactive nitrogen
species (RNS) (Mitra et al., 2020). These cellular adaptations involv-
ing concerted action of metabolic and immune functions are essen-
tial in balancing immunometabolic changes in a metabolically
active organ, such as the brain.

It is unclear whether alterations in neuroimmunometabolism
in neurodegenerative conditions drive or oppose disease progres-
sion. Neurodegenerative diseases are debilitating disorders of the
CNS that are characterized by progressive loss of neurons leading
to abnormalities in behavioral domains associated with cogni-
tion, movement, and affective functions (Granholm et al., 2008;
Bowman et al., 2011; Levenson et al., 2014; Dugger and Dickson,
2017; Gitler et al., 2017). With the lack of effective disease-modi-
fying therapeutic interventions and the limited translational suc-
cess of potential drug molecules, it is imperative to revisit these
diseases with a renewed perspective to identify novel and effec-
tive therapeutic targets. Degenerative disorders are typically
characterized by dysregulation in many cellular processes, which
include imbalances in intracellular mechanisms, such as cellular
stress, aberrant clearance of cellular debris by the proteasome
and lysosomes, and abnormal immunometabolic activity (Gan et
al., 2018).

In this review, we focus on how immunometabolic imbalan-
ces across CNS neurons and glia can be investigated to better
understand the pathophysiology of neurodegenerative diseases.
We discuss the regulatory roles of immunometabolic substrates
and sensors in the brain and detail the immunometabolic aberra-
tions occurring in particular neurodegenerative conditions.
Finally, we introduce an integrative approach to devise effective
therapeutic measures.

Neuroimmunometabolic sensors
The relationship between metabolism and immune functions in
the CNS is tightly regulated by several sensors (“immunometa-
bolic sensors”) that form a critical regulatory hub for maintain-
ing homeostasis in the metabolic and immune pathways. Sensors
predominantly comprise energy substrates, such as sugars,
amino acids, and lipids, along with transporters/receptors that
sense fluctuations in these substrates and trigger metabolic and
biosynthetic cascades that use the substrates. These sensors,
expressed in neurons and glia, provide necessary signals to alter
the metabolic and immune status based on the overall energy
demand (Argente-Arizon et al., 2017; Saravia et al., 2020). Each
cell type in the brain exhibits a unique metabolic profile based
on its functions. Switching between metabolic states can have
detrimental consequences in cells’ structural and functional
properties. In this section, we describe regulation of some of
these sensors across CNS cell types.

Sugar sensors
Glucose is the most important sugar for generating energy in the
brain, and it acts as an essential precursor for neurotransmitter
synthesis (Mergenthaler et al., 2013). Glucose homeostasis in the
brain is tightly regulated through neuro-glia metabolic coupling
(Afridi et al., 2020). Glucose is sensed and transported across the
cell membrane by a saturable transport system composed of vari-
ous glucose transporters (GLUTs) (Navale and Paranjape, 2016).

These transporters, based on sequence polymorphisms, exhibit
differential affinity and distribution across cell types in the CNS
(Mueckler and Thorens, 2013). Neurons primarily express high-
affinity GLUT3 transporters, while oligodendrocytes, microglia,
and astrocytes use GLUT1 and GLUT5. GLUT1 is also expressed
in brain vasculature to enable glucose transport across the
blood–brain barrier (BBB); but unlike in glial cells, the form
expressed in the vasculature is highly glycosylated (Jurcovicova,
2014). Additionally, sodium/glucose cotransporters and the
Kir6.2 subunit of an ATP-sensitive potassium channel sense and
enable glucose transport in neurons and astrocytes (M. Liu et al.,
1999; Vega et al., 2006; Yu et al., 2013; Koepsell, 2020).

Although neurons express a high-affinity glucose sensor
(GLUT3), they have a low level of glycolysis because of the rapid
degradation of the rate-limiting glycolytic enzyme 6-phospho-
fructo-2-kinase/fructose 2,6-bisphosphatase, isoform 3 (PFKFB3)
(Herrero-Mendez et al., 2009; Bolaños et al., 2010). Therefore, it has
been suggested that glial cells in the brain uptake and metabolize
more glucose than neurons, and neurons depend on glucose metab-
olites, such as lactate released by glial cells (Chuquet et al., 2010;
Fünfschilling et al., 2012; S. Lee et al., 2012). There are conflicting
reports indicating that neurons rely on direct glycolysis rather than
lactate from astrocytes (Díaz-García et al., 2017; Díaz-García and
Yellen, 2019). These reports suggest that the mechanism
underlying metabolic interchange between neurons and
astrocytes is still unsettled.

Astrocytes provide metabolic sustenance to neurons by
detecting circulating glucose and transporting it to neurons (Fig.
1) (Jurcovicova, 2014). Both GLUT1 and GLUT2 are critical for
this astrocytic function. Astrocytes have low levels of the malate-
aspartate shuttle, which is generally responsible for the reduction
of NADH to NAD1 during glycolysis. Instead, in astrocytes,
NADH reduces pyruvate to lactate, leading to high levels of lac-
tate production. The lactate is then shuttled into neurons by the
monocarboxylate transporter MCT4 where it supports oxidative
metabolism before being imported back to astrocytes by MCT1
(Roosterman and Cottrell, 2020).

There is emerging evidence that oligodendrocytes also shuttle
lactate to neurons. Lactate produced in the mitochondria of oli-
godendrocytes is essential for local axonal support, and disrupt-
ing this function leads to elevated extracellular lactate. Lactate
shuttling to neurons is blocked on inhibition of the lactate trans-
porters MCT1/2 and GLUT1 (Fünfschilling et al., 2012; Meyer et
al., 2018).

Sugar metabolism in microglia depends on their activation
state. Microglia normally survey their environment for indica-
tions of damage or infection. This surveillance is powered by oxi-
dative phosphorylation (OXPHOS). When damage is detected,
however, it triggers microglial activation, which involves conver-
sion to pro-inflammatory or phagocytic states. Like other
immune cells (Warburg, 1956; Palsson-McDermott and O’Neill,
2013), activated microglia upregulate glycolysis and move away
from oxidative phosphorylation to meet the inflammatory
demand (Moss and Bates, 2001; Chénais et al., 2002; Gimeno-
Bayón et al., 2014; L. Wang et al., 2019; Lauro and Limatola,
2020). This shift from OXPHOS to glycolysis in microglia is
because of upregulation of GLUT1, which is concomitant with
increased synthesis of hexokinase and PFKFB3 (the rate-limiting
enzymes of the glycolytic pathway) and activation of mammalian
target of rapamycin (mTOR), which regulates transcriptional
control of glycolysis in a process involving hypoxia-inducible fac-
tor-1a (HIF-1a) (Yecies and Manning, 2011; Saxton and
Sabatini, 2017; Li et al., 2018; Rubio-Araiz et al., 2018). In
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addition, activated microglia upregulate GLUT1 expression to
promote glycolysis, which can be limited by inhibition of
GLUT1 (L. Wang et al., 2019).

Although microglia are the primary inflammatory mediators
of the brain, astrocytes also play an essential role. With their co-
pious numbers and proximity to neurons, astrocytes can amplify
inflammatory signals by releasing several proinflammatory che-
mokines and cytokines (Szepesi et al., 2018). This metabolically
expensive inflammatory response requires astrocytes to rely on
mitochondrial oxidation (Chao et al., 2019). Several in vitro stud-
ies have demonstrated that inflammatory challenges activate reg-
ulators of aerobic glycolysis, such as HIF-1a and AMP-activated
protein kinase (AMPK) in astrocytes (Almeida et al., 2004; Brix
et al., 2012). A similar metabolic switch occurs in the aging brain,
where astrocytes decrease their trophic support to neurons and
use energy substrates for their own metabolism (Jiang and
Cadenas, 2014). An in vivo study in rats has shown that the
switch to aerobic metabolism during aging is correlated with the
activation of nuclear factor k -light-chain-enhancer of activated
B cells (NF-kB), a regulator of innate and adaptive immunity
(Jiang and Cadenas, 2014).

