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The debilitating psychomotor symptoms of Huntington’s disease (HD) are linked partly to degeneration of the basal ganglia
indirect pathway. At early symptomatic stages, before major cell loss, indirect pathway neurons exhibit numerous cellular
and synaptic changes in HD and its models. However, the impact of these alterations on circuit activity remains poorly
understood. To address this gap, optogenetic- and reporter-guided electrophysiological interrogation was used in early symp-
tomatic male and female Q175 HD mice. D2 dopamine receptor-expressing striatal projection neurons (D2-SPNs) were hypo-
active during synchronous cortical slow-wave activity, consistent with known reductions in dendritic excitability and cortical
input strength. Downstream prototypic parvalbumin-expressing external globus pallidus (PV1 GPe) neurons discharged at 2-
3 times their normal rate, even during periods of D2-SPN inactivity, arguing that defective striatopallidal inhibition was not
the only cause of their hyperactivity. Indeed, PV1 GPe neurons also exhibited abnormally elevated autonomous firing ex
vivo. Optogenetic inhibition of PV1 GPe neurons in vivo partially and fully ameliorated the abnormal hypoactivity of postsy-
naptic subthalamic nucleus (STN) and putative PV– GPe neurons, respectively. In contrast to STN neurons whose autono-
mous firing is impaired in HD mice, putative PV– GPe neuron activity was unaffected ex vivo, implying that excessive
inhibition was responsible for their hypoactivity in vivo. Together with previous studies, these data demonstrate that (1) indi-
rect pathway nuclei are dysregulated in Q175 mice through changes in presynaptic activity and/or intrinsic cellular and syn-
aptic properties; and (2) prototypic PV1 GPe neuron hyperactivity and excessive target inhibition are prominent features of
early HD pathophysiology.
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Significance Statement

The early symptoms of Huntington’s disease (HD) are linked to degenerative changes in the action-suppressing indirect path-
way of the basal ganglia. Consistent with this linkage, the intrinsic properties of cells in this pathway exhibit complex altera-
tions in HD and its models. However, the impact of these changes on activity is poorly understood. Using electrophysiological
and optogenetic approaches, we demonstrate that the indirect pathway is highly dysregulated in early symptomatic HD mice
through changes in upstream activity and/or intrinsic properties. Furthermore, we reveal that hyperactivity of external globus
pallidus neurons and excessive inhibition of their targets are key features of early HD pathophysiology. Together, these find-
ings could help to inform the development and targeting of viral-based, gene therapeutic approaches for HD.

Introduction
Huntington’s disease (HD) is an autosomal dominant neurode-
generative disorder caused by expansion of trinucleotide CAG
repeats (.35) in exon 1 of the huntingtin gene (HTT) (Bates et
al., 2015). The cardinal features of HD are progressive dysregula-
tion and degeneration of the basal ganglia and cortex, and the
emergence of associated motor, cognitive, and psychiatric symp-
toms (Bates et al., 2015). Although mutant huntingtin (mHTT)
species impair multiple processes that are critical for neuronal
function, the mechanisms that underlie the relative vulnerability
of cortico-basal ganglia circuit function remain poorly under-
stood (Reddy and Shirendeb, 2012; Seredenina and Luthi-Carter,
2012; Johri et al., 2013; Tong et al., 2014; Martin et al., 2015;
Rosas et al., 2018). Under normal conditions, the basal ganglia
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promote contextually appropriate behavior, in part through the
processing of functionally diverse cortical inputs (Mink and
Thach, 1993; Nelson and Kreitzer, 2014; Klaus et al., 2019) by
complex microcircuits, including the so-called direct and indirect
pathways. The results of basal ganglia computation are then
broadcast to the thalamus, midbrain, and brainstem, affecting
behavior (Albin et al., 1989; Gerfen et al., 1990). D2 dopamine
receptor expressing striatal projection neurons (D2-SPNs) that
are the source of the so-called action-suppressing indirect path-
way are susceptible early in HD (Albin et al., 1992; Richfield et
al., 1995; Reiner and Deng, 2018). As a result, loss of indirect
pathway function is posited to underlie chorea and impaired be-
havioral control, in the initial clinical phase of adult-onset HD
(Bates et al., 2015; Reiner and Deng, 2018).

Examination of HD and its experimental models at early
symptomatic ages has revealed that neurons in the basal ganglia
and cortex exhibit complex changes in their intrinsic and synap-
tic properties (Cepeda et al., 2007; Raymond et al., 2011; Plotkin
and Surmeier, 2015). For example, D2-SPNs exhibit loss of cor-
tico-striatal long-term potentiation (LTP), and reductions in
axospinous synapse density, miniature excitatory postsynaptic
current (mEPSC) amplitude, and dendritic excitability (Plotkin
and Surmeier, 2014; Plotkin et al., 2014; Sebastianutto et al.,
2017; Carrillo-Reid et al., 2019). These observations suggest that
D2-SPNs will be less effectively engaged by cortical excitation in
HDmice. Consistent with this view, the activities of cortical neu-
rons and SPNs in vivo are less well correlated in HDmice (Miller
et al., 2008; Walker et al., 2008; Estrada-Sanchez et al., 2015).
However, downstream external globus pallidus (GPe) neurons
exhibit no sign of disinhibition in vivo, that is, they are not
hyperactive (Beaumont et al., 2016), possibly because striatopalli-
dal transmission has been upregulated (Perez-Rosello et al.,
2019) and autonomous subthalamic nucleus (STN) activity has
been downregulated (Atherton et al., 2016) in compensation.
Thus, the effects of cortical drive on the indirect pathway cannot
be easily inferred from ex vivo observations alone. Furthermore,
most of the in vivo electrophysiological studies on HD mice are
difficult to interpret because the recorded nuclei are comprised
of multiple cell types that were not discriminated. To address
these gaps, we used optogenetic- and reporter-guided electro-
physiological interrogation of indirect pathway neurons in a
well-characterized mouse model of HD at an early symptomatic
stage. Specifically, we used Q175model mice, in which exon 1 of
human HTT (containing ;190 trinucleotide repeats) is knocked
into the endogenous Htt gene. This model exhibits many of the
progressive molecular, neuropathological, and behavioral abnor-
malities seen in HD patients (Heikkinen et al., 2012; Menalled et
al., 2012). In pilot experiments, we found that stereotyped patterns
of cortical activity present under urethane anesthesia were similar
in WT and Q175 mice, allowing us to compare firing in the indi-
rect pathway during analogous cortical states. We also used patch-
clamp recording in ex vivo brain slices to determine whether the
changes in GPe neuron activity that we observed in Q175 mice in
vivo were due in part to alterations in autonomous firing. Together
with other studies, our data argue that mHTT profoundly dysregu-
lates indirect pathway activity through complex changes in presyn-
aptic activity and/or cellular and synaptic properties.

Materials and Methods
Animals. Procedures were performed in compliance with the policies

of the National Institutes of Health and approved by the Institutional
Animal Care and Use Committee of Northwestern University. Mice
were maintained on a 14 h light/10 h dark cycle with food and water ad

libitum, and monitored regularly by animal care technicians, veterinar-
ians, and research staff.

Heterozygous Q175 mice (B6J.129S1-Htttm1.1Mfc/190ChdiJ; RRID:
IMSR_JAX:029928; The Jackson Laboratory) were bred with homozy-
gous PT-kj18-cremice (Tg(Sim1-cre)KJ18Gsat; RRID:MMRRC_036958-
UCD; MMRRC Repository), or A2A-cre mice (Tg(Adora2a-cre)
KG139Gsat; RRID:MMRRC_036158-UCD; MMRRC Repository), or
PV-cre mice (B6.Cg-Pvalbtm1.1(cre)Aibs/J; RRID:IMSR_JAX:012358; The
Jackson Laboratory) to generate offspring that were either homozygous
for Htt (WT), or heterozygous for Htt and mHtt (Q175), and heterozy-
gous for Cre-recombinase. The following experimental mice were used
(median and age range are reported): WT/PT-kj18-cre: age = 233, 225-
239 d old, n=5; Q175/PT-kj18-cre: age = 238, 228-244 d old, n=4; WT/
A2A-cre: age = 210, 210-233 d old, n= 3; Q175/A2A-cre: age = 211, 211-
235 d old, n=3; WT/PV-cre: age = 219.5, 204-232 d old, n=4; Q175/PV-
cre: age = 220, 205-234 d old, n=5. Experimental mice were male, except
for PV-cre mice, where both male (WT/PV-cre: n= 3; Q175/PV-cre:
n=3) and female (WT/PV-cre: n= 1; Q175/PV-cre: n=2) mice were
used. Data from male and female PV-cre mice were overlapping and
therefore pooled.

Stereotaxic injection of viral vectors. Anesthesia was induced with
vaporized 3%-4% isoflurane (Smiths Medical ASD) followed by an intra-
peritoneal injection of ketamine (100mg/kg). After securing the mouse
in a stereotaxic instrument (Neurostar), anesthesia was maintained with
1%-2% isoflurane. Adeno-associated viruses (AAVs) diluted in HEPES-
buffered synthetic interstitial fluid (HBS SIF: 140 mM NaCl, 23 mM glu-
cose, 15 mM HEPES, 3 mM KCl, 1.5 mM MgCl2, 1.6 mM CaCl2; pH 7.2
with NaOH; 300-310 mOsm/L) were then injected under stereotaxic
guidance. AAV injection was conducted over 5-10min at each site. An
additional 5-10min was then allowed for the injectate to diffuse before
syringe retraction. ChR2(H134R)-eYFP was virally expressed in: (1)
layer V pyramidal tract (PT) neurons in PT-kj18-cre mice through uni-
lateral injection of AAV9.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH
(RRID:Addgene_20298; 1� 1013 genome copies/ml; AP: 0.6 mm, 1.2
mm, 1.8 mm; ML: 1.5 mm; DV: 1.0 mm; 0.5ml per injection); and (2)
D2-SPNs in A2A-cre mice through unilateral injections of AAV9.EF1a.
DIO.hChR2(H134R)-eYFP.WPRE.hGH (RRID:Addgene_20298; 3 -
� 1011 genome copies/ml; AP: 0.4 mm, 0.9 mm; ML: 2.2 mm; DV: 3.7
mm, 2.7 mm; 0.3ml per injection). Arch-GFP was virally expressed in
parvalbumin-expressing (PV+) GPe neurons in PV-cre mice through
unilateral injection of AAV9.CBA.Flex.Arch-GFP.WPRE.SV40 (RRID:
Addgene_22222; 5� 1011 genome copies/ml; AP: �0.27 mm; ML: 1.90
mm; DV: 3.95 mm, 3.45 mm; 0.25ml per ventral injection and 0.20ml
per dorsal injection). eGFP was virally expressed in PV1 GPe neurons in
PV-cre mice through unilateral injection of AAV9.Syn.DIO.eGFP.
WPRE.hGH (RRID:Addgene_100043; 3� 1011 genome copies/ml; AP:
�0.27 mm; ML: 1.90 mm; DV: 3.95 mm, 3.45 mm; 0.25ml per ventral
injection and 0.20ml per dorsal injection).

