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Highly multiplexed tissue imaging makes detailed molecular 
analysis of single cells possible in a preserved spatial con-
text. However, reproducible analysis of large multichannel 
images poses a substantial computational challenge. Here, we 
describe a modular and open-source computational pipeline, 
MCMICRO, for performing the sequential steps needed to 
transform whole-slide images into single-cell data. We dem-
onstrate the use of MCMICRO on tissue and tumor images 
acquired using multiple imaging platforms, thereby providing 
a solid foundation for the continued development of tissue 
imaging software.

Highly multiplexed imaging of tissues and tumors makes it 
possible to measure the levels and localization of 20–100 proteins 
at subcellular resolution in a preserved spatial environment (see 
Supplementary Table 1 for references). These proteins are usually 
detected using antibodies, often in conjunction with stains such as 
Hoechst 33342 or hematoxylin and eosin (H&E). Cell identities, 
phenotypes and states can then be identified on the basis of stain-
ing intensities and patterns. This makes image-based single-cell 
analysis a natural complement to spatial and single-cell transcrip-
tomics1–3 and promises to augment traditional histopathological 
diagnosis of disease4–6.

Computational analysis of highly multiplexed tissue images 
presents challenges not readily addressed with existing software. 
This is particularly true of whole-slide tissue imaging (WSI), in 
which specimens as large as 5 cm2 yield up to 1 terabyte of data  
(a 50-plex 4 cm2 at 0.3 µm lateral resolution), 106 to 107 cells and resolv-
able structure from 100 nm to over 1 cm. The US Food and Drug 

Administration mandates WSI for diagnostic histopathology7, and 
it is essential for accurately quantifying mesoscale tissue structures8.

Four primary challenges must be overcome to make compu-
tational analysis of high-plex WSI routine and reproducible: (1) 
data acquired in multiple image fields must be assembled precisely 
into large mosaic images encompassing the whole specimen and 
multiple imaging cycles; (2) full-resolution images must be made 
available in conjunction with numerical results; (3) images must 
be subdivided (segmented) into single cells—a difficult task when 
cells are densely crowded and nuclei have irregular morphologies; 
(4) diverse image-processing algorithms and data types must be 
harmonized across research groups and programming languages. 
Analogous challenges in genomics have been addressed using 
computational pipelines such as Seurat, Scanpy and Cumulus (see 
Supplementary Table 2 for references), platforms such as Galaxy9 
that make use of software containers (for example, Docker10) and 
formal domain-specific workflow languages such as Nextflow11. 
These tools simplify the task of creating, maintaining and improv-
ing computational pipelines, including in the cloud.

In this paper, we describe MCMICRO (Multiple Choice 
MICROscopy), a scalable, modular and open-source image- 
processing pipeline that leverages Docker/Singularity contain-
ers10,12 and is implemented in Nextflow11 and Galaxy9. The Nextflow 
implementation uses a plain-text configuration file to simplify 
addition, management and execution of modules and a command 
line interface; Galaxy uses Conda environments for package man-
agement and a graphical user interface (GUI). A diverse commu-
nity of laboratories including those involved in the Human Tumor 
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Atlas Network (HTAN; https://humantumoratlas.org)13 maintains 
and develops MCMICRO. Documentation, source code and video 
tutorials are available at mcmicro.org, and help is available via the 
image.sc forum.

To create MCMICRO, we wrote five new software packages, 
three of which are described here (Coreograph for subdividing tis-
sue microarrays (TMAs); Cypository for segmenting cytoplasm 
and SCIMAP for spatial data analysis). Two complex packages are 
described elsewhere (universal models for identifying cells and 
segmenting tissue (UnMICST14) and alignment by simultaneous 
harmonization of layer/adjacency registration (ASHLAR15)). We 
also reimplemented several MATLAB algorithms (MCQuant16 for 
quantifying marker intensities and computing morphology met-
rics and S3segmenter17 for watershed segmentation and spot detec-
tion); we also integrated existing algorithms written by others (for 
example, BaSiC18, Ilastik19 and FastPG (a variant of PhenoGraph) 
(see Methods for references)). All algorithms were tuned to manage 
very large files and containerized to abstract away language-specific 
dependencies (Methods). MCMICRO can run multiple algorithms 
in parallel, allowing their performance to be compared directly, 
which is particularly helpful for tasks such as segmentation. In com-
mon with other bioinformatics pipelines, MCMICRO complements 
rather than replaces desktop and server-deployed tools, particu-
larly for visualization. Model training and parameter adjustment 
for tasks such as segmentation can take place locally, with visual-
ization using Napari, QuPath, OMERO and histoCAT (Fig. 1a and 
Supplementary Table 2), followed by running the model on large 
datasets in the cloud.