Outside the CNS, inflammation leads to uninterrupted glycol-
ysis, which supplements the production of ATP to sustain the
inflammatory mechanisms of macrophages and other immune
cells (e.g., T cells), resulting in the amplification of pro-inflam-
matory chemokines and cytokines to fight the infection (Kaushik
and Yong, 2020). This metabolic alteration in activated macro-
phages and T cells is linked to two major break points in the tri-
carboxylic acid (TCA) cycle, causing accumulation of citrate and
succinate. The accumulation of succinate leads to the production
of IL-6, IL-1b , and nitric oxide (NO), largely through a

glycolytic flux from OXPHOS by activation of HIF-1a, while ci-
trate accumulation reroutes the metabolism toward prostaglandin
synthesis, the major metabolic pathway inducing inflammation in
both the PNS and the CNS (Tannahill et al., 2013; Infantino et al.,
2013; Jha et al., 2015; Ryan and O’Neill, 2017).

Overall, the results discussed above demonstrate that neu-
rons and glia synergistically depend on glycolytic and substi-
tute pathways of sugar metabolism for energy production to
sustain metabolic homeostasis. Various sugar sensors can act
as neuroimmunometabolic regulators, suggesting that sugars
play an essential role in modulating several aspects of neuro-
immunometabolic machinery and can be putative factors in
disease pathologies.

Amino acid sensors
Although amino acids are not a primary energy precursor, they
still play a critical role in neuroimmunometabolic programming
(Xie et al., 2020). For example, the amino acid tryptophan is an
essential precursor for coenzyme NAD1 biosynthesis, which is
critical for metabolic processes, such as glycolysis, the TCA cycle,
and OXPHOS (Schröcksnadel et al., 2006). Tryptophan metabo-
lism occurs through four different pathways, the most important
being the kynurenine pathway (Kita et al., 2002; Gostner et al.,
2020). Tryptophan is converted into kynurenine and down-
stream effector molecules by indoleamine-2,3 dioxygenase, a
rate-limiting enzyme whose expression is elevated during inflam-
mation, including the brain (Kwidzinski and Bechmann, 2007;
O’Neill et al., 2016; Moffett et al., 2020). Tryptophan metabolic
enzymes are expressed in both astrocytes and microglia. The key
kynurenine metabolites quinolinic acid, 3-hydroxykynurenine,
and kynurenic acid produce different inflammatory responses in

Figure 1. Predominant neuroimmunometabolic homeostasis in the healthy brain and its disruption in neurodegenerative conditions. In the healthy state (left, blue arrows), glucose, amino
acid, and lipid metabolism occur in various cell types. Neuroimmunometabolism disrupts this homeostasis (right, red arrows) contributing to degenerative conditions. IDO, Indoleamine-2,3 diox-
ygenase; PI3K/AKT, phosphoinositide 3-kinases.
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these glial cells. In astrocytes, kynurenic acid protects neurons by
removing excess glutamate spillover, whereas quinolinic acid
and 3-hydroxykynurenine inflict neurotoxic effects by activating
the NMDAR NR2B subunit, which leads to excessive calcium
influx (Guillemin et al., 2005; Tao et al., 2020).

Glutamate is another quintessential amino acid required for
maintaining optimum metabolic performance of neurons and
glia. In the healthy CNS, glutamate is the predominant excitatory
neurotransmitter. After taking up glutamate via excitatory amino
acid transporters (EAAT1 and EAAT2), astrocytic glutaminase
hydrolyzes glutamate to glutamine, which is then transported
to neurons (Fig. 1) (Yudkoff, 2017; Mahmoud et al., 2019).
Glutamate also binds to glutamatergic receptors on microglia
and acts as a chemotactic molecule to recruit microglia to sites of
injury, where excess glutamate release catalyzes neural excitotox-
icity (Domercq et al., 2013). Microglia produce ROS in response
to glutamate stimulation via increased activity of nicotinamide-
adenine dinucleotide phosphate (NADPH) oxidase (NOX) and
NADPH. Microglia also release glutamate and exchange it with
cystine through cystine/glutamate antiporter xCT (a membrane-
bound Cl–-dependent antiporter) (Barger et al., 2007; Bridges et
al., 2012; Mead et al., 2012; Domercq et al., 2013). Conversely, a
neuroprotective role of glutamate has been reported in mixed
cortical cultures, where estrogen receptor a and metabotropic
glutamate receptor 1 interact to attenuate amyloid b (Ab )-
induced neurotoxicity (Spampinato et al., 2018). The precise
downstream targets mediating these neuroprotective effects how-
ever remain to be investigated.

Glutamatergic homeostasis is disrupted under inflammatory
conditions when the microglial inflammatory cytokines TNF
and IL-1b impair the function of astrocytic EAATs (Domercq et
al., 2007). In addition, conversion of glutamine to glutamate
(glutaminolysis) in microglia activates mTOR signaling, halts
autophagy, and creates a pro-inflammatory environment (Duran
and Hall, 2012; Duran et al., 2012; G. Gao et al., 2020).
Moreover, inhibition of glutamine synthetase, which catalyzes
the reverse reaction of glutamate to glutamine, has been shown
to enhance the inflammatory response of microglial cells
(Palmieri et al., 2017). Based on these studies, one could specu-
late that astrocytes and microglia together play an essential role
in maintaining the glutamine-glutamate balance, and any dis-
turbance in this homeostasis can induce microglial neuroinflam-
mation in the CNS.

The amino acid arginine has also been reported to influence
immunometabolic mechanisms. Arginine is the starting sub-
strate in the NO synthetic pathway, which involves the conver-
sion of arginine to citrulline by the enzyme nitric oxide synthase
2 (Forstermann and Sessa, 2012). NO, the final product of this
pathway, is an essential immunometabolite: it inhibits OXPHOS
(Tengan and Moraes, 2017), thus shifting the balance toward the
glycolytic pathway, a phenomenon that occurs in microglia
exclusively during inflammation.

Lipid sensors
Brain lipid metabolism relies on both de novo local synthesis and
peripheral lipid reserves. Lipids provide structural support to
neurons, and intercellular exchange of lipids through microve-
sicles, lipoproteins, and nonesterified fatty acids (FAs) modulates
energy and redox status (Tracey et al., 2018). Additionally, lipid
sensing is essential for myelination by oligodendrocytes and de-
bris clearance by microglia. After glucose metabolism, the brain
draws a considerable amount of energy from lipid metabolism.
Among many lipid sources, FA oxidation provides 20% of its

total metabolic energy to the brain (Panov et al., 2014)). It is
believed that FA oxidation occurs largely in astrocytes, but other
glial and neuronal cells also use FAs, such as oleate and palmitate
for oxidative metabolism (Ebert et al., 2003; Chausse et al., 2019).
FA oxidation homeostasis also plays a major role in inflamma-
tory responses in microglia. Polyunsaturated FAs can induce an
anti-inflammatory phenotype in microglia, whereas saturated
FAs can produce an inflammatory state (Namgaladze et al., 2014;
X. Chen et al., 2018).

Microglia express several lipid-sensing receptors that remodel
the microglial lipidome during cellular stress. Pattern recognition
receptor cluster of differentiation 36 (CD36) is an essential lipid
sensor that recognizes low-density lipoprotein (LDL) and Ab
(El Khoury et al., 2003; Kim et al., 2008; D. Gao et al., 2010).
Upon activation, CD36 influences inflammatory remodeling
through uptake of palmitate, which is a ligand of Toll-like recep-
tors (TLRs). TLR activation results in phagocytosis, and produc-
tion of ROS (Li et al., 2019; Tzeng et al., 2019). CD36-containing
microglia also express LDL receptor (LDLR), very-LDL receptor
(VLDR), and LDL-receptor-related protein 1 (LRP1). These
receptors regulate the endocytosis of different isoforms of apoli-
poprotein (APOE2, APOE3, and APOE4). APOEs act as a hub
for lipid transfer between neurons and microglia (Loving and
Bruce, 2020). Although APOE is thought to be a negative regula-
tor of inflammation (Rebeck, 2017), its isoforms (APOE2,
APOE3, and APOE4) perform a dual role in inflammatory
mechanisms. While APOE3 and APOE4 attenuate Ab -induced
inflammatory responses in glial culture, both isoforms exert an
inflammatory response in the absence of Ab (Guo et al., 2004).
Further, the «4 allele of APOE4 is the most common risk factor
for persistent neuroinflammation underlying cardiovascular and
neurodegenerative diseases (Sullivan et al., 1997; Tu et al., 2009;
Mannix et al., 2011; Zhu et al., 2012; Rodriguez et al., 2014).
Concomitantly, inflammatory cytokines can regulate the levels of
APOE (H. Zhang et al., 2011).