In vivo electrophysiological recording. Two to 4weeks following sur-
gery, anesthesia was induced with vaporized 3%-4% isoflurane followed
by intraperitoneal injection of urethane (1.5 g/kg; Sigma-Aldrich). Mice
were placed back into their home cage for ;60min until the toe-pinch
withdrawal reflex was abolished. If necessary, additional urethane sup-
plements (0.5 g/kg, i.p.) were administered every 30min until the with-
drawal reflex was eliminated. Mice were then placed into a stereotaxic
instrument (David Kopf Instruments) for the duration of the recording
session, with urethane supplements administered as required to main-
tain anesthesia. Craniotomies were drilled over the primary motor cortex
(AP: 1.4 mm; ML: 1.5 mm), striatum (AP: 0.65 mm; ML: 1.95 mm), GPe
(AP: �0.3 mm; ML: 2.0 mm), and/or STN (AP: �1.9 mm; ML: 1.4 mm)
and irrigated with HBS. The intracranial electroencephalogram (EEG)
was recorded from a peridural screw electrode (MS-51 960-1; McMaster-
Carr) affixed over the ipsilateral primary motor cortex of A2A-cre and
PV-cre mice. In PT-kj18-cre mice in which extracellular recordings of
motor cortical neurons were made, the EEG screw was implanted over
the contralateral primary motor cortex. Extracellular single-unit record-
ings were acquired using silicon tetrodes/optrodes (A1x4-tet-10 mm-
100-121-A16 and A1x4-tet-10 mm-100-121-OA16, respectively;
NeuroNexus Technologies) connected to a 64-channel Digital Lynx
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(Neuralynx) data acquisition system via a unity gain headstage, with a
reference wire implanted adjacent to the ipsilateral temporal muscula-
ture. Signals were sampled at 40kHz, with a gain of 14�. Online digital
finite impulse response filters were applied. Single-unit activity was
bandpass-filtered between 200 and 9000Hz, and EEG and local field
potential signals were bandpass-filtered between 0.1 and 400Hz.
Optogenetic stimulation was delivered using either a 473 nm diode laser
(LuxX1 473-100; Omicron-Laserage Laserprodukte) or a custom
577nm laser system (Genesis MX STM 577-500 OPSL CW; Coherent).
In order to histologically verify recording sites, silicon tetrodes/optrodes
were dipped in a lipophilic florescent dye (DiI; 20mg/ml in 50% ace-
tone/methanol; D282; Thermo Fisher Scientific) before implantation.
Sensory-evoked cortical activation (ACT) was generated by pinching the
hindpaw for 5 s using a pair of fine forceps (Fine Science Tools). ChR2
(H134R)-eYFP-expressing neurons were optogenetically stimulated with
473 nm light (,6 mW) for a duration of 5ms. Stimulation was repeated
at least 5 times with each trial of stimulation separated by a minimum of
2min. Arch-GFP-expressing neurons were optogenetically inhibited
through delivery of 577 nm light (,6 mW) for a duration of 5 s.
Optogenetic inhibition was repeated at least 2 times with each trial being
separated by a minimum of 2min. Laser intensity was calibrated as
power at the tip of the optrode before probe implantation and verified at
the conclusion of each experiment.

Immunohistochemistry. After electrophysiological recording, mice
were given a lethal dose of anesthetic and then perfused transcardially
with ;5-10 ml of 0.01 M phosphate buffered saline (PBS) (pH 7.4;
P3813, Millipore Sigma) followed by 15-30 ml of 4% paraformaldehyde
(PFA) in 0.1 M phosphate buffer (PB), pH 7.4. Each brain was then
removed and postfixed overnight in 4% PFA (in 0.1 M PB, pH 7.4) before
being washed in PBS, blocked, and sectioned in the coronal plane at
70mm using a vibratome (VT1000S; Leica Microsystems). Sections were
then processed for the immunohistochemical detection of NeuN, an
antigen expressed by neurons that is commonly used to delineate brain
structures. First, sections were washed in PBS and incubated for 48-72 h
at 4°C in anti-NeuN (1:200; clone A60; Millipore Sigma; RRID:AB_
2532109) in PBS with 0.5% Triton X-100 (Millipore Sigma) and 2% nor-
mal donkey serum (Jackson ImmunoResearch Laboratories). Then, sec-
tions were washed in PBS before being incubated for 90min at room
temperature in AlexaFluor-488- or 594-conjugated donkey anti-
mouse IgG (1:250; Jackson ImmunoResearch Laboratories; RRID:
AB_2313584; RRID:AB_2340621) in PBS with 0.5% Triton X-100
and 2% normal donkey serum. In a subset of PV-cre mice, in which
PV1 GPe neurons expressed Arch-GFP or eGFP, adjacent sections of the
GPe were processed for the immunohistochemical detection of PV (primary
antibody: 1:1000 guinea pig anti-PV; Synaptic Systems; RRID:AB_2156476;
secondary antibody: 1:250 AlexaFluor-594 donkey anti-guinea pig IgG;
Jackson ImmunoResearch Laboratories; RRID:AB_2340474) or FoxP2 (pri-
mary antibody: 1:1000 rabbit anti-FoxP2; Millipore Sigma; RRID:AB_
1078909; secondary antibody: 1:250 AlexaFluor-594 donkey anti-rabbit IgG;
Jackson ImmunoResearch Laboratories; RRID:AB_2340621). Finally, sec-
tions were washed in PBS and mounted on glass slides with ProLong
Diamond Antifade Reagent (P36965; Thermo Fisher Scientific). Mountant
was allowed to cure for at least 24 h before storage at 4°C or imaging. DiI
and immunofluorescent labeling were imaged using a Zeiss Axioskop 2
microscope (Carl Zeiss), equipped with an Axiocam CCD camera (426508-
9901-000, Carl Zeiss), and Neurolucida software (MFB Bioscience). DiI and
immunohistochemical labeling were used to map sites of recording (Fig. 1).
Representative images were also acquired using confocal laser scanning mi-
croscopy (A1R; Nikon Instruments).

In vivo electrophysiological analysis. Estimates of spectral power den-
sity were extracted using the Chronux data analysis toolbox (Bokil et al.,
2010) for MATLAB (http://chronux.org/; The MathWorks). The EEG
signal was downsampled to 1000Hz, and spectral power was assessed at
a resolution frequency of 0.061Hz. Putative single-unit activity was dis-
criminated with Plexon Offline Sorter software (version 3, Plexon;
RRID:SCR_000012) using a combination of template matching, princi-
pal component analysis, and manual clustering. In addition, a threshold
of ,0.5% of interspike intervals under 2ms was required for classifica-
tion as a putative single unit (% interspike interval within 2ms; cortical

neurons: WT: 0.0, 0.0-0.0, n= 26; Q175: 0.0, 0.0-0.0, n=43; striatal neu-
rons: WT: 0.0, 0.0-0.0, n=102; Q175: 0.0, 0.0-0.0, n=65; GPe neurons:
WT: 0.08, 0.02-0.29, n= 50; Q175: 0.05, 0.01-0.24, n= 55; STN neurons:
WT: 0.23, 0.11-0.38, n= 30; Q175: 0.11, 0.00-0.19, n= 61; values repre-
sent median and interquartile range). Electrophysiological data were vis-
ually inspected in NeuroExplorer (Nex Technologies; RRID:SCR_
001818) and then exported to MATLAB (The MathWorks; RRID:SCR_
001622). Epochs with stable and robust slow-wave activity (SWA) or
ACT were selected for analysis.

To determine whether neurons were responsive to optogenetic
manipulation, peristimulus time histograms (PSTHs) were constructed
from either 5 trials of hChR2(H134R)-eYFP stimulation or 2 or 3 trials
of Arch-GFP stimulation. Cortical or striatal neurons were considered
directly responsive if their activity exceeded the prestimulus mean by 2
SDs within 10ms (bin size 2.5ms) of hChR2(H134R)-eYFP stimulation.
PV1 GPe neurons were considered directly responsive if their activity fell
below 2 SDs of the prestimulus mean within 100ms of Arch-GFP stimula-
tion (bin size 100ms). Putative PV– GPe neurons and STN neurons were
considered to be disinhibited if their activity exceeded the prestimulus mean
by 2 SDs within 100ms of the optogenetic inhibition of PV1 GPe neurons
(bin size 100ms). To ensure that measurements were made from areas with
opsin expression, analysis was restricted to recordings in which there was at
least one responsive neuron on a given tetrode array. Direct or indirect
responses to optogenetic stimulation were not observed when optrodes
were activated in regions or mice without opsin expression (data not
shown). Evoked firing was also easily discriminated from photo-electric arti-
facts, which were either minimal or absent.

Mean firing rates were calculated from the number of spikes divided
by epoch length. The coefficient of variation (CV) of the interspike inter-
val was used as a metric of regularity. To examine the relationship
between cortical SWA and neuronal firing, phase histograms were gen-
erated in MATLAB. The EEG signal was first downsampled to 1000Hz,
and SWA was then extracted by applying a bandpass 0.1-1.5Hz second-
order Butterworth filter in the forward and reverse directions (to avoid
phase shifts). The instantaneous phase of the EEG was calculated from
the Hilbert transform (Le Van Quyen et al., 2001). In order to correct for
the nonsinusoidal nature of slow cortical oscillations, the empirical cu-
mulative distribution function (MATLAB) was applied (Siapas et al.,
2005; Mallet et al., 2008b; Abdi et al., 2015; Kovaleski et al., 2020). Thus,
each spike was assigned to a phase of the EEG from 0° to 360° (with 0°/
360° and 180° corresponding to the peak active and inactive components
of the EEG, respectively). Phase histograms were then constructed using
15° bins and plotted as median and interquartile range. In-phase activity
was defined as activity occurring within a 180° window centered on 0°/
360°. Anti-phase activity was defined as activity occurring within a 180°
window centered on 180°.

Ex vivo electrophysiological recording.Mice were first lightly anesthe-
tized with isoflurane, and then deeply anesthetized with ketamine/xyla-
zine (87/13mg/kg, i.p.), before being perfused transcardially with ;10
ml of ice-cold sucrose-based ACSF (230 mM sucrose, 2.5 mM KCl, 1.25
mM NaH2PO4, 0.5 mM CaCl2, 10 mM MgSO4, 10 mM glucose, 26 mM

NaHCO3, 1 mM sodium pyruvate, 5 mM L-glutathione; equilibrated with
95% O2 and 5% CO2). The brain was then removed, immersed in ice-
cold 95% O2/5% CO2-equilibrated sucrose-based ACSF, and sectioned at
250mm in the sagittal plane with a vibratome (VT1200S; Leica
Microsystems). Slices were transferred to a holding chamber, immersed
in ACSF (126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 2
mM MgSO4, 10 mM glucose, 26 mM NaHCO3, 1 mM sodium pyruvate, 5
mM L-glutathione; equilibrated with 95% O2 and 5% CO2), and main-
tained at 35°C for 30min, and then room temperature. Next, individual
slices were transferred to a recording chamber where they were perfused
at 4-5 ml/min with SIF (126 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4,
1.6 mM CaCl2, 1.5 mM MgSO4, 10 mM glucose, 26 mM NaHCO3; equili-
brated with 95% O2 and 5% CO2) at 35°C.

Patch-clamp recordings were made using 3-6 MV impedance, borosi-
licate glass electrodes filled with HBS SIF. Electrodes were positioned
under visual guidance (Axioskop FS2, Carl Zeiss) using computer-con-
trolled micromanipulators (Luigs and Neumann). Somatic recordings
were made in the loose-seal, cell-attached configuration using an
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amplifier (MultiClamp 700B; Molecular Devices), and an associated dig-
itizer (Digidata 1440A; Molecular Devices) controlled by pCLAMP 10.3
(Molecular Devices). Electrode capacitance was compensated, and sig-
nals were low-pass filtered online at 10 kHz and sampled at 25 kHz.
Recordings of autonomous action potential generation were made in the
presence of 20 mM DNQX, 50 mM D-AP5, 10 mM Gabazine (SR-95531),
and 2 mM CGP 55845 to block synaptic transmission at AMPA, NMDA,
GABAA, and GABAB receptors, respectively. All drugs used were pur-
chased from Hello Bio and bath-applied.

PV1 GPe neurons were identified through visualization of eGFP
under 460 nm light-emitting diode epifluorescent illumination
(OptoLED; Cairn Research). To increase the probability that GPe neu-
rons that did not express eGFP were PV– GPe neurons, non-eGFP-
expressing GPe neurons were only recorded if eGFP-expressing PV1

GPe neurons were present in the same field of view. The frequency and
regularity of eGFP-expressing PV1 GPe neuron activity and non–eGFP-
expressing GPe neuron activity were calculated from 30 s recording
epochs.