To accelerate algorithm benchmarking and training, we gener-
ated a set of freely available Exemplar Microscopy Images of Tissues 
and Tumors (EMIT) comprising multiplexed images of a TMA with 
120 1.5 mm cores from 34 types of cancer, non-neoplastic disease 
and normal tissue (Supplementary Fig. 1). EMIT images were pro-
cessed using MCMICRO, with all intermediate steps documented 
on Sage Bionetworks Synapse as described in the dataset section of 
mcmicro.org. Clustering of cancers by type demonstrates effective 
segmentation across a wide range of specimens and generation of 
meaningful single-cell data (Supplementary Fig. 2).

Processing multiplexed WSI data starts with acquisition of image 
tiles (fields) in a BioFormats-compatible format (Level 1 data; Fig. 
1a)20. Each tile is typically a megapixel multichannel image; ~103 
tiles are needed to cover a large specimen at subcellular resolu-
tion. Tiles are corrected for uneven illumination using BaSiC, then 
stitched and registered across channels using ASHLAR to generate 
a fully assembled, multichannel mosaic image in OME-TIFF (open 
microscopy environment-tagged image file format) format (Level 2 
or 3 data depending on the extent of quality control; Fig. 1b). Mosaic 
length scales vary 105-fold from the smallest resolvable feature to 
the largest, and can be visualized interactively using web-based 
tools such as OMERO or desktop software (Supplementary Table 2).  
A segmentation mask (Level 3 data) is used to subdivide images into 

cells, available for human inspection (Fig. 1c). Segmentation is also 
facilitated by a ‘classifier zoo’ trained on EMIT TMA data.

Following segmentation, the staining intensity in each channel, 
cell morphology (size, eccentricity and so on) and other character-
istics are computed on a per-cell basis to generate a Spatial Feature 
Table (Level 4 data), which is analogous to a count table in scRNAseq. 
Spatial Feature Tables can be visualized using dimensionality reduc-
tion tools such as tSNE or UMAP, processed to identify cell types 
and used for neighborhood analysis (for example, with SCIMAP; 
Fig. 1d). It is also possible to skip segmentation and perform analy-
sis directly on images using pixel-level deep learning. Regardless of 
how data flows through MCMICRO, provenance is maintained by 
recording the identities, version numbers and parameter settings for 
each module, ensuring reproducibility (Supplementary Fig. 3).

Some types of imaging data require additional processing. TMAs, 
for example, must be subdivided into constituent 0.3 to 2 mm 
diameter ‘cores’. Coreograph accomplishes this using a U-Net deep 
learning architecture21 (Fig. 1e). Each core is its own multichannel 
image that can be further processed by MCMICRO (Supplementary 
Fig. 4). The robustness of neural networks makes it possible for 
Coreograph to identify cores even in highly distorted TMAs.

To demonstrate the technology-agnostic capabilities 
of MCMICRO implementations in Galaxy and Nextflow 
(Supplementary Fig. 5), we analyzed WSI data from an FFPE 
colorectal cancer resection (Fig. 2a) and human tonsil (Fig. 2b) 
using images collected at four different institutions with five tech-
nologies: codetection by indexing (CODEX), multiplex immu-
nofluorescence (mxIF), cyclic immunofluorescence (CyCIF), 
multiplexed immunohistochemistry (mIHC) and H&E staining; we 
also processed publicly available imaging mass cytometry (IMC) 
and multiplexed ion beam imaging (MIBI) data (Supplementary 
Table 1). Data processing was performed using cloud compute 
nodes provided either by Amazon Web Services (AWS), the Google 
Cloud Platform or a Linux-based institutional cluster running the 
SLURM workload manager. MCMICRO provides detailed infor-
mation on time, memory and central processing unit (CPU) use, 
making it straightforward to provision necessary computational 
resources (Supplementary Fig. 4).