Another lipid sensor expressed in microglia is triggering re-
ceptor expressed on myeloid cells 2 (TREM2), which recognizes
APOE, Ab , and aminophospholipids for phagocytosis and
autophagy in microglial cells (Hsieh et al., 2009). There is a lack
of consensus regarding the role of TREM2 during inflammatory
responses. A soluble form of TREM2 has been found to stimulate
the production of inflammatory cytokines by activating phos-
phoinositide 3 kinase/protein kinase B (Zhong et al., 2017). On
the other hand, loss of TREM2 mitigates neuroinflammation in a
mouse model of Tau-mediated neurodegeneration (Leyns et al.,
2017).

Cholesterol is yet another important substrate in immune sig-
naling involving lipid metabolism (Fig. 1). Astrocytes synthesize
cholesterol in the endoplasmic reticulum, and it is shuttled to the
membrane by ATP-binding cassette transporters (Nieweg et al.,
2009). Membranes enriched in cholesterol act as platforms for
effective dimerization of TLR4, which promotes inflammation
(Varshney et al., 2016). Depletion of membrane cholesterol can
therefore alter the neuroinflammatory status of astrocytes. An
increase in brain glucose metabolism has been reported after
astrocyte-selective knockdown of sterol-regulatory-element-
binding protein 2, a receptor-bound transcription factor that reg-
ulates genes involved in cholesterol biosynthesis and uptake
(Ferris et al., 2017).

Sphingolipids are also key components of astrocytic lipid
reserves. Neurons, astrocytes, and microglia act in concert to sus-
tain sphingolipid metabolism in the brain; and in the inflamma-
tory state, this homeostasis is disturbed by production of
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inflammatory mediators through sphingolipid intermediate
metabolites, such as ceramide and sphingosine-1-phosphate (J.
Y. Lee et al., 2020). On the other hand, gangliosides, a class of
glycosphingolipid, are produced by astrocytes in abundance and
can regulate inflammatory status by triggering astrocytic auto-
phagic pathways (Hwang et al., 2010).

Lipid metabolic coupling with neurons is tightly regulated by
astrocytes. This is essential to avoid FA toxicity in neurons
(Ioannou et al., 2018). Neurons typically have a low capacity to
house the lipid droplets that store FAs to thwart toxicity and loss
of mitochondrial membrane integrity. The lipid droplets act as
an alternative energy source during stress and nutrient depletion
(Jarc and Petan, 2019). Under constant stimulation, neurons
produce ROS that catalyze the oxidation of FAs and thus build
up lipid-induced toxicity. Astrocytes host lipid droplets and are
able to clear FAs expelled from neurons. Additionally, astrocytes
regulate transcription of putative targets that participate in
energy metabolism and neutralization of oxidative species
(Reynolds and Hastings, 1995; Unger et al., 2010; Rambold et al.,
2015; Nguyen et al., 2017). Overall, this indicates that lipid bio-
synthetic and metabolic sensors have an essential role in regulat-
ing immunometabolic status of the CNS.

Neuroimmunometabolism and neurodegenerative disorders
Neurodegenerative diseases differ in multiple attributes, such as
the brain regions affected, underlying molecular pathways, asso-
ciated genetic and immunologic aberrations, and specific symp-
toms (Dugger and Dickson, 2017). The molecular mechanisms
implicated in these diseases often include protein aggregation
and associated neurotoxicity in the brain, for example, tau neu-
rofibrillary tangles and amyloid plaques in Alzheimer’s disease
(AD), a-synuclein-containing Lewy bodies in Parkinson’s dis-
ease (PD), and polyQ protein aggregates in Huntington’s disease
(HD) (Dugger and Dickson, 2017). Advances in brain imaging
and systematic recording of clinical symptoms have contributed
to better understanding of different stages of disease progression.
But because of the complex and multifactorial etiologies of these
diseases, the precise neurobiological underpinnings remain elu-
sive. Although studies have elucidated the role of genetic
and environmental factors that trigger neuroinflammatory
conditions in these diseases, the contribution of neuroim-
munometabolic factors to neurodegenerative pathophysiol-
ogy is not well examined. Perhaps, that is why translational
success in these diseases is limited. In this section, we look
at different neurodegenerative disorders from the neuroim-
munometabolic angle to highlight potential targets for bet-
ter disease management (Fig. 2).

AD: a neuroimmunometabolic disorder?
Extracellular amyloid plaques and intracellular neurofibrillary
tau tangles are the central pathologic hallmarks of AD. But thera-
pies targeting amyloid and tau pathology have generally failed to
exert any positive outcomes in clinical trials, suggesting that mul-
tiple associated cofactors play roles in disease manifestation
(Banik et al., 2015). Recent reports show a correlation between
inflammatory and immunometabolic pathways and amyloid and
tau pathologies in AD models (Holland et al., 2018; McIntosh et
al., 2019). There is accumulating evidence that metabolic disturb-
ance plays an important role in the underlying microglial medi-
ated neuroinflammation (Devanney et al., 2020). Furthermore,
age-related decline in cerebral glucose metabolism (hypometabo-
lism) is associated with cognitive loss in mild cognitive impair-
ment and AD patients (Mosconi et al., 2008; Lin and Rothman,

2014), along with amyloid deposition and white matter disrup-
tion (Schilling et al., 2019). Glucose hypometabolism in AD
brains is largely linked to mitochondrial calcium dysregulation
in neurons, which may subsequently lead to cell death (Moreira
et al., 2010). The presence of Ab peptides in mitochondria may
be another causative factor in neuronal death (Cha et al., 2012).
Notably, some evidence, albeit limited, suggests that hypometab-
olism in AD is linked with disturbed homeostasis of GLUT1 and
GLUT2, which is mostly expressed in glial cells, and GLUT3,
which is predominantly expressed in neurons. While GLUT1
and GLUT3 levels are decreased in the cerebral cortex, the levels
of GLUT2 are increased to compensate for the reduction in ATP
production (Szablewski, 2016).

A role for astrocytes and microglia in disruptive metabolism
has also been identified in the experimental models of AD. In
cultured astrocytes derived from transgenic AD mice, exogenous
Ab can reduce glycolytic capacity by decreasing GLUT1 levels.
This impairs glucose uptake and lactate production by astrocytes.
Further, decreased levels of MCT1 reduce lactate transport to
neurons (Merlini et al., 2011). In addition, calcium dysregulation
in astrocytes may activate several pro-inflammatory regulators
through NF-kB and HIF-1 pathways, responsible for ROS and
NO production (Abramov et al., 2004; Hsiao et al., 2007;
Schubert et al., 2009; Mesquita Dá et al., 2016; Shigetomi et al.,
2019; Robb et al., 2020b). These studies strongly suggest a central
role of glucose metabolism coupled with inflammation in induc-
ing pathophysiological states in AD.

Exogenous introduction of Ab or inflammatory stimuli, such
as LPS, reduce oxidative metabolism of macrophages and micro-
glia through activation of inflammatory cascades, and this leads
to metabolically inefficient glycolysis (Rubio-Araiz et al., 2018;
Finucane et al., 2019). A change in neuro-glial glycolytic flux was
also found in a 76-year-old individual: magnetic resonance
spectroscopy data revealed that there was a 28% decrease in
TCA-cycle activity in neurons and a 30% increase in TCA-
cycle activity in astrocytes compared with a 26-year-old indi-
vidual (Boumezbeur et al., 2010). Finally, cultured microglia
isolated from APP/PS1 mice, a transgenic model of AD, ex-
hibit disrupted phagocytosis and chemotactic activity in tan-
dem with an increased rate of glycolysis (Holland et al., 2018;
McIntosh et al., 2019). This suggests that microglia adopt an
altered neuroimmunomodulatory phenotype in AD, which
may influence disease pathology.