Experimental design and statistical analyses. Data are reported as
median and interquartile range. Data are represented graphically as vio-
lin (kernel density) plots and overlaid box plots, with the median (central
line), interquartile range (box), and 10%-90% range (whiskers) denoted.
The number and nature of observations for each parameter are specified
throughout. To ensure that the proposed research was adequately pow-
ered, sample sizes were estimated using the formulae described by
Noether (1987) assuming 80% power (i.e., a 20% probability of a Type 2
error) and a two tailed a level of 0.05. For unpaired data (groups X and
Y), and probabilities of X.Y (or X,Y) being 0.7, 0.8, and 0.9, the
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Figure 1. In vivo recording sites in the primary motor cortex, striatum, GPe, and STN. A–D, The locations of optogenetically responsive (O) and nonresponsive (X) neurons in WT (black) and
Q175 (green) mice were mapped onto a standard atlas (Paxinos and Franklin, 2001) using the location of DiI-labeled recording tracks relative to cytoarchitectonic boundaries delineated by im-
munohistochemical labeling of NeuN. A, Recording sites in the primary motor cortex of PT-kj18-cre mice (M1, primary motor cortex; M2, secondary motor cortex). B, Recording sites in the stria-
tum of A2A-cre mice (lv, lateral ventricle). C, Recording sites in the GPe of PV-cre mice (ic, internal capsule). D, Recording sites in the STN of PV-cre mice (zi, zona incerta).
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estimated sample sizes for each group are 33, 15, and 9, respectively. For
paired data (where Xi and Xj are independent samples from X, reflecting
effect size and sign) and the probabilities of Xi 1 Xj . 0 being 0.7, 0.8,
and 0.9, the estimated sample sizes are 66, 30, and 17, respectively.
Probabilities between 0.7 and 0.9 are representative of our historical and
pilot data. To minimize assumptions concerning the distribution of data,
nonparametric, two-tailed statistical comparisons were made using the
Mann–Whitney U (MWU) and Wilcoxon signed-rank (WSR) tests for
unpaired and paired comparisons, respectively. In addition, Fisher’s
exact test was used for contingency analyses. p, 0.05 was considered
significant. Where appropriate, p values were adjusted for multiple com-
parisons using the Holm–Bonferroni method. Plots and statistical com-
parisons were generated in Prism (GraphPad Software; RRID:SCR_
002798) and R (https://www.r-project.org/; RRID:SCR_001905).

Results
Cortical activity is similar in Q175 andWTmice during both
SWA and ACT
Under anesthesia, the cortex can exhibit the following: (1) robust
;1Hz cortical SWA during which cortical projection neurons,
including those projecting to the basal ganglia, exhibit synchro-
nous transitions between hyperpolarized quiescent and depolar-
ized active states, analogous to those during deep sleep (Stern et
al., 1997; Steriade, 2000); and (2) spontaneous or somatosensory
stimulation-triggered cortical activation ACT, during which
cortical projection neurons exhibit desynchronized activity, anal-
ogous to that during arousal (Stern et al., 1997; Steriade, 2000).
As a result, anesthesia has been routinely used to generate stereo-
typed cortical activity and probe its impact on the downstream
basal ganglia in normal rodents and psychomotor disease models
(Magill et al., 2001; Walters et al., 2007; Mallet et al., 2008a,b;
Zold et al., 2012; Sharott et al., 2017; Aristieta et al., 2020;
Kovaleski et al., 2020; Ketzef and Silberberg, 2021). Therefore, to
determine whether indirect pathway activity is dysregulated in 6-

month-old Q175 mice relative to WT age-matched controls, we
compared neuronal activity during both cortical SWA and sen-
sory-evoked cortical ACT under urethane anesthesia.

Cortical network activity was assessed from the intracranial
EEG, which was obtained from a peridural screw “electrode”
affixed over primary motor cortex. Cortical SWA was manifest
in the EEG as a high-amplitude, low-frequency (;1Hz) oscilla-
tion on which phase-locked, low-amplitude, high-frequency
oscillations were superimposed (Fig. 2A). Cortical ACT occurred
spontaneously or could be triggered by somatosensory stimula-
tion, which was signified in the EEG by diminution of the 1Hz
oscillation and persistence of higher-frequency oscillations (Fig.
2A). During cortical SWA, the powers of motor cortical oscilla-
tions in frequency bands ranging from 0 to 100Hz were similar
in Q175 and WT mice (Fig. 2B–E; Table 1). In addition, low-fre-
quency and high-frequency cortical oscillations were attenuated
and elevated, respectively, to a similar degree in Q175 and WT
mice during hind paw pinch-evoked cortical ACT (Fig. 2B–E;
Table 1). Together, these data suggest that motor cortical net-
work activity is similar in 6-month-oldQ175 andWTmice.

Layer V cortical pyramidal neurons, some of which innervate
the basal ganglia, are comprised of two major cell classes, PT and
intratelencephalic type (IT) neurons (Harris and Shepherd,
2015). To compare the activity of PT neurons in Q175 and WT
mice, an “opto-tagging” approach was used to identify the firing
of PT neurons in vivo. First, ChR2(H134R)-eYFP was virally
expressed in PT cortical neurons through injection of an AAV
carrying a cre-dependent expression construct into the primary
motor cortex of Q175 and WTmice that had been crossed with a
PT neuron selective cre-driver line (PT-kj18-cre) (Fig. 3A–D).
Two to 4weeks later, the activity of cortical neurons was com-
pared using an array of tetrodes fiber-coupled to a laser.
Construction of peri-optogenetic stimulus time histograms
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revealed that the latency of firing evoked by optogenetic stimula-
tion was unimodal in distribution (Fig. 3E,F). The majority of
cells fired within 10ms of the start of the 5ms optogenetic stimu-
lation pulse (latency; WT: 2.5, 2.5-5.0ms, n= 15; Q175: 2.5, 2.5-
3.7ms, n=21; values represent median and interquartile range)
(Fig. 3E,F). These response latencies are consistent with the
direct optogenetic stimulation of ChR2-expressing neurons
(Hooks, 2018; Li et al., 2018). Therefore, neurons that fired
within 10 ms of optogenetic stimulation were positively
identified as PT neurons (Fig. 3D–F). Consistent with this
classification, all identified PT neurons exhibited action
potential properties that are typical of cortical pyramidal
neurons (Mitchell et al., 2007; Kaufman et al., 2010;
Takahashi et al., 2015; Lohani et al., 2019) (Fig. 3G,H). The
proportion of PT neurons that exhibited short-latency
responses to optogenetic activation and the latency of those
evoked responses (Table 2) were similar in Q175 and WT
mice. Neurons that were recorded on the same tetrode as
identified PT neurons but were unresponsive to optogenetic
stimulation or exhibited longer-latency presumably indirect,
monosynaptic responses (WT: n = 11; Q175: n = 22) were also
recorded. The majority of neurons (WT: n = 7; Q175: n = 15)
that were unresponsive to optogenetic stimulation or exhib-
ited latencies of discharge. 10ms also exhibited action
potential properties that are typical of cortical pyramidal
neurons, consistent with the relative abundance of pyramidal
versus interneurons in this cortical layer (Fig. 3G,H). The
neurons with pyramidal-like action potential properties were
termed unidentified layer V pyramidal neurons and likely
comprise IT neurons and PT neurons that failed to express

ChR2(H134R)-eYFP. The unidentified layer V pyramidal
neurons that exhibited long-latency discharge in response to
optogenetic stimulation are likely to be PT neurons because
primary motor cortical PT neurons preferentially innervate
each other rather than IT neurons (Kiritani et al., 2012). A
minority of unidentified layer V neurons that exhibited
interneuron action potential properties (Fig. 3G,H) were
excluded from further description or analysis here because of
their rarity.

Consistent with previous studies, PT and unidentified layer
V pyramidal neurons fired preferentially during the active
component of cortical SWA (Steriade et al., 1993; Amzica and
Steriade, 1998; Beltramo et al., 2013) (Fig. 4A). During cortical
SWA, the frequency and regularity of PT and unidentified
layer V pyramidal neuron activity were similar in Q175 and
WT mice (Fig. 4A,C–E; Table 2). In addition, pinch-evoked
cortical desynchronization led to a similar reduction in PT
and unidentified layer V pyramidal neuron activities in both
Q175 and WT mice (Fig. 4B,D,E; Table 2). Together, the EEG
and single-unit data suggest that 6-month-old Q175 and WT
mice exhibit similar patterns and levels of motor cortical ac-
tivity under urethane anesthesia.

D2-SPNs are hypoactive in Q175mice during cortical SWA
The striatum is largely composed of similar numbers of direct
and indirect pathway SPNs that express D1 or D2 dopamine
receptors, respectively (Albin et al., 1989; Gerfen et al., 1990). As
their names suggest, direct pathway D1-SPNs directly innervate
basal ganglia output neurons, whereas indirect pathway D2-
SPNs regulate basal ganglia output indirectly via the GPe and

Table 1. Motor cortical EEG measurements during cortical SWA and ACT in Q175 and WT micea

Figure/text Measurement Brain state Genotype n (mice/EEG epochs) Median [IQ range] (mV2) p (comparison; test)

2B, C 0.1-1.5 Hz EEG power SWA WT 12/64 2.8e-03 [2.0e-03-4.9e-03] p= 0.70 (SWA: WT vs Q175; MWU)
Q175 11/72 3.0e-03 [1.9e-03-4.1e-03]

2D, E 20-60 Hz EEG power SWA WT 12/64 1.0e-06 [6.7e-07-1.5e-06] p= 1.3 (SWA: WT vs Q175; MWU)
Q175 11/72 1.1e-06 [6.2e-07-1.7e-06)

text 4-8 Hz EEG power SWA WT 12/64 6.1e-05 [3.5e-05-1.4e-04] p= 0.062 (SWA: WT vs Q175; MWU)
Q175 11/72 4.8e-05 [3.0e-05-9.2e-05]

text 8-12 Hz EEG power SWA WT 12/64 1.4e-05 [8.7e-06-2.3e-05] p= 0.19 (SWA: WT vs Q175; MWU)
Q175 11/72 1.2e-05 [5.8e-06-1.9e-05]

text 12-40 Hz EEG power SWA WT 12/64 2.7e-06 [1.8e-06-3.7e-06] p= 0.60 (SWA: WT vs Q175; MWU)
Q175 11/72 2.4e-06 [1.5e-06-3.3e-06]

text 40-100 Hz EEG power SWA WT 12/64 3.3e-07 [2.4e-07-4.6e-07] p= 0.11 (SWA: WT vs Q175; MWU)
Q175 11/72 4.1e-07 [2.5e-07-6.8e-07]

2B, C 0.1-1.5 Hz EEG power ACT WT 12/64 2.5e-04 [1.4e-04-6.4e-04] p= 1.7e-11 (WT: SWA vs ACT; WSR)
Q175 11/72 2.9e-04 [1.6e-04-5.0e-04] p= 6.8e-13 (Q175: SWA vs ACT; WSR)

p= 0.76 (ACT: WT vs Q175; MWU)
2D, E 20-60 Hz EEG power ACT WT 12/64 1.3e-06 [1.1e-06-2.0e-06] p= 3.1e-06 (WT: SWA vs ACT; WSR)

Q175 11/72 1.4e-06 [1.1e-06-1.8e-06] p= 7.2e-06 (Q175: SWA vs ACT; WSR)
p= 0.72 (ACT: WT vs Q175; MWU)

text 4-8 Hz EEG power ACT WT 12/64 4.6e-05 [2.6e-05-6.3e-05] p= 3.0e-03 (WT: SWA vs ACT; WSR)
Q175 11/72 2.8e-05 [1.8e-05-5.6e-05] p= 9.0e-05 (Q175: SWA vs ACT; WSR)

p= 0.083 (ACT: WT vs Q175; MWU)
text 8-12 Hz EEG power ACT WT 12/64 9.0e-06 [5.2e-06-1.6e-05] p= 4.0e-04 (WT: SWA vs ACT; WSR)