Image tiles from a variety of microscopes and acquisition tech-
nologies were subjected to stitching, registration and illumination 
correction using ASHLAR and BaSiC to generate level 2 image 
mosaics that were inspected on a local workstation using Napari and 
in the cloud using OMERO (Fig. 2a–c). Images were segmented and 
staining intensities computed on a per-cell basis using MCQuant. 
Cell types were visualized in a tissue context for epithelial cells of 
the tonsil mucosa (keratin+ panCK+), cytotoxic T cells (CD8+) and 
B cells (CD20+) (Fig. 2c). Visual inspection of stitched and regis-
tered CyCIF, CODEX and mIHC images and derived data revealed 
accurate stitching and registration, as well as creation of reasonable 
segmentation masks and correctly formatted Spatial Feature Tables. 
When visualized by tSNE, data were separated by marker expression,  

Fig. 1 | Overview of the MCMICRO pipeline and key data types. Modules highlighted in bold red were developed and/or containerized as part of this 
study. a, A schematic representation of a canonical workflow for end-to-end image processing of multiplexed whole-slide and TMA data using MCMICRO. 
Shown is a flow of inputs (pink rectangles) from imaging instruments (yellow rectangles) through image-processing steps (white rectangles) that are 
implemented in software modules (puzzle pieces) to produce key data types (green rectangles). Data flows associated with a whole-slide image and TMA 
are represented with black and red arrows, respectively. b–e, Highlights of individual software modules incorporated into MCMICRO. b, ASHLAR is used 
to stitch and register individual CyCIF image tiles with subcellular accuracy (yellow zoom-in). This panel depicts a whole-slide, 484 tile (22 × 22) mosaic 
t-CyCIF image of a human colorectal cancer in four channels: Hoechst 33342-stained nuclear DNA (blue) and antibody staining against α-smooth muscle 
actin (α-SMA; red), the Ki-67 proliferation marker (green) and cytokeratin (white). c, Two different segmentation masks computed by UnMICST (blue) 
and Ilastik (red) overlaid on an image of nuclei from an EMIT TMA core (single experiment). d, SCIMAP enables single-cell clustering, neighborhood 
analysis and cell-type assignment on the basis of patterns of marker expression. e, A CyCIF image of an EMIT TMA dearrayed using Coreograph to 
identify individual cores, which are subsequently extracted and analyzed in high resolution. Below, a five-color image of a single lung adenocarcinoma 
core is shown for channels corresponding to Hoechst 33342-stained DNA (white), cytokeratin (orange), the immune-cell marker CD45 (green), α-SMA 
(magenta) and Ki-67 (red).
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not by imaging technology (Fig. 2d), demonstrating consistency in 
data processing.

A few algorithms in MCMICRO (for example, ASHLAR and 
BaSiC) are tissue- and technology-agnostic and require little, if any, 
tuning or modification. The performance of other algorithms (for 
example, UnMICST, Cypository and Ilastik) is dependent on the 

properties of their learned models, which can be tissue-specific. 
Looking forward, we expect rapid development of modules focused 
on four primary tasks: (1) image segmentation, (2) image quality 
control, (3) assignment of cell types and states on the basis of marker 
intensities and cell morphologies and (4) methods for quantifying 
spatial relationships and neighborhoods. A roadmap covering some 

b

c

e

a

UnMICST Ilastik

Keratin

CD45

α-SMA

KI67

5 mm

1 mm 100 µm

50 µm

DNA

200 µm

1 cm

Keratin DNA α-SMA KI67  5 µm

100 µm
One
cell

Whole specimen

1
2
3
4
5

A
B
C
D
E

F
G
H
I
J

Clusters Neighborhoods

d

Cell-type assignment

Marker

C
lu

st
er

ASHLAR

Sample type Whole slide TMA

CyCIF, CODEX, mxIF, mlHC

Raw image tiles
(level 1)

Illumination
correction

Alignment and
stitching

MIBI,
IMC

TMA core
detection

Segmentation

Quantification

Segmentation mask
OME-TIFF

(level 3)

Spatial feature table
csv/fcs
(level 4)

30

20

10

0

0

10 20 30

–10

–10

U
M

A
P

2

UMAP1

–20

–20
–30

–30

Quality
control

Whole-slide image
OME-TIFF

(level 2)

MCMICRO module

External analysis

Pixel-level
machine learning

Browser Desktop

Visualization

Visualization
UMAP/iSNE

Neighborhood analysis Cell type annotation

OME

Technology

Key data
types

BaSiC

ASHLAR

ASHLAR

Coreograph

UnMICST
Ilastik

Cypository

SCIMAP FastPG

S3segmenter

MCQuant

UnMICST/Ilastik
S3segmenter

CoreographSCIMAP

Nature Methods | VOL 19 | March 2022 | 311–315 | www.nature.com/naturemethods 313

http://www.nature.com/naturemethods


Brief Communication NaTuRe MeTHOds

of these developments is available at mcmicro.org. However, we do 
not anticipate that MCMCRO users will need to manage an endless 
proliferation of algorithms; multiple research consortia are spon-
soring evaluation efforts to identify best practices. MCMICRO will 
provide a technical foundation for such evaluations.