Genome-wide association studies (GWASs) have revealed
several predisposing genetic risk factors for AD, including var-
iants of APOE4, TREM2, and TLR4, which are linked to meta-
bolic functions and are highly expressed in microglia. It is
demonstrated that APOE can trigger the formation of Ab pep-
tides in the brain of transgenic AD mice by using astrocytic cho-
lesterol. APOE promotes two-way traffic of neuronal amyloid
precursor protein from intracellular lipid clusters to increase the
insoluble Ab burden in the brain (H. Wang et al., 2021). The
APOE«4 allele is one of the most investigated genetic risk factors
for AD with a 15-fold increased risk for AD in people homozy-
gous for this allele (Mosconi, 2013; Lumsden et al., 2020).
Positron emission tomography (PET) studies of young adults
(20-39 years of age) carrying APOE«4 alleles show reduced glu-
cose metabolism in the cerebral cortex, similar to the pattern
seen in the cortex of AD patients at progressive stages of the dis-
ease (Reiman et al., 2004; Mosconi, 2013). Hexokinase, one of
the key cytosolic enzymes in glucose metabolism, was reported
to be downregulated in the brains carrying an APOE«4 allele
(compared with APOE«2 and APOE«3) leading to a deficiency
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in glucose metabolism (Ding et al., 2013). This glucose
hypometabolism is linked to the inhibition of PPAR-
g /PGC-1a (peroxisome proliferator-activated receptor g /
coactivator-1a), implicating this signaling pathway in AD
pathophysiology (L. Wu et al., 2018).

TREM2, an immune receptor expressed on microglia, actively
binds to Ab oligomers and maintains phagocytic clearance of
amyloid peptides from the healthy brain (Zhao et al., 2018). A
deficiency or functional mutation in TREM2 increases the risk of
AD (Jonsson et al., 2013). Recently, TREM2 deficiency was
found to increase levels of cholesterol ester, which exacerbates
inflammation and increases clearance burden on microglial
phagocytic machinery (Nugent et al., 2020). Microglia from
TREM2�/�/5XFADmice also exhibit a reduced rate of glycolysis
and decreased production of ATP that is linked to defective
mTOR signaling and leads to increased autophagy. The impair-
ment in TREM2-mTOR signaling is associated with fewer acti-
vated microglial cells migrating to surround amyloid plaques in
AD patients and TREM2-deficient AD-model mice. RNA-seq
data reveal downregulation of genes related to metabolic
and bioenergetic pathways in TREM2-deficient mice, which
likely causes autophagic abnormalities (Ulland et al., 2017).
Additionally, genetic variants of TREM2 disrupt autophagy
by impairing mTOR signaling in AD brains (Ulland et al.,
2017; Zhou et al., 2018). Interestingly, TREM2 KO results
in elevated tau phosphorylation leading to microglial

activation in AD mice (Audrain et al., 2019). Surprisingly,
TREM2 haploinsufficiency increases tau pathology and
inflammatory responses more than complete knockdown of
TREM2 in a mouse model of tauopathy, suggesting a dynamic role
of TREM2 in regulating neuroinflammation by a probable compen-
satory mechanism in microglia (Sayed et al., 2018).

Hypoxia signaling pathways are also linked to metabolic dis-
tress and pro-inflammatory induction in the AD brain (Bazan et
al., 2002; Baik et al., 2019) A recent report highlights the role of
TLR4 in the immunometabolism of Ab -treated microglial cells
through the mTOR-HIF-1a hypoxia signaling pathway. Ab
induces phosphorylation of mTOR and higher expression of
HIF-1a in primary microglia, activating proinflammatory cas-
cades (Baik et al., 2019). A higher rate of mTOR-HIF-1a signal-
ing is associated with decreased oxygen consumption rate and
increased extracellular acidification rate, critically shifting the
glycolytic balance in these cells (Ulland et al., 2017). Overall,
these findings suggest a strong neuroimmunometabolic dysregu-
lation pertaining to lipid and sugar metabolism that may mediate
pathologic conditions associated with AD (Fig. 2).

PD: a neuroimmunometabolic anomaly?
PD impacts ;7-10 million people around the world, making it
the second most common neurodegenerative disease (Beitz,
2014). The pathologic features of PD include the loss of dopami-
nergic neurons in the substantia nigra pars compacta and

Figure 2. Major neuroimmunometabolic imbalances in neurodegenerative disorders. Several glucose, peptide, and lipid metabolic pathways are hindered in neurons and glia in these neuro-
degenerative diseases. These perturbations potentiate altered synthesis and transportation of different metabolites, leading to excitotoxicity, impaired phagocytosis, and inflammation in the
CNS.
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accumulation of a-synuclein in intracellular inclusions known as
Lewy bodies (Kalia and Lang, 2015; Maulik et al., 2017).
Although genetic alterations and environmental exposures are
thought to trigger PD, the exact molecular mechanisms linking
the risk factors to PD pathology are unclear (Trinh and Farrer,
2013). Postmortem analyses of human PD samples and animal
studies have demonstrated the presence of activated astrocytes
and microglia in the brain (McGeer et al., 1988; Yamada et al,
1992; Q. Wang et al., 2015). The pro-inflammatory cytokines
released by these cells can exacerbate degeneration of midbrain
dopaminergic neurons (Hirsch et al, 2003). It can be predicted
that neuroimmunometabolic modulators play certain passive
roles in the neuroinflammatory characteristics of PD by altering
the metabolic status of neurons and associated glial cells.

Glucose hypometabolism has been implicated in PD pathogene-
sis using MRI and fluorodeoxyglucose (18F) PET (Borghammer,
2012; González-Redondo et al., 2014). Moreover, reduced glucose
metabolism in the cortex of PD patients is linked to the develop-
ment of PD dementia (Firbank et al., 2017). Associations between
glucose metabolism, changes in cell bioenergetics, and neurodege-
nerative pathology in PD may be mediated in part by PD-related
risk factors linked to glucose and amino acid transporters, metabolic
enzymes, and transcription factors that regulate metabolic pathways
(Dunn et al., 2014; Y. Zhang et al., 2016; Anandhan et al., 2017).
Nuclear receptors, such as peroxisome proliferator-activated recep-
tor (PPAR), which is known to regulate inflammation and energy
metabolism in the brain, are linked to several neurodegenerative
disorders, including PD (Chaturvedi and Beal, 2008). Upon activa-
tion, PPARg /PGC-1a promotes transcription of genes encoding
mitochondrial respiratory subunits in the substantia nigra, thus reg-
ulating glucose metabolism in dopaminergic neurons (Zheng et al.,
2010). Branched-chain amino acid transferase (BCAT1), which cat-
alyzes degradation of branched-chain amino acids, is downregu-
lated in the substantia nigra of sporadic PD patients (Yao et al.,
2018). Knockdown of BCAT1 increases mitochondrial respiration
and results in oxidative damage in neurons through mTOR-inde-
pendent pathways (Mor et al., 2020). Finally, dysregulation of sev-
eral glycolytic enzymes, including GLUT, MCT1, MCT4, pyruvate
dehydrogenase kinase 1 (PDK1), LDH-A, and pyruvate kinase M2,
has been reported to produce a hypometabolic state in the PD brain
(Vallée et al., 2019). Knockdown of at least one of these genes
MCT4 (SLC16A3) also results in impaired motor function in exper-
imental mice (Lundquist et al., 2021).

Many PD-associated genes are expressed in glial cells, indicat-
ing that dysfunction of the encoded proteins in microglia and/or
astrocytes could contribute to PD etiology (Joe et al., 2018). For
example, the microglial receptors TREM2 and sialic acid-binding
Ig-like lectin 3, which are associated with AD risk, are also
related to PD risk (Rayaprolu, 2013; Chan et al., 2016). The recy-
cling of microglial TREM2 at the plasma membrane is suggested
to be regulated by the vacuolar protein sorting 35, which is often
implicated in late-onset autosomal-dominant familial PD (J. Yin
et al., 2016). Activation of microglia via TREM2 signaling also
results in neuroinflammation in the environmental-toxin-
induced model of PD (Belloli et al., 2017). However, there are
conflicting reports regarding the association between TREM2
and PD pathology (Mengel et al., 2016; Ren et al., 2018); there-
fore, further investigation is warranted.