Q175 11/72 8.1e-06 [4.7e-06-1.2e-05] p= 0.058 (Q175: SWA vs ACT; WSR)
p= 0.32 (ACT: WT vs Q175; MWU)

text 12-40 Hz EEG power ACT WT 12/64 2.3e-06 [1.7e-06-3.8e-06] p= 0.87 (WT: SWA vs ACT; WSR)
Q175 11/72 2.3e-06 [1.7e-06-2.9e-06] p= 1.30 (Q175: SWA vs ACT; WSR)

p= 1.1 (ACT: WT vs Q175; MWU)
text 40-100 Hz EEG power ACT WT 12/64 5.2e-07 [3.8e-07-7.6e-07] p= 6.4e-10 (WT: SWA vs ACT; WSR)

Q175 11/72 5.4e-07 [4.0e-07-8.0e-07] p= 1.2e-03 (Q175: SWA vs ACT; WSR)
p= 0.59 (ACT: WT vs Q175; MWU)

aOscillatory activities in the motor cortex of Q175 and WT mice were similar. The power of low-frequency oscillations declined and the power of high-frequency oscillations increased following the transition from cortical SWA
to ACT in both Q175 and WT mice.
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STN (Mink and Thach, 1993; Maurice et al., 1999; Tachibana et
al., 2008). Appropriate, cortical patterning of D1- and D2-SPN
activity is critical for the regulation of psychomotor function by
the basal ganglia (Cui et al., 2013; Keeler et al., 2014; Nelson and
Kreitzer, 2014; Tecuapetla et al., 2014; Sippy et al., 2015; Barbera
et al., 2016; Lambot et al., 2016; Lemos et al., 2016; Tecuapetla et
al., 2016; Klaus et al., 2019; LeBlanc et al., 2020). Although D2-
SPNs are a key locus of dysregulation and degeneration in HD
and its models, precisely how their activity is perturbed in vivo is
unknown. To address this question, ChR2(H134R)-eYFP was
virally expressed in D2-SPNs through injection of an AAV carry-
ing a cre-dependent expression construct into the striatum of
Q175 and WT mice that had been crossed with a D2-SPN selec-
tive cre-driver line (A2A-cre). Two to 3weeks later, the activities
of striatal neurons in Q175 and WT mice were compared using
silicon optrodes. Consistent with the successful targeting of D2-
SPNs in both Q175 and WT mice, ChR2(H134R)-eYFP was
expressed in the subset of striatal neurons projecting to the GPe
but not to the substantia nigra pars reticulata (Fig. 5A–D).
Therefore, optogenetic activation was used to positively identify
D2-SPNs (Fig. 5E–G). Construction of peri-optogenetic stimulus
time histograms revealed that the latency of firing evoked
by optogenetic stimulation was unimodal in distribution (Fig.
5F,G). Consistent with the direct optogenetic stimulation of
ChR2 in D2-SPNs, the majority of neurons discharged within
10 ms of the start of the 5 ms optogenetic stimulation pulse
(latency; WT: 5.0, 2.5-5.0 ms, n = 54; Q175: 5.0, 2.5-5.0 ms,
n = 42) (Fig. 5F,G) and exhibited SPN-like rather than stria-
tal interneuron-like action potential properties (Berke et
al., 2004; Gage et al., 2010; Cayzac et al., 2011; Kim et al.,
2014; Shin et al., 2018) (Fig. 5H).

The proportion of striatal neurons that exhibited short-la-
tency excitatory responses to optogenetic stimulation was similar
in Q175 and WT mice (Table 3). Neurons that were recorded on
the same tetrode as identified D2-SPNs but were unresponsive to
optogenetic stimulation (WT: n= 48; Q175: n=23) were also
recorded. The majority of neurons that were unresponsive to
optogenetic stimulation exhibited action potential properties
that are typical of SPNs (WT: n= 45; Q175: n= 19) and likely
comprise D1-SPNs and a small fraction of D2-SPNs that failed
to express ChR2(H134R)-eYFP (Fig. 5H). Thus, these neurons
were termed unidentified, putative D1-SPNs. A minority of
unresponsive neurons exhibited interneuron-like action poten-
tial properties (Fig. 5H) and were excluded from further descrip-
tion or analysis here because of their rarity. Optogenetic
responses were not observed when optrodes were activated in
regions or mice where ChR2(H134R)-eYFP expression was
absent (data not shown).

Consistent with direct cortical driving, D2-SPN and unidenti-
fied putative D1-SPN activity were phase-locked to the active
component of cortical SWA in both Q175 and WT mice (Fig.
6A). The frequency of D2-SPN firing in Q175mice was approxi-
mately one-half to two-thirds lower than that in WT control
mice during cortical SWA, consistent with reductions in axospi-
nous synapse density, mEPSC amplitude, and dendritic excitabil-
ity in D2-SPNs (Fig. 6B,C; Table 3). In contrast, the frequency of
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unidentified, putative D1-SPN activity was similar in Q175 and
WT mice during cortical SWA (Fig. 6B,C; Table 3). The phase-
locking of D2-SPN and unidentified striatal neuron activity to
cortical SWA was similar in WT and Q175 mice (Fig. 6D–F;
Table 3).

Pinch-evoked cortical ACT decreased D2-SPN firing in both
genotypes (Fig. 6G,H; Table 3). However, the frequency of D2-
SPN discharge was modestly but significantly elevated in Q175
relative to WT mice during cortical ACT (Fig. 6G,H; Table 3).
During pinch-evoked cortical ACT, the frequency of unidenti-
fied, putative D1-SPN activity declined in WT but not in Q175
mice. As a result, the activity of unidentified, putative D1-SPN
neurons was elevated in Q175 mice (Fig. 6G,I; Table 3).
Together, these data demonstrate that (1) during cortical SWA,
D2-SPNs are hypoactive in Q175 mice; and (2) during cortical
ACT, both D2-SPNs and unidentified putative D1-SPNs are
more active inQ175mice.

Prototypic PV1GPe neurons are hyperactive in Q175mice
To determine whether there are changes in the activity of
GPe neurons downstream of D2-SPNs, we compared the
in vivo firing of GPe neurons in Q175 and age-matched WT
control mice. The GABAergic projection neurons of the GPe
have been divided into two major types, so-called prototypic
and arkypallidal neurons (Mallet et al., 2012; Mastro et al.,
2014; Abdi et al., 2015; Dodson et al., 2015; Hernandez et al.,
2015). Prototypic neurons comprise approximately three-

fourths of all GPe neurons, are preferentially innervated by D2-
SPNs, and innervate arkypallidal and downstream basal ganglia
neurons (Mastro et al., 2014; Abdi et al., 2015; Dodson et al.,
2015; Hernandez et al., 2015; Aristieta et al., 2020; Ketzef and
Silberberg, 2021). A subset of prototypic neurons also inner-
vates the striatum and/or cortex (Bevan et al., 1998; Mastro et
al., 2014; Saunders et al., 2016; Abecassis et al., 2020). The ma-
jority of prototypic GPe neurons express the calcium-binding
protein PV (Mastro et al., 2014; Abdi et al., 2015; Dodson et al.,
2015; Hernandez et al., 2015). In contrast, arkypallidal neurons
comprise approximately one-fourth of GPe neurons, are prefer-
entially innervated by D1-SPNs rather than D2-SPNs, innervate
the striatum rather than prototypic GPe neurons or the down-
stream basal ganglia, and express the transcription factor fork-
head box protein 2 (FoxP2) but not PV (Mallet et al., 2012;
Mastro et al., 2014; Abdi et al., 2015; Dodson et al., 2015;
Hernandez et al., 2015; Aristieta et al., 2020; Ketzef and
Silberberg, 2021). Although arkypallidal neurons are more
weakly innervated by D2-SPNs compared to prototypic neu-
rons, D2-SPNs can powerfully regulate arkypallidal activity
indirectly via their effects on prototypic GPe neurons (Aristieta
et al., 2020; Ketzef and Silberberg, 2021).

Because the majority of GPe neurons fire tonically, we used
optogenetic silencing to identify and manipulate GPe neurons in
vivo. The inhibitory opsin Arch-GFP was virally expressed in
prototypic PV1 GPe neurons through injection of an AAV vec-
tor carrying a cre-dependent expression construct into the GPe

Table 2. Layer V motor cortical projection neuron activity during cortical SWA and ACT in Q175 and WT micea

Figure/text Measurement Brain state Genotype n (mice/neurons) Median [IQ range] p (comparison; test)

text Optogenetically responsive — WT 5/15 57.7% p= 0.62 (WT vs Q175; Fisher’s Exact)
Q175 4/21 48.8%

text Latency of evoked response — WT 5/15 2.5 [2.5-5.0] ms p= 0.97 (WT vs Q175; MWU)
Q175 4/21 2.5 [2.5-3.7] ms

4C PT frequency SWA WT 5/15 1.6 [0.6-2.4] Hz p= 0.48 (SWA: WT vs Q175; MWU)
Q175 4/21 0.8 [0.4-1.5] Hz

4C UI frequency SWA WT 4/7 1.8 [1.2-3.4] Hz p= 0.64 (SWA: WT vs Q175; MWU)
Q175 4/15 1.2 [0.4-3.0] Hz

4C PT frequency SWA WT 5/15 1.6 [0.6-2.4] Hz p= 0.42 (SWA: PT vs IT; MWU)
UI frequency 4/7 1.8 [1.2-3.4] Hz

4C PT frequency SWA Q175 4/21 0.8 [0.4-1.5] Hz p= 0.87 (SWA: PT vs IT; MWU)
UI frequency 4/15 1.2 [0.4-3.0] Hz

text PT CV SWA WT 5/13 1.4 [0.99-2.0] p= 0.80 (SWA: WT vs Q175; MWU)
Q175 4/13 1.3 [0.85-2.0]

text UI CV SWA WT 4/7 1.1 [1.0-1.7] p= 0.92 (SWA: WT vs Q175; MWU)
Q175 4/10 1.7 [1.2-2.3]

text PT CV SWA WT 5/13 1.4 [0.99-2.0] p= 1.3 (SWA: PT vs IT; MWU)
UI CV 4/7 1.1 [1.0-1.7]

text PT CV SWA Q175 4/13 1.3 [0.85-2.0] p= 1.0 (SWA: PT vs IT; MWU)
UI CV 4/10 1.7 [1.2-2.3]

4D PT frequency SWA WT 5/15 1.6 [0.6-2.4] Hz p= 0.25 (SWA: WT vs Q175; MWU)
Q175 4/20 0.8 [0.4-1.5] Hz

4D PT frequency ACT WT 5/15 0.0 [0.0-1.0] Hz p= 0.01 (WT: SWA vs ACT; WSR)
Q175 4/20 0.0 [0.0-0.15] Hz p= 4.0e-04 (Q175: SWA vs ACT; WSR)

p= 0.28 (ACT: WT vs Q175; MWU)
4E UI frequency SWA WT 4/7 1.8 [1.2-3.4] Hz p= 0.64 (SWA: WT vs Q175; MWU)

Q175 4/15 1.2 [0.4-3.0] Hz
4E UI frequency ACT WT 4/7 0.0 [0.0-1.2] Hz p= 0.13 (WT: SWA vs ACT; WSR)

Q175 4/15 0.4 [0.0-4.4] Hz p= 0.38 (Q175: SWA vs ACT; WSR)
p= 0.78 (ACT: WT vs Q175; MWU)

text PT frequency ACT WT 5/15 0.0 [0.0-1.0] Hz p= 0.65 (ACT: PT vs UI; MWU)
UI frequency 4/7 0.0 [0.0-1.2] Hz

text PT frequency ACT Q175 4/20 0.0 [0.0-0.15] Hz p= 0.18 (ACT: PT vs UI; MWU)
UI frequency 4/15 0.4 [0.0-4.4] Hz

aThe frequency and pattern of layer V motor cortical projection neuron activity during cortical SWA and ACT were similar in Q175 and WT mice.
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ofQ175 andWTmice that had been crossed with a PV-cre driver
line (Fig. 7A–D). Consistent with the selective expression of Arch-
GFP in prototypic GPe neurons, the majority of Arch-GFP-express-
ing GPe neurons were immunoreactive for PV, and all were immu-
nonegative for FoxP2 (Fig. 7B). In addition, Arch-GFP was
expressed in the axon terminal fields of PV1 GPe neurons in the
downstream basal ganglia, including the STN, consistent with their
prototypic identity (Fig. 7C). Optogenetic inhibition was therefore
used to positively identify PV1 GPe neurons. Optogenetic activa-
tion of Arch-GFP rapidly and persistently inhibited a similar pro-
portion of neurons in the GPe of Q175 and WT mice (Fig. 7E–H;
Table 4). Optogenetic responses were not observed when optrodes
were activated in regions or mice where Arch-GFP expression was
absent (data not shown).