Adoption of MCMICRO will enable community-wide develop-
ment of FAIR (findable, accessible, interoperable and reusable)22 
workflows for analysis of the large tissue images being generated 
by international consortia and individual laboratories. MCMICRO 
works with six of the primary image acquisition technologies in 
use today, and is designed to accommodate future BioFormats/
OME-compatible approaches. The pipeline is based on widely 
accepted software standards and interoperates with any program-
ming language through the use of software containers, making it 

possible for developers to add new modules and models. Our expe-
rience also suggests that new users can master either the NextFlow 
command line interface or the Galaxy GUI with a day of training.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
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Methods
Tissue samples. A deidentified tonsil specimen from a 4-year-old female of 
European ancestry was procured from the Cooperative Human Tissue Network 
(CHTN), Western Division, as part of the HTAN SARDANA Trans-Network 
Project. Regulatory documents including Institutional Review Board (IRB) 
protocols, data use agreements and tissue use agreements were in place to ensure 
regulatory compliance. Standard protocols for tissue procurement and fixation 
were followed; a detailed protocol can be found at the link provided in Table 1. 
Sections were cut from a common formalin-fixed paraffin embedded (FFPE) 
block at a thickness of 5 µm and mounted onto Superfrost Plus glass microscope 
slides (Fisher Scientific, catalog no. 12-550-15) for CyCIF and mIHC or mounted 
on poly-l-lysine-coated coverslips (Electron Microscopy Sciences, catalog no. 
72204-01; slides and FFPE sections were prepared following instructions in the 
Akoya Biosciences CODEX User Manual Rev B.0, Chapter 3. Coverslip Preparation 
and Tissue Processing) for CODEX. A set of FFPE tissue sections was received 
by participating HTAN Centers (CHTN, Harvard Medical School (HMS), Broad 
Institute, and Oregon Health and Science University (OHSU)) as indicated in  
Table 2, allowing Centers to generate a comparable spatial cell census using each 
Center’s imaging method of choice. CHTN performed H&E staining on the first 
section, which was subsequently imaged at HMS.

For the EMIT dataset, human tissue specimens (from 42 patients) were used 
to construct a multitissue microarray (HTMA427) under an excess (discarded) 
tissue protocol approved by the IRB at Brigham and Women’s Hospital (BWH 
IRB 2018P001627). Two 1.5-mm-diameter cores were acquired from each of 
60 tissue regions with the goal of acquiring one or two examples of as many 
tumors as possible (with matched normal tissue from the same resection when 
that was feasible), as well as several non-neoplastic medical diseases involving 
acute inflammation (for example diverticulitis and appendicitis), and secondary 
lymphoid tissues such as tonsil, spleen and lymph nodes. Overall, the TMA 
contained 120 cores plus 3 additional ‘marker cores’, which are cores added to the 
TMA in a manner that makes it possible to orient the TMA in images.

CyCIF staining and imaging. The CyCIF method involves iterative cycles 
of antibody incubation, imaging and fluorophore inactivation as described 
previously8. A detailed protocol can be found on protocols.io as shown in Table 1,  
with detailed antibody information available in Supplementary Tables 3 and 4. 
CyCIF images are 36-plex whole-slide images collected using a ×20 magnification, 
0.75 numerical aperture objective with 2 × 2 pixel binning, yielding images of pixel 
size at 0.65 µm per pixel. The image comprises 416 and 350 image tiles for WD-
75684-02 and WD-75684-08, respectively, each with four channels, one of which is 
always Hoechst to stain DNA in the nucleus.