PD-related genes that are highly expressed in astrocyte
include cytosolic ubiquitin-E3-ligase PARK2, PARK7, PTEN
induced kinase 1, leucine-rich repeat kinase 2, a-synuclein, and
glucocerebrosidase. These proteins play vital roles in astrocytic
functions, such as inflammatory responses, uptake of glutamate,

oxidative stress responses, and neuroprotection (Sonninen et al.,
2020). Studies using astrocytes derived from induced pluripotent
stem cells obtained from PD patients have shown dysfunction in
a-synuclein clearance and downregulation of matrix metallopep-
tidase 2 and TGF genes. Furthermore, leucine-rich repeat kinase
2- and glucocerebrosidase-deficient astrocytes exhibit elevated
levels of a-synuclein, increased reactivity to inflammatory stimu-
lation, greater Ca21 release from the endoplasmic reticulum, and
altered polyamine metabolism: crucial hallmarks of PD patho-
physiology (Sonninen et al., 2020).

Loci related to NF-kB signaling, such as methylcrotonyl-CoA
carboxylase 1, DDRGK domain-containing protein 1, ras like
without CAAX 2, and scavenger receptor Class B member 2 (Xi
et al., 2013; Cao et al., 2016; van der Poel et al., 2019) have been
identified in GWAS meta-analysis from PD patients (Jimenez-
Ferrer and Swanberg, 2018). Similarly, metabolic genes, such as
transmembrane glycoprotein NMB, sterol regulatory element-
binding protein 1, and aminocarboxymuconate semialdehyde
decarboxylase, that induce inflammatory signaling have been
associated with PD pathology (Ivatt et al., 2014; Murthy et al.,
2017; Vilas et al., 2017). Overall, these findings show the poten-
tial contribution of neuroimmunometabolic genes in PD patho-
genesis (Fig. 2).

Multiple sclerosis (MS): intersecting peripheral and central
immunometabolism
MS is an autoimmune disorder affecting sensory, motor, and au-
tonomic functions in patients. It is a progressive neurodegenera-
tive condition in which autoreactive immune cells (T and B
lymphocytes) infiltrate the CNS, triggering a cascade of neuroin-
flammatory responses that cause demyelination, gliotic scarring,
and axonal loss (Doshi and Chataway, 2017). In the disease state,
the pro-inflammatory subsets of T and B cells (T helper cells,
monocytes/macrophages, and dendritic cells) are activated in the
peripheral immune system. The regular metabolic resources for
energy production in these cells, on activation, are found to be
shifted from the TCA cycle to glycolysis once they cross the BBB
and reach the CNS.

The treatment for MS so far is heavily dependent on variants
of IFN-b to reduce inflammation in the brain by shifting the bal-
ance of T and B cells toward an anti-inflammatory state.
Although INF-b treatment significantly improves the medical
care for MS patients, the mechanism of action is still unclear,
raising doubts about its long-term responsiveness and associated
risks versus benefits (Jakimovski et al., 2018). The involvement
of IFN-b in targeting catalyzing enzymes of the TCA cycle links
its effects to immunometabolic mechanisms of immune cells
(Kaushik and Yong, 2020). Consistent with this, IFN-b treat-
ment restores the metabolic enzymes related to glycolysis and
mitochondrial respiration in relapsing-remitting MS patients (La
Rocca et al., 2017). Hence, a renewed angle of investigation is
warranted to identify the immunometabolic components of MS
progression.

The interplay between the peripheral immune system and
neuroinflammatory cascades in the pathophysiology of MS
makes MS a unique degenerative disorder of the CNS. Immune-
reprogramming moves from blood to brain, integrating periph-
eral and central immunometabolic mechanisms. Postmortem
brain tissues from MS patients and mouse models have revealed
the presence of brain-infiltrating macrophages that exhibit an
elevated glycolytic state, suggesting a peripheral immune role in
regulating metabolic homeostasis and neuroinflammation in the
MS brain. Such compromised metabolic and neuroinflammatory
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states are most likely because of a leaky BBB that enables infiltra-
tion of the macrophages into the CNS (Popescu et al., 2013).
These infiltrating macrophages express high levels of LDH-A
and MCT4, which are responsible for lactate synthesis and trans-
port. When LDH-A and MCT4 are knocked down in cultured
macrophages from MS-model mice, their migration is restricted
(Kaushik et al., 2019). Another study reports accumulation of
lactate in infiltrating macrophages in the parenchyma of the
mouse brain, and this lactate accumulation is correlated with
high levels of PDK1. Increased PDK1 leads to production of lac-
tate that triggers the inflammatory M1 phenotype in macro-
phages (Tan et al., 2015. This confirms an immunometabolic
switch in the CNS toward the activation of proinflammatory cas-
cades (Guglielmetti et al., 2017).

Several gene array studies have identified potential metabolic
targets in the pathogenesis of MS. One potential candidate iden-
tified in GWAS of MS is the guanine nucleotide exchange factor
Vav2, which, in microglia stimulated with fibrillar Ab , activates
NADPH oxidase by activating Rho-family GTPases, which in
turn upregulate the NLRP3 inflammasome leading to oxidative
stress (Wilkinson et al., 2006; Conley et al., 2017). Interestingly,
Vav2 functions downstream of TREM2 (Y. Wang et al., 2015),
indicating a possible involvement of Vav2 in lipid metabolism
underlying MS pathology.

An independent transcription profiling study in microglial
cells isolated from human MS postmortem brains reported
higher transcription of genes related to lipid metabolism, iron
metabolism, and regulation of the NF-kB pathway (van der Poel
et al., 2019). These findings demonstrate the parallel immuno-
metabolic changes occurring in neuroimmune cells along with
peripheral immune cells in the MS brain (Fig. 2). How the resi-
dent immune cells of CNS metabolically react to the infiltrating
peripheral immune cells is still not clearly understood and war-
rants further investigation.

Amyotrophic lateral sclerosis (ALS): neuroimmunometabolic
swing between spinal cord and motor cortex
ALS is a fatal and aggressive neurodegenerative disorder affecting
motor neurons. It is characterized by rapid progression of neuro-
nal loss, brain and spinal cord atrophy, active astrogliosis, and a
self-perpetuating inflammatory cycle. Motor neuron degenera-
tion leads to muscle degeneration, eventual respiratory failure,
and death (Brown and Al-Chalabi, 2017). Treatments for the dis-
order remain elusive.

There is abundant evidence indicating a role for immunome-
tabolic dysregulation in ALS. Metabolic and energy perturba-
tions have been observed in both clinical populations and
preclinical models of ALS (Vandoorne et al., 2018; Kirk et al.,
2019). PET scanning of ALS brains has shown hypometabolism
of glucose in the motor cortex and frontal lobe, while the mid-
brain, occipital cortex, hippocampus, and spinal cord exhibit a
hypermetabolic profile (Ludolph et al., 1992; Claassen et al.,
2010; Pagani et al., 2014). Hypermetabolism in the spinal cord is
congruent with elevated glucose levels in the cerebrospinal fluid
of patients (Toczylowska et al., 2013). Conversely, postmortem
analysis from ALS brains has demonstrated twofold attenuation
in cortical mRNA content of the glycolytic enzyme PFKFB3 (X.
S. Wang et al., 2006). Given that glia are more glycolytic than
neurons, it is plausible that the increased glycolysis in the CNS of
individuals with ALS could be largely because of glial cell activa-
tion (Vandoorne et al., 2018). This is corroborated by clinical
studies showing downregulation of MCT1 transporters in oligo-
dendrocytes of ALS patients (S. Lee et al., 2012; S. H. Kang et al.,

2013; Philips et al., 2013), whereas expression of glutamate trans-
porter EAAT2 is reduced in astrocytes of postmortem samples
(Rothstein et al., 1995). MCT1 expression is also reduced in oli-
godendrocytes of ALS-model mice, and this occurs alongside cell
degeneration, leading to reduced trophic support of lactate to
neurons (S. Lee et al., 2012; S. H. Kang et al., 2013; Philips et al.,
2013). Meanwhile, increases in synaptic glutamate resulting from
reduced expression of glutamate transporter 1 (GLT-1) in astro-
cytes might lead to excitotoxic cell death (Lasiene and
Yamanaka, 2011).