As previously reported (Abdi et al., 2015; Kovaleski et al.,
2020), PV1 GPe neurons discharged tonically in WT mice dur-
ing cortical SWA (Fig. 8A). Although PV1 GPe neurons also dis-
charged tonically in Q175 mice during cortical SWA, their
median activity was more than double that in WT mice (Fig. 8B;
Table 4). The regularity of PV1 GPe neuron firing, as assessed
from the CV of the interspike interval, was similar in Q175 and
WTmice (Fig. 8C; Table 4). PV1 GPe neuron firing was elevated
during the active component of cortical SWA in Q175mice (Fig.
8D; Table 4), consistent with the hypoactivity of upstream D2-

SPNs, as described above. However, PV1 GPe neurons were also
hyperactive inQ175mice during the inactive component of cort-
ical SWA (Fig. 8D; Table 4). Indeed, the ratio of PV1 GPe neu-
ron activity during the inactive versus active component of
cortical SWA was significantly higher in Q175 mice (Fig. 8D,E;
Table 4). Given that D2-SPNs discharge only during the active
phase of cortical SWA in WT and Q175mice (Fig. 6D), the rela-
tive hyperactivity of PV1 GPe neurons in Q175 mice during the
inactive phase of cortical SWA cannot be due to D2-SPN hypo-
activity. During pinch-evoked cortical ACT, the firing rate of
PV1 GPe neurons increased in both genotypes (Fig. 8F,G; Table
4). However, PV1 GPe neurons remained strongly hyperactive
inQ175mice relative toWT controls (Fig. 8F,G; Table 4), despite
the fact that D2-SPNs are hyperactive in Q175mice during corti-
cal ACT (Fig. 6G,H). Together, these data demonstrate that in
Q175 mice prototypic PV1 GPe neuron activity is highly ele-
vated during both cortical SWA and ACT.

The abnormal hypoactivity of PV– GPe neurons in Q175
mice is reversed by optogenetic inhibition of PV1 GPe
neurons
We next analyzed the activity of GPe neurons that were not
directly inhibited during optogenetic activation of Arch-GFP in
PV-cre mice (Fig. 9; Table 5). These most likely comprise PV–
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prototypic GPe and arkypallidal neurons but could also include a
small fraction of PV1 GPe neurons that failed to express Arch-
GFP. During cortical SWA, unidentified, putative PV– GPe neu-
rons were less active than PV1 GPe neurons in both WT and
Q175mice, consistent with previous reports in WT rodents (Fig.
9A,D; Table 5) (Abdi et al., 2015; Dodson et al., 2015; Mallet et
al., 2016). Putative PV– GPe neurons also discharged more
slowly in Q175 than WTmice (Fig. 9A,D,F; Table 5). In contrast,
the precision of putative PV– GPe neuron activity was similar in
WT and Q175 mice (Fig. 9E; Table 5). Recent studies suggest
that prototypic PV1 and PV– GPe neurons inhibit each other
and arkypallidal neurons through powerful local connections
(Aristieta et al., 2020; Ketzef and Silberberg, 2021). In contrast,
arkypallidal neuron innervation of prototypic GPe neurons is
minimal (Aristieta et al., 2020; Ketzef and Silberberg, 2021). If
elevated inhibition emanating from hyperactive prototypic PV1

GPe neurons is responsible for the hypoactivity of putative PV–

GPe neurons in Q175mice, then their activity should be rescued
by optogenetic inhibition of PV1 GPe neurons. Consistent with
this hypothesis, optogenetic silencing of PV1 GPe neurons dur-
ing cortical SWA rapidly and persistently disinhibited putative

PV– GPe neuron activity in both WT and
Q175mice, confirming that PV1 GPe neu-
rons actively inhibit PV– GPe neuron ac-
tivity in vivo (Fig. 9A–C,F; Table 5).
Furthermore, during optogenetic inhibi-
tion of PV1 GPe neurons, the activities of
putative PV– GPe neurons in WT and
Q175 mice were no longer significantly
different (Fig. 9A–C,F; Table 5), arguing
that increased inhibition from hyperactive
PV1 GPe neurons was indeed responsible
for their relative hypoactivity in Q175
mice. There were no consistent differences
in the phase of putative PV– GPe neuron
activity (relative to cortical SWA) with or
without optogenetic inhibition of PV1

GPe neurons in WT and Q175 mice (Fig.
9G,H; Table 5).

The autonomous activity of PV1 GPe
neurons but not putative PV– GPe
neurons is increased in brain slices from
Q175mice
The high rates of discharge of extrastriatal
basal ganglia neurons in vivo are generated
in part by their intrinsic autonomous ac-
tivity (Wilson, 2013). Alterations in the
autonomous firing of PV1 and PV– GPe
neurons could therefore contribute to their
abnormal in vivo activity in Q175mice. To
determine whether the autonomous firing
of GPe neurons is altered in Q175 mice,
an AAV vector carrying a cre-depend-
ent eGFP-expression construct was
injected into the GPe of WT or Q175
PV-cre mice. Two to 3 weeks later, brain
slices were prepared and visually guided
somatic patch-clamp recordings of GPe
neurons were conducted. Expression of
eGFP was used to identify prototypic
PV1 GPe neurons. PV– GPe neurons in
the vicinity of eGFP-expressing PV1

GPe neurons were identified putatively
by their absence of eGFP expression. GPe neurons were
recorded in the loose-seal, cell-attached, current-clamp con-
figuration and recordings were made in the presence of
AMPA, NMDA, GABAA, and GABAB receptor antagonists
to minimize the impact of synaptic inputs on autonomous
firing. As for previous studies (Abdi et al., 2015; Hernandez
et al., 2015), we found that the frequency and precision of au-
tonomous firing were greater and autonomously generated
action potentials were briefer in prototypic PV1 GPe neu-
rons than putative PV– GPe neurons in WT mice (Fig. 10A–
F; Table 6). Thus, these data are consistent with the appro-
priate identification of PV1 and PV– GPe neurons rather
than the failure of reporter expression in PV1 GPe neurons.
In Q175 mice, the frequency and precision of autonomous
PV1 GPe neuron activity were greater than in WT mice (Fig.
10A,E,F; Table 6). In contrast, there were no differences in
the frequency or precision of autonomous putative PV– GPe
neuron firing in Q175 and WT mice (Fig. 10B,E,F; Table 6).
Together, these data argue that the autonomous firing of
prototypic PV1 GPe neurons is upregulated in Q175 mice
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and that this alteration may contribute to the hyperactivity
of these cells in vivo. In contrast, the similarity of autono-
mous putative PV– GPe neuron firing in Q175 and WT mice
further supports the conclusion that excessive inhibition
emanating from hyperactive PV1 GPe neurons is responsible
for their hypoactivity in Q175 mice in vivo.

The hypoactivity of the STN in Q175mice is partially
alleviated by optogenetic inhibition of prototypic PV1GPe
neurons
The glutamatergic STN is a key component of the indirect path-
way and forms a reciprocally connected network with the GPe
(Mink and Thach, 1993; Maurice et al., 1999; Plenz and Kital,
1999; Nambu et al., 2002; Tachibana et al., 2008). Previous
research has demonstrated that autonomous STN activity is
downregulated in HD mice (Atherton et al., 2016). Furthermore,
we demonstrate here that GABAergic prototypic PV1 GPe neu-
rons, which potently inhibit STN activity through their activation
of postsynaptic GABAA and GABAB receptors (Bevan et al.,
2002; Hallworth and Bevan, 2005; Baufreton et al., 2009;

Atherton et al., 2013; Kovaleski et al., 2020), are hyperactive in
Q175 mice in vivo. Given the loss of intrinsic STN activity and
increased frequency of GABAergic GPe-STN transmission, we
predicted that STN neurons will be hypoactive in Q175 mice in
vivo compared with WT mice. To test this prediction, we
recorded the activity of STN neurons with silicon tetrodes during
cortical SWA and ACT in Q175 and WT mice crossed with PV-
cre mice. To isolate the effect of PV1 GPe neuron inhibition on
the STN, we virally expressed Arch-GFP in PV1 GPe neurons
and inhibited their activity optogenetically, as described
above (Fig. 11A). As for previous studies in WT rodents, STN
neurons fired in phase with cortical SWA in WT and Q175mice
(Magill et al., 2000, 2001; Mallet et al., 2008a; Callahan and
Abercrombie, 2015a,b; Kovaleski et al., 2020) (Fig. 11B; Table 7).
As predicted, the frequency of STN activity was significantly
lower in Q175 mice (Fig. 11B,C; Table 7). The regularity of STN
activity and the proportion of spikes generated during the inac-
tive component of cortical SWA relative to those during the
active component were similar in Q175 and WT mice (Fig. 11B–
F; Table 7). Pinch-evoked cortical ACT elevated the frequency of

Table 3. D2-SPN and unidentified, putative D1-SPN activity during cortical SWA and ACT in Q175 and WT micea

Figure/text Measurement Brain state Genotype n (mice/neurons) Median [IQ range] p (comparison; test)

text Optogenetically responsive — WT 3/54 52.9% p= 0.15 (WT vs Q175; Fisher’s Exact)
Q175 3/42 64.6%

text Latency of evoked response — WT 3/54 5.0 [2.5-5.0] ms p= 0.49 (WT vs Q175; MWU)
Q175 3/42 5.0 [2.5-5.0] ms

6B D2-SPN frequency SWA WT 3/54 1.0 [0.40-1.9] Hz p= 0.039 (SWA: WT vs Q175; MWU)
Q175 3/42 0.40 [0.20-0.85] Hz

6B UI frequency SWA WT 3/45 0.80 [0.20-1.2] Hz p= 0.67 (SWA: WT vs Q175; MWU)
Q175 3/19 0.40 [0.20-1.6] Hz

6B D2-SPN frequency SWA WT 3/54 1.0 [0.40-1.9] Hz p= 0.43 (SWA: D2 vs UI; MWU)
UI frequency 3/45 0.80 [0.20-1.2] Hz

6B D2-SPN frequency SWA Q175 3/42 0.40 [0.20-0.85] Hz p= 0.99 (SWA: D2 vs UI; MWU)
UI frequency 3/19 0.40 [0.20-1.6] Hz

6C D2-SPN CV SWA WT 3/39 1.4 [0.91-1.7] p= 1.9 (SWA: WT vs Q175; MWU)
Q175 3/18 1.4 [0.84-1.8]

6C UI CV SWA WT 3/27 1.3 [1.0-1.7] p= 2.6 (SWA: WT vs Q175; MWU)
Q175 3/8 1.3 [1.0-1.8]

6C D2-SPN CV SWA WT 3/39 1.4 [0.91-1.7] p= 2.6 (SWA: D2 vs UI; MWU)
UI CV 3/27 1.3 [1.0-1.7]

6C D2-SPN CV SWA Q175 3/18 1.4 [0.84-1.8] p= 0.9783 (SWA: D2 vs UI; MWU)
UI CV 3/8 1.3 [1.0-1.8]