CODEX staining and imaging. Coverslips were prepared following the FFPE 
tissue staining protocols in the Akoya Biosciences CODEX User Manual (Sections 
5.4–5.6). Briefly, 5 μm FFPE tissue sections were cut onto poly-l-lysine-coated 
coverslips and baked for 20–25 min at 55 °C. Sections were cooled briefly before 
deparaffinization and washed for 5 min each as follows: twice in xylene; twice in 
100% ethanol; once in 90%, 70%, 50% and 30% ethanol and twice in deionized 
water. Sections were moved to 1× Citrate Buffer (Vector Laboratories, catalog 
no. H-3300) and antigen retrieval was performed in a Tinto Retriever Pressure 
Cooker (BioSB, BSB 7008) at high pressure for 20 min. Sections were washed 
briefly in deionized water before being left to incubate in deionized water at room 
temperature for 10 min. Sections were washed briefly twice in Hydration Buffer 
(Akoya), then were left to incubate in Staining Buffer (Akoya) at room temperature 
for 20–30 min. Antibody cocktail (200 μl per section) was prepared according to 
the manufacturer’s instructions. Sections were covered with the 200 μl Antibody 
Cocktail and left to incubate at room temperature for 3 h in a humidity chamber. 
Sections were washed twice in Staining Buffer for 2 min, and then fixed with a 
mixture of 1.6% paraformaldehyde in Storage Buffer (Akoya) for 10 min. Sections 
were washed briefly three times in 1× PBS, and then washed in ice-cold methanol 
for 5 min before being washed again three times in 1× PBS. Sections were stained 
with 190 μl of a mixture of 20 μl Fixative Reagent (Akoya) and 1 ml 1× PBS, after 

which they were left to incubate at room temperature for 20 min. Sections were 
washed briefly three times in 1× PBS and stored in Storage Buffer at 4 °C until the 
assay was ready to be run.

Running the CODEX assay. A 96-well plate of reporter stains with Nuclear Stain 
(Akoya) was prepared according to Akoya Biosciences CODEX User Manual 
(Sections 7.1–7.2). Stained tissue sections were loaded onto the CODEX Stage 
Insert (Akoya) and the Reporter Plate was loaded into the CODEX Machine. 
The onscreen prompts were followed, and the section was stained manually 
with a 1:2,000 Nuclear Stain in 1× CODEX Buffer (Akoya) for 5 min before 
proceeding by following the onscreen prompts. Imaging was performed on 
a Zeiss Axio Observer with a Colibri 7 light source. Emission filters were BP 
450/40, BP 550/100, BP 525/50, BP 630/75, BP 647/70, BP 690/50 and TBP 
425/29 + 514/31 + 632/100, and dichroic mirrors were QBS 405 + 492 + 575 + 653, 
TFT 450 + 520 + 605, TFT 395 + 495 + 610 and TBS 405 + 493 + 575, all from 
Zeiss. Overview scans were performed at ×10 magnification, after which 5 × 5 
field of view regions were acquired using a Plan-Apochromat ×20/0.8 M27 Air 
objective (Zeiss, catalog no. 420650-9902-000). Magnification images (×20) were 
acquired with a 212 × 212 nm pixel size using software autofocus repeated every 
tile before acquiring a 17 plane z-stack with 0.49 µm spacing. Tiles were stitched 
using a 10% overlap.

mIHC staining and imaging. The mIHC platform described herein involves wet 
and dry laboratory techniques that have been previously described23,24. A detailed 
protocol utilized for the current study is available on protocols.io (Table 2).  
mIHC involves a cyclic staining process optimized for FFPE tissues with panels 
of antibodies (12–29 per panel) designed to interrogate both lymphoid and 
myeloid compartments of the immune system. Each antibody is stained singularly 
and culminates with whole-slide digital imaging, as the staining chemistry 
utilizes a single chromogen and brightfield imaging. Hematoxylin staining at the 
beginning and end of the antibody panel is used for nuclear identification in the 
computational pipeline. Whole-slide images are scanned at ×20 magnification, 
with 0.5 μm per pixel.

Pipeline implementation. MCMICRO was implemented in Nextflow, which 
was chosen for its natural integration with container technologies such as 
Docker and Singularity, its automatic provenance tracking and parallelization of 
image-processing tasks and its ability to specify module dependencies that may 
change at runtime11. To make the MCMICRO pipeline more widely available, we 
have also integrated it with the Galaxy computational workbench, which is used 
daily by thousands of scientists across the world for a wide array of biomedical data 
analyses (Supplementary Fig. 5)9.

Illumination correction. BaSiC is a Fiji/ImageJ plugin for background and 
shading correction, producing high accuracy while requiring only a few input 
images18. We containerized the tool, allowing it to be executed without an explicit 
installation of ImageJ.