Certain kinases regulate energy metabolism through down-
stream immunometabolic mediators (Salminen et al., 2011).
AMPK, a crucial energy regulatory kinase, is activated in motor
neurons, and this causes mislocalization of TAR DNA-binding
protein 43 (TDP43) in ALS patients and in an ALS mouse model
expressing mutant SOD1 (Lim et al., 2012; Y. J. Liu et al., 2015).
Reducing AMPK activity reverses these pathologic features (Lim
et al., 2012). Interestingly, metabolic imbalances are often
concomitant with neuroinflammatory aberrations. Microglial
upregulation of NOX and NO synthase leads to exacerbated pro-
duction of ROS and RNS in a process involving the prostanoid
synthesis pathway (Almer et al., 2001; Beers et al., 2006; D. C.
Wu et al., 2006; Boillée and Cleveland, 2008). Microglia also
amplify NF-kB signaling in the mutant-SOD1 mouse model of
ALS (Frakes et al., 2014). On the other hand, astrocytes from
ALS patients, when cocultured with neurons, exhibit neuro-
toxicity by an unknown mechanism (Haidet-Phillips et al.,
2011) that might involve the upregulation of chemokines
and cytokines (Haidet-Phillips et al., 2011) or insufficient
astrocytic metabolic support to neurons (Ferraiuolo et al.,
2011; Philips and Rothstein, 2014). Overall, these reports
suggest a contribution of neuroimmunometabolic pathways
to ALS (Fig. 2), but further scrutiny will be required to es-
tablish any causative links to the disease pathology.

HD: susceptible genes linked to neuroimmunometabolism
HD is an autosomal dominant disease characterized by progres-
sive deficits in motor function. It is caused by expanded repeats
of glutamate residues at the N-terminal of the huntingtin gene
(HTT). Inflammation is common in the brains of HD patients,
having been identified in both presymptomatic and postmortem
HD patients (Sapp et al., 2001; Tai et al., 2007; Vonsattel et al.,
2008, 2011). Cell-autonomous expression of dysfunctional
mHTT in the microglia results in its activation (Crotti et al.,
2014; H. M. Yang et al., 2017), whereas selective expression of
mHTT in astrocytes causes motor and transcriptional dysfunc-
tion (Bradford et al., 2009; Wood et al., 2019). The HTT gene is
also reported to dysregulate several genes involved in cholesterol
metabolism. For example, inhibition in SREBP (SREBF1), LXR
(NR1H3), and PGC1a (PPARGC1A) genes results in impaired
synthesis and transport of cholesterol from astrocytes to neurons
in HD (Leoni and Caccia, 2015). These findings indicate immu-
nometabolic imbalance induced by several genetic risk factors in
HD (Fig. 2)

Molecules related to amino acid metabolism are also involved
in the inflammatory cascade in HD brains. For example, studies
have indicated that mHTT can downregulate GLT-1 in astro-
cytes, preventing uptake of glutamate and causing excitotoxicity
(Lievens et al., 2001; Shin et al., 2005; Khakh et al., 2017).
Another notable example is kynurenine-pathway metabolites,
which induce neuroinflammation and neuroexcitotoxicity by
activating microglia and astrocytes (Satyasaikumar et al., 2010;
Campesan et al., 2011; Palpagama et al., 2019). Multiple lines of
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evidence point toward reduced kynurenine levels and increased
quinolinic acid, an intermediate of the kynurenine pathway, in
the early stages of HD (Beal et al., 1992; Guidetti et al., 2004;
Giorgini et al., 2008; Crotti et al., 2014). Indeed, genetic ablation
of kynurenine 3-monooxygenase, an enzyme that converts kynu-
renine to toxic 3-hydroxykynurenine, suppresses huntingtin-
mediated excitotoxicity in a yeast model system (Giorgini et al.,
2005). Further, both in vitro and in vivo studies have shown that
mHTT can cause activation of NF-kB signaling, an important
immunometabolic pathway in the CNS, via the IkB kinase of the
IkB kinase complex. (Khoshnan et al., 2004; Träger et al., 2014).
These studies also strengthen the plausibility that NF-kB-medi-
ated increases in kynurenine-pathway activity play a role in HD
(Ligam et al., 2010).

GWASs have also implicated many neuroimmunometabolic
genes in relationship to HD. One of these is Autophagy related 7
(ATG7), a gene associated with defective autophagy (Squitieri et
al., 2003; Metzger et al., 2010). Atg7 has been linked to (CRTC1)
activity and glycolysis (Wei et al., 2016), suggesting a neuroim-
munometabolic role in driving autophagy. Mechanistically,
ATG7 deletion results in disrupted autophagy and activation
of (CRTC1) and the glycolytic pathway. Inhibiting mTORC1

reverses the metabolic dysregulation caused by Atg7-medi-
ated autophagic deficits (Wei et al., 2016).

Cofactors triggering neuroimmunometabolic switching
Aging and lifestyle choices, such as stress, diet, exercise, and sub-
stance abuse are some of the critical modulators of immunome-
tabolic processes. In this section we aim to highlight how the
process of aging and lifestyle factors may lead to an imbalance in
immunometabolic homeostasis in the CNS (Fig. 3).

Aging
Aging is a major risk factor for neurodegenerative diseases.
There is a gradual decrease in neuronal viability in brain regions
related to memory, motivation, and locomotion with age
(Fearnley and Lees, 1991; Umegaki et al., 2008; Kusindarta et al.,
2018; Maxwell et al., 2018). Aging may contribute to neurode-
generation in multiple, complex ways. Aging is associated with
hyperactivation or hypoactivation in certain brain regions; this
has been supported by PET scanning showing increased or
decreased glucose metabolism in cortical regions and hippocam-
pus of aged compared with young brains (Prvulovic et al., 2005;
Kaup et al., 2014; F. Yin et al., 2016; Nyberg et al., 2019).

Figure 3. Novel therapeutic strategies to control immunometabolic machinery in neurodegenerative disorders. Glucose analogs, inhibitors of GLUT1 and TCA-cycle enzymes, act on essential
regulators to sustain or control glycolytic homeostasis in the brain. While bioguanides and mTOR inhibitors control glucose metabolism, JAK inhibitors and A1BP maintain cholesterol homeosta-
sis and associated neuroinflammation. Immuno-nutraceutics, such as ketogenic diet, antioxidants, vitamins, and glutamine supplements, can also influence neuroinflammatory events in neuro-
degenerative conditions by fulfilling the brain’s energy requirements through alternative metabolic pathways.
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Hypometabolism is manifested by metabolic shifts involving
decreased neuronal glucose uptake and alterations in mitochon-
drial TCA cycle (Boumezbeur et al., 2010; Winklhofer and
Haass, 2010; Jiang and Cadenas, 2014; J. Yin et al., 2016).
Hyperactivated states are thought to be associated with drastic
immunometabolic shifts, as excessive excitation can induce glu-
tamate spillover leading to neurotoxicity (Esposito et al., 2013;
Assefa et al., 2018). Further, aging is associated with increases in
reactive astrocytes and microglia in the frontal cortex and the
hippocampus (Rodríguez et al., 2016; Muddapu et al., 2020). In
the aging brain, increased signaling by prostaglandin E2 in
microglia promotes glucose sequestration into glycogen, reduc-
ing glucose flux and mitochondrial respiration. This hypometa-
bolic state is compounded by the dependence of myeloid cells on
glucose. Inhibiting prostaglandin E2 signaling in myeloid cells of
aged mice reverses these deficits, improving synaptic plasticity
and spatial memory (Minhas et al., 2021).

Diet
A century of industrialization and mass urbanization have led to
a steady decline in the intake of fruits, vegetables, and fibers and
increased consumption of animal products, saturated fats, and
refined sugars (Popkin and Gordon-Larsen, 2004; Popkin et al.,
2012). This, coupled with a modern sedentary lifestyle, has
increased the incidence of metabolic syndromes that have gained
a pandemic status (Bray et al., 2004; Bray and Popkin, 2014).
There is compelling evidence that diets rich in fat and sugars
adversely influence the metabolic and inflammatory profile of
brain cells (Beilharz et al., 2015; Chianese et al., 2018). Apart
from FAs synthesized in the brain, dietary FAs can cross the BBB
(Freund Levi et al., 2014) and modulate cellular processes in the
brain. It is unknown how central versus peripheral lipid pools
distinctly modulate neuroimmunometabolic mechanisms, neces-
sitating further investigation.