6D-F D2-SPN anti-:in-phase ratio SWA WT 3/43 0.0 [0.0-0.25] p= 0.98 (SWA: WT vs Q175; MWU)
Q175 3/25 0.0 [0.0-0.02]

6D-F UI anti-:in-phase ratio SWA WT 3/30 0.0 [0.0-0.33] p= 1.3 (SWA: WT vs Q175; MWU)
Q175 3/13 0.0 [0.0-0.11]

6D-F D2-SPN anti-:in-phase ratio SWA WT 3/43 0.0 [0.0-0.25] p= 0.81 (SWA: D2 vs UI; MWU)
UI anti-:in-phase ratio 3/30 0.0 [0.0-0.33]

6D-F D2-SPN anti-:in-phase ratio SWA Q175 3/25 0.0 [0.0-0.02] p= 1.4 (SWA: D2 vs UI; MWU)
UI anti-:in-phase ratio 3/13 0.0 [0.0-0.11]

6H D2-SPN frequency SWA WT 3/52 1.0 [0.45-2.1] Hz p= 0.013 (SWA: WT vs Q175; MWU)
Q175 3/42 0.40 [0.20-0.85] Hz

6H D2-SPN frequency ACT WT 3/52 0.0 [0.0-0.0] Hz p= 3.9e-07 (WT: SWA vs ACT; WSR)
Q175 3/42 0.0 [0.0-0.20] Hz p= 0.001 (Q175: SWA vs ACT; WSR)

p= 0.028 (ACT: WT vs Q175; MWU)
6I UI frequency SWA WT 3/43 0.80 [0.20-1.2] Hz p= 0.61 (SWA: WT vs Q175; MWU)

Q175 3/19 0.40 [0.20-1.6] Hz
6I UI frequency ACT WT 3/43 0.0 [0.0-0.0] Hz p= 1.2e-04 (WT: SWA vs ACT; WSR)

Q175 3/19 0.0 [0.0-1.2] Hz p= 0.10 (Q175: SWA vs ACT; WSR)
p= 4.0e-08 (ACT: WT vs Q175; MWU)

text D2-SPN frequency ACT WT 3/52 0.0 [0.0-0.0] Hz p= 0.18 (ACT: D2 vs UI; MWU)
UI frequency 3/43 0.0 [0.0-0.0] Hz

text D2-SPN frequency ACT Q175 3/42 0.0 [0.0-0.20] Hz p= 0.33 (ACT: D2 vs UI; MWU)
UI frequency 3/19 0.0 [0.0-1.2] Hz

aDuring cortical SWA, D2-SPNs were hypoactive in Q175 mice. During cortical ACT, SPNs were hyperactive in Q175 mice.
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Figure 7. Optogenetic identification of prototypic PV1 GPe neurons. A–C, Viral cre-dependent expression of Arch-GFP (green) in prototypic PV1 GPe neurons in Q175/WT X PV-cre mice. A,
Representative confocal micrograph of the GPe (ic, internal capsule; DV, dorsoventral axis; ML, mediolateral axis). B, Arch-GFP expression was present in PV-immunoreactive GPe neurons (white
arrows; top) and FoxP2-immunonegative neurons (white arrows; bottom) and absent in FoxP2-immunoreactive arkypallidal GPe neurons (magenta arrows; bottom). C, Arch-GFP-labeled axon
terminal fields in the STN (top; zi, zona incerta; same orientation as in A). Arch-GFP-labeled axon terminal fields in the vicinity of NeuN-immunoreactive STN neurons (red; bottom). D,
Schematic of the experimental setup illustrating optrode placement in the GPe. E–H, Optogenetic activation of Arch-GFP rapidly and persistently inhibited PV1 GPe neuron activity. E,
Representative example of concurrent EEG (bandpass-filtered at 0.1-1.5 Hz) and PV1 GPe neuron activity before, during, and after activation of Arch-GFP (yellow bar). F, G, PSTHs of PV1 GPe
neuron activity in the absence and presence (yellow bar) of optogenetic inhibition (bin size, 100 ms; prestimulus mean, solid red line; 62 SDs of prestimulus mean, dotted red line; F, PSTH
from neuron in E; G, population PSTH). H, Direct responses of all PV1 GPe neurons to activation of Arch-GFP.

Table 4. PV1 GPe neuron activity during cortical SWA and ACT in Q175 and WT micea

Figure/text Measurement Brain state Genotype PV1 GPe inhibition n (mice/neurons) Median [IQ range] p (comparison; test)

text Optogenetically responsive — WT Off 4/40 80.0% p= 1.0 (WT vs Q175; Fisher’s Exact)
Q175 Off 5/43 78.2%

text PV1 GPe frequency SWA WT Off 4/40 29.3 [22.8-45.1] Hz p= 8.8e-03 (SWA: WT Off vs Q175 Off; MWU)
Q175 5/43 55.8 [30.6-68.8] Hz

text PV1 GPe frequency SWA WT On 4/40 0.20 [0.0-1.1] Hz p= 1.1e-07 (SWA: WT Off vs On; WSR)
Q175 5/43 0.20 [0.0-0.20] Hz p= 9.1e-13 (SWA: Q175 Off vs On; WSR)

p= 0.39 (SWA: WT On vs Q175 On; MWU)
8B PV1 GPe frequency SWA WT Off 4/40 29.3 [22.8-45.1] Hz p= 4.4e-03 (SWA: WT vs Q175; MWU)

Q175 Off 5/43 55.8 [30.6-68.8] Hz
8C PV1 GPe CV SWA WT Off 4/40 0.33 [0.24-0.48] Hz p= 0.11 (SWA: WT vs Q175; MWU)

Q175 Off 5/43 0.48 [0.25-0.72] Hz
8D, E PV1 GPe anti-:in-phase ratio SWA WT Off 4/40 0.94 [0.87-1.0] p= 4.7e-07 (SWA: WT vs Q175; MWU)

Q175 Off 5/43 1.1 [1.0-1.3]
8G PV1 GPe frequency SWA WT Off 4/36 28.2 [21.7-43.5] Hz p= 0.015 (SWA: WT vs Q175; MWU)

Q175 Off 5/26 56.4 [28.5-70.5] Hz
8G PV1 GPe frequency ACT WT Off 4/36 39.8 [30.9-59.4] Hz p= 3.7e-04 (WT: SWA vs ACT; WSR)

Q175 Off 5/26 59.1 [35.8-76.3] Hz p= 0.013 (Q175: SWA vs ACT; WSR)
p= 0.048 (ACT: WT vs Q175; MWU)

aIn Q175 mice, PV1 GPe neurons were hyperactive during cortical SWA and ACT.
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STN activity in both WT and Q175 mice (Fig. 11G,H; Table 7).
However, the frequency of STN activity remained lower in Q175
mice relative to that in WT mice during cortical ACT (Fig. 11G,
H; Table 7).

To determine how PV1 GPe neurons regulate STN activity,
the response of STN neurons to optogenetic inhibition of PV1

GPe neurons was recorded. The proportion of STN neurons that
responded to inhibition of PV1 GPe neurons was similar in
Q175 and WT mice (Table 8). Optogenetic inhibition of PV1

GPe neurons rapidly and persistently increased the frequency
and regularity of STN activity in both WT and Q175 mice (Fig.
12A–E; Table 8). However, during optogenetic inhibition, STN
neurons remained less active in Q175 mice during cortical SWA
(Fig. 12A–D; Table 8) and ACT (Table 8). The ratio of anti-
to in-phase STN activity was also significantly elevated by
inhibition of PV1 GPe neurons in Q175 and WT mice (Fig.

12F,G; Table 8). Together, with data from this and previous
studies, these findings argue that excessive inhibition aris-
ing from hyperactive PV1 GPe neurons and autonomous
firing deficits contribute to the relative hypoactivity of STN
neurons in Q175 mice.

Discussion
Cortical network and layer V projection neuron activity
Although the cortex of symptomaticQ175mice exhibits a variety
of pathologic changes, including nuclear aggregates of mHTT
(Smith et al., 2014), reduced expression of TrkB (Smith et al.,
2014) and mGlu receptors (Bertoglio et al., 2018), a reduction in
excitation:inhibition balance (Indersmitten et al., 2015), and
cortical volume loss (Heikkinen et al., 2012), the EEG, and the
firing rates and patterns of layer V PT and unidentified cortical

EEG

PV+ GPe

EEG

PV+ GPe

A  SWA
WT

Q175 0.5 s
0.1 mV

D

0 360 720
0

10

20

30

PV
+ 

G
Pe

 s
pi

ke
s

0 360 720
0

25

50

75

100

PV
+ 

G
Pe

 fr
eq

. (
H

z)

0

0.5

1.0

1.5

2.0

PV
+ 

G
Pe

 C
V

WT Q175 WT Q175

B C

* ns
EEG

GTCA  F

0

25

50

75

100
PV

+ 
G

Pe
 fr

eq
. (

H
z)

SWA ACT SWA ACT
cortical state

* *
*

*

WT
Q175

EEG

PV+ GPe

EEG

PV+ GPe

0.5 s
0.1 mV

WT

Q175

WT Q175

phase (degree) phase (degree)

0

0.5

1.0

1.5

2.0

PV
+ 

G
Pe

an
ti−

:in
−p

ha
se

 ra
tio

E

*

WT Q175

Figure 8. In Q175 mice, PV1 GPe neurons are hyperactive during cortical SWA and ACT. A, Representative examples of concurrent EEG (bandpass-filtered at 0.1-1.5 Hz) and PV1 GPe neuron
activity in the absence and presence of optogenetic inhibition (yellow bar). A–C, During cortical SWA, the median frequency of PV1 GPe neuron firing in Q175 mice was more than twice that
in WT mice, but the variability of firing was unaltered (A, representative examples; B,C, population data). D, E, In Q175 mice, the firing of PV1 GPe neurons was relatively antiphasic to cortical
SWA (D, population spike phase histograms; E, population box and violin plots). F, G, Pinch-evoked cortical ACT (hind paw pinch, dotted line) increased PV1 GPe neuron firing in both geno-
types. However, the frequency of PV1 GPe neuron discharge remained elevated in Q175 mice relative to WT mice (F, representative examples; G, population data). *p, 0.05.

Callahan et al. · Abnormal Indirect Pathway Activity in HDMice J. Neurosci., March 9, 2022 • 42(10):2080–2102 • 2093



EEG

PV+ GPe

PV- GPe

EEG

PV+ GPe

PV- GPe

0.5 s
0.1 mV

WT

Q175

A SWA

time from
stim. onset (s)

-5 0 105

8

PV
- G

Pe
sp

ik
es

/tr
ia

l

0

4

2

6

CB

-5 0 105

8

PV
- G

Pe
sp

ik
es

/tr
ia

l

0

4

2

6

time from
stim. onset (s)

-5 0 105

6

PV
- G

Pe
sp

ik
es

/tr
ia

l/n
eu

ro
n

0

4

2

time from
stim. onset (s)

-5 0 105

6

PV
- G

Pe
sp

ik
es

/tr
ia

l/n
eu

ro
n

0

4

2

time from
stim. onset (s)

TWTW 571Q571Q

0

25

50

75

100

G
Pe

 fr
eq

. (
H

z)

PV+ PV+ PV- PV-
putative GPe cell class

*
*D

**
WT
Q175

PV+ PV+ PV- PV-
putative GPe cell class

E

onoff off on
PV+ GPe photoinhibition

F

PV
- G

Pe
 fr

eq
. (

H
z)

25

50

75
* *

ns

*
WT
Q175

PV
- G

Pe
 s

pi
ke

s 25

15

5

0

WT - laser ON Q175 - laser OFF Q175 - laser ONWT - laser OFF

EEG

0 360 720 0 360 7200 0270630027063

H

)eerged( esahp)eerged( esahp phase (degree)phase (degree)

PV
- G

Pe
an

ti−
:in

−p
ha

se
 ra

tio

onoff off on
PV+ GPe photoinhibition

G

0

0.5

1.0

ns
ns

ns ns

WT
Q175

0

0.5

1.0

1.5

2.0

G
Pe

 C
V

ns

ns

ns
WT
Q175

ns

0

Figure 9. The hypoactivity of putative PV– GPe neurons in Q175 mice is alleviated by optogenetic inhibition of hyperactive PV1 GPe neurons. A, Representative examples of concurrent EEG
(bandpass-filtered at 0.1-1.5 Hz) and GPe neuronal activity in Q175/WT X PV-cre mice during optogenetic inhibition (yellow bar) of PV1 GPe neurons. A–C, Optogenetic inhibition of PV1 GPe
neuron activity rapidly and persistently disinhibited putative PV– GPe neurons in Q175 and WT mice. B, C, PSTHs of putative PV– GPe neuron activity in the absence and presence of PV1 GPe
neuron optogenetic inhibition (yellow bar) (bin size, 100 ms; prestimulus mean, solid red line;62 SDs of prestimulus mean, dotted red line; B, PSTHs from representative neurons in A; C, pop-
ulation PSTHs). A–F, During cortical SWA, putative PV– GPe neurons were less active than PV1 GPe neurons in both WT and Q175 mice. Furthermore, the frequency of putative PV– GPe neuron
activity in Q175 mice was lower than in WT mice (A, representative examples; D, population data). E, The precision of PV– GPe neuron activity was similar in WT and Q175 mice. Optogenetic

2094 • J. Neurosci., March 9, 2022 • 42(10):2080–2102 Callahan et al. · Abnormal Indirect Pathway Activity in HD Mice



pyramidal neurons were similar in WT and Q175 mice. The fir-
ing rate of unidentified cortical neurons is also unaltered in other
HDmodels (Rebec, 2018).