Disturbances in immunometabolic signaling and day/night
rhythmicity because of hypercaloric diet have been demonstrated
in microglia (Milanova et al., 2019). Dietary habits influence
microglial phenotypic polarization, a morphologic adaptation
driven by cell surface receptors. These receptors recognize harm-
ful stimuli that lead to transcriptional changes necessary for the
phenotypic switch. High-fat diet induces region-specific inflam-
matory states and metabolic imbalances in microglia, astrocytes,
and oligodendrocytes (Valdearcos et al., 2014; Guillemot-Legris
et al., 2016; Guillemot-Legris and Muccioli, 2017; Jin et al.,
2020), mainly as a result of saturated FAs activating putative
immunometabolic mediators, such as myelin disruption, and
pathways linked to NF-kB, TLR receptors, IFN-g , TNF, and IL-
33 (Buckman et al., 2015; Guillemot-Legris et al., 2016; Ng and
Say, 2018; H. T. Huang et al., 2019). Additionally, high-fat diets
attenuate the positive effects of nutraceuticals, such as Alaskan
bog blueberries, on neurodegenerative pathophysiology by
microglial activation (Maulik et al., 2019). In contrast, unsatu-
rated and v3 FAs, abundantly present in foods, such as fish oils,
attenuate anti-inflammatory phenotypes in microglia (Inoue et
al., 2017). Omega-3 FAs also help in eliminating myelin debris
and extracellular Ab peptides by glial phagocytosis (Oksman et
al., 2006; S. Chen et al., 2014; Dong et al., 2018).

Exercise
There is accumulating evidence for a role of exercise in regulat-
ing neuroinflammation and glial activation. Exercise releases
anti-inflammatory myokines, such as IL-6, from skeletal muscles,
and this increases the production of IL-10, an anti-inflammatory

cytokine. Myokines can travel across the BBB, bind to microglial
receptors, and promote a quiescent phenotype as opposed to a
more active inflammatory phenotype (Cianciulli et al., 2015;
Kelly, 2018; Vecchio et al., 2018; Pederson, 2019). Long-term
treadmill exercise elevates neuronal expression of CD200, a Type
1 membrane glycoprotein. CD200 binds to the CD200R receptor
expressed on the microglia and leads to glycosylation of CD200R
(N-glycosylated at asparagine 44). This CD200-CD200R interac-
tion checks on the microglial activation in PD mice, sustaining
metabolic homeostasis (Sung et al., 2012; C. Liu et al., 2018).

BDNF, a ubiquitous modulator of neurogenesis, synaptic
plasticity, and inflammation, is produced by neurons, microglia,
and astrocytes and is upregulated by exercise (Wrann et al.,
2013; Sleiman et al., 2016). The precise mechanisms by which
BDNF reduces inflammation is unknown. The most likely target
is the cholinergic system where an imbalance in neuroimmune
communication may lead to inflammation through phosphoino-
sitide 3-kinases/GSK-3b -mediated pathways (Papathanassoglou
et al., 2015; Halder and Lal, 2021). Notably, acute bouts of exer-
cise have positive impact on BDNF levels and inflammatory sta-
tus in both healthy individuals and PD patients (Małczy�nska-
Sims et al., 2020).

Finally, exercise produces antioxidants, such as GSH and
SOD, which play a vital role in maintaining redox balance and
anti-inflammatory status in astrocytes and microglia (Radak et
al., 2001), as well as attenuating TLR activation on microglial
cells by high-fat diets (E. B. Kang et al., 2016).

Substance abuse
Substance abuse and stress can also significantly influence the
immunometabolic status of the brain. Longitudinal studies have
shown progressive changes in brain metabolic activity in cocaine
abusers (Volkow et al., 2011) and in animals after abstinence
from cocaine self-administration (Nicolas et al., 2017).
Similarly, alcohol decreases brain glucose metabolism in
heavy drinkers (Volkow et al., 2015), and methamphet-
amine and 3,4-methylenedioxymethamphetamine abuse
causes oxidative stress, metabolic compromise, and inflam-
mation (Yamamoto and Raudensky, 2008). Both 3,4-meth-
ylenedioxymethamphetamine and methamphetamine elicit
acute decreases in glucose utilization, and this is linked to
long-term impairment in energy metabolism and increased
inflammation in different brain regions. These neurotoxic
effects were found to be selective and long-lasting or irre-
versible (Pontieri et al., 1990; Y. H. Huang et al., 1999;
Quate et al., 2004).

Neuroimmunometabolic therapeutics: time to change the
course of disease management?
Designing treatment strategies centered around optimizing neu-
roimmunometabolic aberration could be challenging but may
lead to effective therapeutic intervention for these neurodegener-
ative disorders (Fig. 3). Most current clinical treatments serve to
cope with symptoms rather than addressing the underlying
pathophysiology (X. Chen and Pan, 2015). Further, most of these
drugs (e.g., Levodopa, amantadine, galantamine, memantine,
etc.) carry severe side effects, such as gait disturbances, tremors,
hives, headache, drowsiness, etc. (Duraes et al., 2018). There
remains a huge opportunity in using drugs that target the meta-
bolic and immune machinery to halt the progression of these
diseases.
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Metformin
Metformin is a biguanide that controls glucose metabolism and
inhibits mitochondrial electron transport and ROS production.
Metformin activates the AMPK pathway by activating serine–
threonine liver kinase B1, inhibiting mTOR and its coupling
to downstream mediators (Kalender et al., 2010; Y. Wang et
al., 2018), which are disrupted in degenerative conditions.
Moreover, metformin significantly reduces mitochondrial
distress caused by BCAT-1 deficiency, thus reversing neu-
rotoxicity, improving motor function, and enhancing neu-
ronal viability in Caenorhabditis elegans models of PD (Mor
et al., 2020). Furthermore, clinical trials are currently
recruiting ALS and AD patients to test the efficacy of metformin in
altering the pathophysiology in these disorders (www.clinicaltrials.
gov, NCT04098666, 2020; NCT04220021, 2020).

Rapamycin and inhibitors of glucose metabolism
Given the plethora of evidence implicating mTOR in the meta-
bolic regulation of inflammation, the mTOR inhibitor rapamycin
may be an effective therapeutic to combat immunometabolic
imbalances. Rapamycin, sold under the trade name Sirolimus,
exhibited efficacy in clinical trials of inflammatory disorders,
such as systemic lupus erythematosus (Lai et al., 2018).

The glucose metabolism inhibitor, 2-deoxyglucose, which is
used as a noninvasive diagnostic tool in PET scanning, can in-
hibit excessive glycolysis alone or in combination by rerouting
glucose metabolism into the pentose phosphate pathway involv-
ing hexokinase (Maher et al., 2004; Pajak et al., 2019), and this
might be able to attenuate the excessive glycolytic surge observed
in several pathologic conditions. Another drug, WZB117, inhib-
its the glucose transporter GLUT1 and thus reduces inflamma-
tion by suppressing metabolism (Y. Liu et al., 2012).
Furthermore, drugs, such as dimethyl malonate (a succinate de-
hydrogenase inhibitor) and enasidenib (an isocitrate dehydro-
genase inhibitor) that target the TCA cycle at various enzymatic
steps, may ameliorate immunometabolic dysregulation by regu-
lating energy metabolism (Stein et al., 2019).

Tofacinib
Like drugs targeting glucose metabolism, drugs targeting lipid
substrates are under clinical investigation for immune and meta-
bolic disorders. Dysregulation of the JAK/STAT signaling path-
way and the resulting disruption of lipid metabolism is evident
in several metabolic disorders (Xu et al., 2013; Gurzov et al.,
2016; Bharadwaj et al., 2020). Tofacitinib, an FDA-approved
drug for rheumatoid arthritis (RA) and other immune disorders,
is a JAK inhibitor, and it ameliorates macrophage-induced inflam-
mation in RA patients by controlling the metabolism of cholesterol
esters (Fleischmann et al., 2012; Kremer et al., 2012). In a rabbit
model mimicking the lipid paradox in RA (a high cardiovascular
risk despite low levels of LDL), tofacitinib treatment reverses inflam-
mation-induced inhibition of reverse cholesterol transport (Perez-
Baos et al., 2017). Although the precise mechanism is unknown,
tofacitinib is believed to influence reverse cholesterol transport by
upregulating ATP-binding cassette A1 transporters that promote
phospholipid and cholesterol transport on pre-high-density lipopro-
tein (Perez-Baos et al., 2017). This drug could be further investi-
gated for treating neurodegenerative disorders, such as AD and PD,
where pathways related to lipid metabolism are disrupted. Notably,
a recent nonrandomized clinical trial is registered to test the efficacy
of tofacitinib in AD and other dementias. Further, a tofacitinib trial
is currently underway in RA patients (www.clinicaltrials.gov,
NCT04529876, 2020).

Apolipoprotein A-I binding protein (AIBP)
AIBP helps to maintain cholesterol homeostasis in lipid rafts in
immune cells by removing excess cholesterol. AIBP is reported
to promote cholesterol efflux from macrophages by binding to
ATP-binding cassette A1, the key transporter involved in choles-
terol metabolism (M. Zhang et al., 2016). Further, AIBP can in-
hibit inflammatory responses in macrophages by inhibiting the
formation of foam cells in the circulation through a process
involving the activation of MAPK and NF-kB signaling path-
ways (M. Zhang et al., 2018). Furthermore, AIBP inhibits LPS-
induced TLR4 dimerization and inflammatory cytokine produc-
tion in microglial lipid rafts (Woller et al., 2018).

A role for AIBP has also been tested in other degenerative
models, such as glaucoma. Glaucoma involves apoptosis in
retinal ganglion cells, and glia-driven neuroinflammation.
In a mouse model of glaucoma, the level of AIBP in retinal
ganglion cells was significantly reduced, and exogenous
administration of recombinant AIBP protected retinal gan-
glion cells from glaucomatous neurodegeneration and asso-
ciated inflammatory responses (Choi et al., 2020).

Immuno-nutraceutics
Another new line of research has been the development of
immuno-nutraceutics. This field explores the possibility of using
nutritional intervention and physical activity to improve neuroim-
munometabolic balance. For example, carbohydrates influence
immune responses to chronic intense exercise. Further, data from
exercise-immune studies have revealed positive benefits of using
antioxidants, vitamins, amino acids, such as glutamine, and other
nutraceuticals in exercise-induced immunometabolic restoration
(Gould and Pazdro, 2019).

In the 1920s, the ketogenic diet was formulated for the treat-
ment of drug-resistant epilepsy (Wheless, 2008). This carbohy-
drate-depleted and fat-enriched diet shifts metabolic pathways
from glycolysis to the TCA cycle, pushing the body into a state of
ketosis that involves burning fat for energy production. The
ketogenic diet has also been shown to exert anti-inflammatory
effect in several experimental models and clinical cohorts of AD,
PD, HD, and other disorders (Ruskin et al., 2011; J. Y. Chen et
al., 2016; Phillips et al., 2018; Brenton et al., 2019; Rusek et al.,
2019; Bahr et al., 2020; Koh et al., 2020). There is growing evi-
dence that the ketogenic diet suppresses potential pro-inflamma-
tory pathways, such as the NRLP3, PPARg , and mTOR cascades
(Huttenlocher, 1976; Koh et al., 2020).

While such dietary interventions could hold potential in
treating neuroimmunometabolic pathologies, it is also important
to understand that there are confounding factors that influence
success of such therapeutic strategies. This includes the stage of
diagnosis, potential side effects, specificity of action, and individ-
ual responses to these therapies or interventions. Moreover, ad-
juvant or combinational treatment involving immunonutrition
and multiple drugs could be an alternative intervention. This hy-
pothesis, however, remains to be tested in different models of
CNS neurodegenerative disorders and thus warrants further
investigation.

Neuroimmunometabolic profiling to bridge the translational
gap
As described above, neurodegenerative diseases are affected by
multiple genetic and nongenetic factors, including neuroimmu-
nometabolic sensors. They differ in their disease manifestation
but share numerous features, including scarce availability of effi-
cient tools for early diagnosis and managing disease progression.
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Preclinical evaluation of pathways related to genes implicated in
these diseases has usually failed to produce drugs that prove
effective in clinical trial. The complexity of the diseases lies in the
involvement of multiple risk genes, each of which imposes only
modest risk on its own. Moreover, the encoded genes may have
roles in complex pathways, the disruption of which may affect
numerous other pathways in various cell types. For example,
metabolic aberration in glial cells may induce a recalibration of
immune responses, which might lead to reconfiguration of neu-
ral connectivity, thus resulting in an array of neuronal abnormal-
ities. Such a network of events can initiate at any node, resulting
in a unidirectional or bidirectional effect. Thus, functional stud-
ies are essential to evaluate the role of risk genes and verify their
involvement in discrete biological cascades. The gap between
preclinical and clinical findings suggests that a more holistic pre-
clinical approach is necessary.

Understanding disease mechanisms is contingent on identify-
ing all the implicated genes, verifying their roles, and testing for
therapeutic potential. This can be achieved by approaches, such
as genomics (genotype arrays, GWAS, whole genome, and
exome sequencing), epigenomics, transcriptomics, proteomics,
and metabolomics. GWASs are unbiased, as they have often
shown association of completely unrelated genes previously con-
sidered to be remotely associated with the disease.

For example, screening of AD-associated genes expressed in
CNS cell types has led to the discovery of many hits in microglia,
such as TREM2 and APOE, as potential risk factors for AD
(Andreasson et al., 2016; Jansen et al., 2019). Comparing the
results of studies of one disease with those from another disease
can reveal risk factors that affect more than one disease. Cross
evaluation of multiple conditions will not only expand our
understanding of diseases, but will also aid in designing informed
therapeutic interventions.

Epigenomics, involving epigenome wide association studies,
addresses reversible or irreversible modification of DNA and his-
tones, including methylation and acetylation (Hasin et al., 2017).
Differentially methylated immunometabolic factors can serve as
indicators of disease status (Piunti and Shilatifard, 2016).
Similarly, transcriptomics measures genome-wide RNA levels
using various advanced RNA sequencing techniques (Z. Wang et
al., 2009; Lowe et al., 2017), whereas proteomics quantifies pep-
tide expression, interaction, and clearance using mass spectros-
copy-based and mass spectroscopy-independent methods (Hasin
et al., 2017; Timp and Timp, 2020). Metabolomics, on the other
hand, quantifies small molecules and metabolites, which can be
used to determine neuroimmunometabolic reprogramming
(Johnson et al., 2016).

Seldom are all risk genes produced by any single one of these
approaches translatable. Further, evaluating therapeutic potential
of each risk gene in a global framework might be time- and
resource-intensive. Thus, a combinatorial approach to verify risk
genes may help bridge therapeutic gaps. After omics evaluation,
risk genes can be studied in vivo or in vitro to examine in detail
how they contribute to various cascading effects that disturb neu-
roimmunometabolism. This will aid in unraveling more thera-
peutic hits. Some of the common techniques for studying the
onset of neuroimmunometabolic shifts include examination of
metabolic changes through colorimetric techniques, specialized
biosensor imaging, mass spectroscopy, PET and imaging, as
reviewed previously (Bernier et al., 2020). Given the flood of data
available in individual fields, such as immunological, neurodege-
nerative, and metabolic diseases, the neuroimmunometabolic
gene profiles in animal models identified by omics have great

potential to increase translational success. The omics databases
of risk genes can be used by the health care system to track indi-
vidual health for personalized treatment. At this point, the cost
of generating individual omics data is too expensive for the
payers to appreciate, but as the technology advances, these prob-
lems can be overcome.

Conclusion
In conclusion, we have provided an overview of the immunometa-
bolic mediators andmechanisms that play critical roles in regulating
energy balance in the CNS. Abnormalities in neuroimmunometa-
bolic functioning linking cellular intermediates and pathways can
lead to neurodegenerative conditions. Unraveling the cellular medi-
ators underlying such pathways in these disorders can provide a ba-
sis for future therapeutic intervention. Further, translating these
preclinical findings may help us in synergizing personalized treat-
ment for many currently untreatable neurodegenerative disorders.
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