Striatal projection neuron activity
Consistent with synaptic driving by cortical inputs, D2-SPNs
and unidentified, putative D1-SPNs primarily discharged during
the active component of cortical SWA. No difference in the firing
of identified D2-SPNs and putative D1-SPNs was observed in
WT mice during cortical SWA, consistent with some (Sharott et
al., 2017) but not other (Mallet et al., 2005) studies that used a simi-
lar anesthetic regimen. Given that stimulation was not used to elicit
firing in putative D1-SPNs, only neurons with spontaneous activity
were detected, which may underlie the higher firing rate of D1-
SPNs reported here versus the Mallet et al. (2005) study.

During cortical SWA, the frequency of D2-SPN activity in
Q175 mice was half that in WT mice. In contrast, putative D1-
SPN activity was similar in Q175 and WT mice. Given similar
cortical activity in WT and Q175 mice, the hypoactivity of D2-
SPNs in Q175mice during SWA is consistent with reductions in
cortico-striatal inputs, LTP, and strength, and dendritic hypoex-
citability in D2-SPNs (Plotkin and Surmeier, 2015; Sebastianutto
et al., 2017; Carrillo-Reid et al., 2019; but see Goodliffe et al.,
2018). In contrast, the retention of these properties in D1-SPNs
(Plotkin and Surmeier, 2015; Carrillo-Reid et al., 2019) may have

contributed to their normal activity in Q175 mice. Consistent
with impaired cortical driving of D2-SPNs in vivo, firing in
response to cortical stimulation, burst firing, and correlated cor-
tico-striatal activity are diminished in unidentified striatal neu-
rons in HDmice (Beaumont et al., 2016; Rebec, 2018).

During cortical desynchronization, D2-SPN activity decreased
to a lesser degree in Q175 than WT mice and unidentified/putative
D1-SPN activity decreased in WT but not Q175 mice. As a result,
SPN activity was elevated inQ175mice relative toWT during ACT.
While depolarization of the resting membrane potential and
increased axosomatic excitability of SPNs in Q175mice (Heikkinen
et al., 2012; Indersmitten et al., 2015; Beaumont et al., 2016) do not
compensate for reduced cortical driving of D2-SPNs during cortical
SWA, they may contribute to elevated SPN activity during cortical
desynchronization. Another possibility is that somatosensory stimu-
lation used to trigger cortical desynchronization engages more
powerful thalamo-striatal excitation in Q175 mice. Given that SPN
activity is sculpted by striatal interneurons (Tepper et al., 2018),
alterations in interneuron excitability and transmission (Holley et
al., 2019a,b) may also contribute to aberrant SPN activity in HD
mice. The spontaneous activity of unidentified striatal neurons has
been reported to be elevated, reduced, or unchanged in anesthetized
knock-in or awake full-length HDmice (Miller et al., 2008; Estrada-
Sanchez et al., 2015; Beaumont et al., 2016). However, an absence of
cell-identification approaches and/or different recording conditions
in those studies make comparisons with this study problematic
(Heikkinen et al., 2012; Indersmitten et al., 2015; Beaumont et al.,
2016).

Prototypic PV1 GPe and putative PV– GPe neuron activity
Prototypic PV1 GPe neurons were hyperactive in Q175 mice
during cortical SWA, consistent with upstream D2-SPN hypoac-
tivity. However, additional factors must contribute because PV1

GPe neurons were also hyperactive in Q175 mice when (1) D2-

Table 5. Impact of optogenetic inhibition of PV1 GPe neurons on putative PV– GPe neuron activity in Q175 and WT micea

Figure/text Measurement Brain state Genotype PV1 GPe inhibition n (mice/neurons) Median [IQ range] p (comparison; test)

9D PV1 GPe frequency SWA WT Off 4/40 29.3 [22.8-45.1] Hz p= 0.013 (SWA: WT vs Q175; MWU)
Q175 5/43 55.8 [30.6-68.8] Hz

9D PV– GPe frequency SWA WT Off 4/10 22.4 [17.4-26.7] Hz p= 0.029 (SWA: WT vs Q175; MWU)
Q175 4/12 13.7 [5.8-20.9] Hz

9D PV1 GPe frequency SWA WT Off 4/40 29.3 [22.8-45.1] Hz p= 0.022 (SWA: PV1 vs PV–; MWU)
PV– GPe frequency 4/10 22.4 [17.4-26.7] Hz

9D PV1 GPe frequency SWA Q175 Off 5/43 55.8 [30.6-68.8] Hz p= 3.6e-05 (SWA: PV1 vs PV–; MWU)
PV– GPe frequency 4/12 13.7 [5.8-20.9] Hz

9E PV1 GPe CV SWA WT Off 4/40 0.33 [0.24-0.48] p= 0.33 (SWA: WT vs Q175; MWU)
Q175 5/43 0.48 [0.25-0.72]

9E PV– GPe CV SWA WT Off 4/10 0.47 [0.36-0.60] p= 1.5 (SWA: WT vs Q175; MWU)
Q175 4/11 0.48 [0.28-0.67]

9E PV1 GPe CV SWA WT Off 4/40 0.33 [0.24-0.48] p= 0.15 (SWA: PV1 vs PV–; MWU)
PV– GPe CV 4/10 0.47 [0.36-0.60]

9E PV1 GPe CV SWA Q175 Off 5/43 0.48 [0.25-0.72] p= 0.93 (SWA: PV1 vs PV–; MWU)
PV– GPe CV 4/11 0.48 [0.28-0.67]

9F PV– GPe frequency SWA WT Off 4/10 22.4 [17.4-26.7] Hz p= 0.029 (SWA: WT Off vs Q175 Off; MWU)
Q175 4/12 13.7 [5.8-20.9] Hz

9F PV– GPe frequency SWA WT On 4/10 36.2 [29.0-46.6] Hz p= 6.0e-03 (SWA: WT Off vs On; WSR)
Q175 4/12 38.6 [20.6-60.4] Hz p= 4.0e-03 (SWA: Q175 Off vs On; WSR)

p= 0.97 (SWA: WT On vs Q175 On; MWU)
9G PV– GPe anti-:in-phase ratio SWA WT Off 4/10 0.91 [0.76-1.0] p= 0.35 (SWA: WT Off vs Q175 Off; MWU)

Q175 4/11 0.75 [0.69-0.91]
9G PV– GPe anti-:in-phase ratio SWA WT On 4/10 0.92 [0.89-1.0] p= 0.86 (SWA: WT Off vs On; WSR)

Q175 4/11 0.91 [0.84-0.98] p= 0.39 (SWA: Q175 Off vs On; WSR)
p= 0.67 (SWA: WT On vs Q175 On; MWU)

aIn Q175 mice, putative PV– GPe neurons were hypoactive; and this hypoactivity was fully alleviated by optogenetic inhibition of PV1 GPe neurons.

/

inhibition of PV1 GPe neurons disinhibited putative PV– GPe neurons in WT and Q175 mice
and eliminated the difference in firing frequencies between the two genotypes, arguing that
GABAergic inhibition emanating from abnormally hyperactive PV1 GPe neurons is responsi-
ble for the relative hypoactivity of PV– GPe neurons in Q175 mice (A, examples; F, population
data). G, H, Relative to cortical SWA, there were no differences in the phase of putative PV–

GPe neuron activity in WT and Q175 mice, with or without optogenetic inhibition of PV1

GPe neurons. *p, 0.05.
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Table 6. The autonomous activity of GPe neurons in ex vivo brain slices from Q175 and WT micea

Figure Measurement Genotype n (mice/neurons) Median [IQ range] p (comparison; test)

10D PV1 GPe AP duration WT 7/82 750 [657.5-825] ms p= 0.90 (WT vs Q175; MWU)
Q175 8/73 740 [650-850] ms

10D PV– GPe AP duration WT 3/27 820 [740-940] ms p= 1.3 (WT vs Q175; MWU)
Q175 3/16 860 [760-1020] ms

10D PV1 GPe AP duration WT 7/82 750 [657.5-825] ms p= 0.02 (PV1 vs PV–; MWU)
PV– GPe AP duration 3/27 820 [740-940] ms

10D PV1 GPe AP duration Q175 8/73 740 [650-850] ms p= 0.02 (PV1 vs PV–; MWU)
PV– GPe AP duration 3/16 860 [760-1020] ms

10E PV1 GPe frequency WT 7/82 20.4 [14.8-28.8] Hz p= 3.6e-03 (WT vs Q175; MWU)
Q175 8/73 25.9 [18.5-33.8] Hz

10E PV– GPe frequency WT 3/27 9.9 [6.6-12.8] Hz p= 0.99 (WT vs Q175; MWU)
Q175 3/16 9.9 [5.3-13.0] Hz

10E PV1 GPe frequency WT 7/82 20.4 [14.8-28.8] Hz p= 1.9e-10 (PV1 vs PV–; MWU)
PV– GPe frequency 3/27 9.9 [6.6-12.8] Hz

10E PV1 GPe frequency Q175 8/73 25.9 [18.5-33.8] Hz p= 3.0e-08 (PV1 vs PV–; MWU)
PV– GPe frequency 3/16 9.9 [5.3-13.0] Hz

10F PV1 GPe CV WT 7/82 0.13 [0.10-0.19] p= 1.2e-03 (WT vs Q175; MWU)
Q175 8/73 0.10 [0.082-0.14]

10F PV– GPe CV WT 3/27 0.19 [0.14-0.37] p= 0.79 (WT vs Q175; MWU)
Q175 3/16 0.22 [0.17-0.29]

10F PV1 GPe CV WT 7/82 0.13 [0.10-0.19] p= 4.4e-04 (PV1 vs PV–; MWU)
PV– GPe CV 3/27 0.19 [0.14-0.37]

10F PV1 GPe CV Q175 8/73 0.10 [0.082-0.14] p= 2.1e-06 (PV1 vs PV–; MWU)
PV– GPe CV 3/16 0.22 [0.17-0.29]

aThe frequency and precision of autonomous firing were greater in PV1 GPe neurons than putative PV– GPe neurons in both genotypes. The frequency and precision of autonomous firing in PV1 GPe neurons were greater in
Q175 mice than WT mice.
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Figure 10. The autonomous activity of PV1 GPe neurons is elevated in Q175 mice. A, B, Representative examples of autonomous GPe neuron activity recorded in the loose-seal, cell-
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Table 7. STN neuron activity during cortical SWA and ACT in Q175 and WT micea

Figure/text Measurement Brain state Genotype n (mice/neurons) Median [IQ range] p (comparison; test)

11C STN frequency SWA WT 4/30 7.6 [4.6-13.3] Hz p= 7.0e-04 (SWA: WT vs Q175; MWU)
Q175 5/61 4.4 [2.5-7.6] Hz

11D STN CV SWA WT 4/30 1.8 [1.3-2.3] p= 0.41 (SWA: WT vs Q175; MWU)
Q175 5/60 1.7 [1.2-2.4]

11E, F STN anti-:in-phase ratio SWA WT 4/30 0.32 [0.11-0.53] p= 0.25 (SWA: WT vs Q175; MWU)
Q175 5/61 0.25 [0.064-0.38]

11H STN frequency SWA WT 4/26 7.2 [4.4-13.0] Hz p= 5.8e-03 (SWA: WT vs Q175; MWU)
Q175 5/51 4.6 [2.4-7.2] Hz

11H STN frequency ACT WT 4/26 17.0 [9.3-21.7] Hz p= 4.0e-04 (WT: SWA vs ACT; WSR)
Q175 5/51 7.8 [4.0-13.6] Hz p= 3.0e-04 (Q175: SWA vs ACT; WSR)

p= 3.2e-04 (ACT: WT vs Q175; MWU)
aSTN neurons were relatively hypoactive in Q175 mice during both cortical SWA and ACT.

Figure 11. STN neurons are hypoactive in Q175 mice. A–D, During cortical SWA, the frequency (but not the regularity) of STN activity was lower in Q175 mice (A, schematic of experimental
setup, illustrating placement of an optrode in the GPe and a tetrode array in the STN; B, representative examples of concurrent 0.1-1.5 Hz bandpass-filtered EEG and STN unit activity; C, D, pop-
ulation data). E, F, STN activity was similarly phase-locked to the active component of cortical SWA in Q175 and WT mice (E, population spike phase histograms; F, population data). G, H,
Pinch-evoked cortical ACT (hind paw pinch, dotted line) increased STN neuron activity in both genotypes. However, during cortical ACT, STN neurons remained hypoactive in Q175 mice relative
to WT (G, representative examples; H, population data). *p, 0.05.
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SPNs were silent (in both Q175 and WT mice) during the inac-
tive phase of cortical SWA; and (2) D2-SPNs were hyperactive in
Q175 mice during cortical ACT. Furthermore, striatopallidal
transmission strength increases in HD and its models through
upregulation of postsynaptic GABAA receptor expression (Glass
et al., 2000; Waldvogel et al., 2015; Perez-Rosello et al., 2019).
Indeed, during cortical SWA, PV1 GPe neurons in Q175 mice
more commonly exhibited pauses/reductions in firing that were
concomitant with bouts of D2-SPN activity. Thus, PV1 GPe
neuron hyperactivity may in part stem from elevated autono-
mous firing, as demonstrated here in Q175 mouse brain slices.
Given the widespread nature and potency of prototypic GPe
neuron projections in the basal ganglia (Bevan et al., 1998; Mallet
et al., 2012; Mastro et al., 2014; Abdi et al., 2015), it will be critical
to determine which alterations underlie their upregulated auton-
omous firing, and whether hyperactivity results from the cell-au-
tonomous effects of mHTT and/or homeostatic compensation.

The hypoactivity of unidentified, putative PV– GPe neurons
in Q175mice in vivo appears to be caused by excessive inhibition
because it was alleviated by optogenetic inhibition of hyperactive
prototypic PV1 GPe neurons. The powerful regulation of puta-
tive PV– prototypic and arkypallidal neuron activity by proto-
typic PV1 GPe neurons is consistent with recent studies
(Aristieta et al., 2020; Cui et al., 2021; Ketzef and Silberberg,
2021). However, optogenetic silencing of PV1 GPe neurons also
disinhibited the STN, which feeds back onto GPe neurons
(Aristieta et al., 2020; Pamukcu et al., 2020). Thus, STN disinhi-
bition may have contributed to the rescue of putative PV– GPe
neuron activity in Q175 mice. The finding that the autonomous
firing of putative PV– GPe neurons was unaffected in Q175mice
further suggests that synaptic mechanisms underlie their hypoac-
tivity in vivo. The low rate of putative PV– GPe neuron autono-
mous firing and longer duration of action potentials compared
with PV1 GPe neurons in WT (and Q175) mice are consistent
with previous observations in WT rodents (Abdi et al., 2015;
Hernandez et al., 2015; Cui et al., 2021). Finally, our data contrast
with another study that reported no change in GPe neuron

activity inQ175mice (Beaumont et al., 2016) and WTGPe activ-
ity that was substantially lower than for prototypic GPe neurons
(Aristieta et al., 2020; Kovaleski et al., 2020). The identities of
GPe neurons were not determined in the Beaumont (2016)
study; and although a similar anesthetic was used, the depth of
anesthesia was not tracked. Thus, their measurements of GPe ac-
tivity were likely derived from a variety of GPe cell classes during
SWA and ACT.

STN activity
In Q175 mice, STN activity was half that in WT mice during
both cortical SWA and ACT. Thus, the hypoactivity of STN neu-
rons observed here is consistent with that reported in Q175mice
in which the EEG was not measured and cortical activity state
was unknown (Beaumont et al., 2016), and more robust than in
YAC128 (Callahan and Abercrombie, 2015a) and R6/2 mice
(Callahan and Abercrombie, 2015b), where only a subset of STN
neurons exhibited diminished activity. The hypoactivity of STN
neurons inQ175mice could arise from hyperactivity of upstream
prototypic PV1 GPe neurons, loss of autonomous STN activity
(Atherton et al., 2016), and reduced cortical excitation
(Beaumont et al., 2016). Indeed, STN hypoactivity was greatly
(but not completely) alleviated inQ175mice by optogenetic inhi-
bition of prototypic PV1 GPe neurons, consistent with excessive
inhibition from PV1 GPe neurons, but also other factors, includ-
ing loss of intrinsic firing, (Atherton et al., 2016) and disinhibi-
tion of prototypic PV– GPe neurons that project to the STN
(Mallet et al., 2012; Mastro et al., 2014; Hernandez et al., 2015;
Aristieta et al., 2020; Cui et al., 2021). Phase-locking of STN ac-
tivity to cortical SWA was unaffected in Q175 mice both before
and during optogenetic inhibition of prototypic GPe neurons,
arguing that excessive inhibition from prototypic GPe neurons
and impaired intrinsic excitability, rather than reduced cortical
drive, underlie STN hypoactivity. Because optogenetic inhibition
of PV1 GPe neurons and disinhibition of the STN rescued puta-
tive PV– GPe neuron activity, STN hypoactivity may contribute
to PV– GPe neuron hypoactivity in Q175mice. In contrast, STN

Table 8. Impact of optogenetic inhibition of PV1 GPe neurons on STN activity in Q175 and WT micea

Figure/text Measurement Brain state Genotype PV1 GPe inhibition n (mice/neurons) Median [IQ range] p (comparison; test)

text % optogenetic activation — WT — 4/16 53.3% p= 0.37 (WT vs Q175; Fisher’s Exact)
Q175 5/39 63.9%

12D STN frequency SWA WT Off 4/16 7.4 [3.5-14.3] Hz p= 0.026 (SWA: WT Off vs Q175 Off; MWU)
Q175 5/39 4.4 [2.2-6.8] Hz

12D STN frequency SWA WT On 4/16 21.7 [16.3-43.2] Hz p= 8.0e-04 (SWA: WT Off vs On; WSR)
Q175 5/39 10.0 [7.0-17.8] Hz p= 1.0e-06 (SWA: Q175 Off vs On; WSR)

p= 6.0e-04 (SWA: WT On vs Q175 On; MWU)
12E STN CV SWA WT Off 4/16 1.9 [1.5-3.0] p= 0.087 (SWA: WT Off vs Q175 Off; MWU)

Q175 5/39 1.7 [1.2-2.5]
12E STN CV SWA WT On 4/16 0.62 [0.46-0.91] p= 9.2e-05 (SWA: WT Off vs On; WSR)

Q175 5/39 0.80 [0.54-0.93] p= 1.1e-08 (SWA: Q175 Off vs On; WSR)
p= 0.30 (SWA: WT On vs Q175 On; MWU)

12F, G STN anti-:in-phase ratio SWA WT Off 4/16 0.19 [0.059-0.35] p= 0.93 (SWA: WT Off vs Q175 Off; MWU)
Q175 5/39 0.23 [0.0-0.38]

12F, G STN anti-:in-phase ratio SWA WT On 4/16 0.78 [0.61-0.84] p= 9.2e-05 (SWA: WT Off vs On; WSR)
Q175 5/39 0.60 [0.50-0.85] p= 5.4e-05 (SWA: Q175 Off vs On; WSR)

p= 0.28 (SWA: WT On vs Q175 On; MWU)
text STN frequency ACT WT Off 3/14 17.0 [9.3-22.4] Hz p= 2.4e-03 (ACT: WT Off vs Q175 Off; MWU)

Q175 4/30 7.9 [4.1-10.7] Hz
text STN frequency ACT WT On 3/14 27.5 [21.1-44.4] Hz p= 6.0e-04 (ACT: WT Off vs On; WSR)

Q175 4/30 16.9 [9.8-27.6] Hz p= 1.3e-04 (ACT: Q175 Off vs On; WSR)
p= 5.8e-03 (ACT: WT On vs Q175 On; MWU)

aOptogenetic inhibition of PV1 GPe neurons disinhibited STN neurons in WT and Q175 mice. However, optogenetic inhibition of PV1 GPe neurons only partially alleviated the hypoactivity of STN neurons in Q175 mice relative
to that in WT mice during both cortical SWA and ACT.
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Figure 12. STN hypoactivity is partially rescued by optogenetic inhibition of PV1 GPe neurons in Q175 mice. A, Representative examples of the EEG, bandpass-filtered at 0.1-1.5 Hz, and concurrent PV1

GPe and responsive STN neuron activity in WT and Q175 mice before, during, and after optogenetic inhibition (yellow bar) of PV1 GPe neurons. A–C, Optogenetic inhibition of PV1 GPe neuron activity rapidly
and persistently disinhibited STN neuron activity. B, C, PSTHs of STN neuron activity in the absence and presence of PV1 GPe neuron optogenetic inhibition (yellow bar) (bin size, 100ms; prestimulus mean,
solid red line;62 SDs of prestimulus mean, dotted red line; B, representative examples from A; C, population data). A–E, Optogenetic inhibition of PV1 GPe neurons disinhibited and regularized STN activity
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hypoactivity did not prevent hyperactivity in PV1 GPe neurons,
presumably because their hyperactivity resulted from alterations
in autonomous firing and striatopallidal transmission.

Functional implications
Together, our and other studies argue that the basal ganglia indi-
rect pathway is profoundly dysregulated in HD mice through a
complex, cell class-specific combination of state-dependent
changes in presynaptic activity and aberrant intrinsic and synap-
tic properties. According to the classic rate model, PV1 GPe neu-
ron hyperactivity and STN (and possibly arkypallidal) neuron
hypoactivity should promote hyperkinesia (Albin et al., 1989).
However, HD mice typically exhibit bradykinesia/akinesia and
subtle kinematic abnormalities (Heikkinen et al., 2020).
Therefore, consistent with their large number of trinucleotide
repeats, HD mice may better represent juvenile-onset HD in
which the initial hyperkinetic phase seen in adult-onset HD is
absent (Fusilli et al., 2018; Tereshchenko et al., 2019). Because
the indirect pathway is critical for normal volitional movement
(Dodson et al., 2015; Tecuapetla et al., 2016; Pasquereau and
Turner, 2017; Markowitz et al., 2018; Aristieta et al., 2020), dys-
regulation of this pathway may actively contribute to motor dys-
function in HDmice.
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