Image stitching and registration using ASHLAR. ASHLAR (Alignment by 
Simultaneous Harmonization of Layer/Adjacency Registration) is a Python 
package for efficient mosaicing and registration of highly multiplexed imagery15. 
It performs stitching and registration on cyclic immunofluorescence images using 
data from nuclear stains (typically Hoechst 33342). The overall strategy is to: (1) 
align tile images from the first cycle edge-to-edge with their nearest neighbors 
(mosaicing) using phase correlation on the nuclear marker channel; (2) for the 
second and subsequent cycles, align each tile to the greatest overlapping tile from 
the first cycle (registration), using phase correlation on the nuclear marker channel 
and retain the corrected stage coordinates, rather than the actual merged images; 
(3) use the corrected coordinates to assemble a single image covering the entire 
imaged area, including all channels from all cycles. This approach minimizes the 
compounding of alignment errors across tiles and cycles as well as temporary 
storage requirements for intermediate results.

Table 1 | Experimental protocols

Category Center Protocols.io link

Protocol (biospecimen) CHTN Tissue procurement and fixation in 10% neutral buffered formalin https://doi.org/10.17504/protocols.
io.6y4hfyw

Protocol (characterization) HMS H&E https://doi.org/10.17504/protocols.io.bsi8nchw
Protocol (characterization) HMS FFPE tissue pretreatment before tissue-CyCIF on Leica Bond RX v.2 https://doi.org/10.17504/protocols.

io.bji2kkge
Protocol (characterization) HMS Tissue-CyCIF https://doi.org/10.17504/protocols.io.bjiukkew
Protocol (characterization) Broad Institute CODEX https://doi.org/10.17504/protocols.io.brznm75e

Protocol (characterization) OHSU mIHC https://www.protocols.io/view/mihc-staining-ohsu-coussens-lab-sop-tnp-sardana-bcdpis5n

As a part of the HTAN effort, all protocols and methods are deposited with protocols.io.

Nature Methods | www.nature.com/naturemethods

https://www.protocols.io/
https://www.protocols.io/
https://doi.org/10.17504/protocols.io.6y4hfyw
https://doi.org/10.17504/protocols.io.6y4hfyw
https://doi.org/10.17504/protocols.io.bsi8nchw
https://doi.org/10.17504/protocols.io.bji2kkge
https://doi.org/10.17504/protocols.io.bji2kkge
https://doi.org/10.17504/protocols.io.bjiukkew
https://doi.org/10.17504/protocols.io.brznm75e
https://www.protocols.io/view/mihc-staining-ohsu-coussens-lab-sop-tnp-sardana-bcdpis5n
https://www.protocols.io/
http://www.nature.com/naturemethods


Brief CommunicationNaTuRe MeTHOds

Coreograph. Coreograph was newly developed for MCMICRO and has not 
been published elsewhere. It is implemented for the first time in MCMICRO. 
Its function is to split, or ‘dearray,’ a stitched TMA image into separate image 
stacks per core. It employs a semantic segmentation preprocessing step to assist 
with identifying cores that are dimmed or fragmented, which is a common issue. 
We trained a deep, fully connected, network on two classes—core tissue and 
background—using the popular UNet21 architecture for semantic segmentation. 
Training data consisted of cores that were well separated, as well as cores that were 
merged and/or fragmented, which allowed for handling situations where sample 
integrity was highly heterogeneous. Once cores had been accentuated in the form 
of probability maps, they were cropped from the stitched image on the basis of 
their median diameter and saved as a TIFF stack. In situations where the cores 
were too clumped, the median diameter was used to set the size of a Laplacian of 
Gaussian (LoG) kernel to identify local maxima from the probability maps.

UnMICST. UnMICST14 is a module in MCMICRO that aids in improving 
downstream segmentation accuracy by generating per class probability maps 
to classify each pixel with a certain amount of confidence. Analogously to 
Coreograph, it employs a UNet architecture (above). Previously, a similar UNet 
model was trained for nuclei segmentation to recognize two classes in Hoechst 
33342-stained tonsil tissue (nucleus contours and background). Here, we train a 
three-class model to extract nuclear centers, nucleus contours and background 
from manually annotated lung, tonsil, prostate and other tissues to ascribe a 
variety of nucleus shapes. Realistic augmentations, in addition to conventional 
on-the-fly transformations, were included by deliberately defocusing the image 
and increasing the exposure time of the camera to simulate focus and contrast 
augmentations, respectively. Training was performed using a batch size of 24 with 
the Adam Optimizer and a learning rate of 0.00003 until the accuracy converged. 
Segmentation accuracy was estimated by counting the fraction of cells in a held out 
test set that passed a sweeping intersection of union metric.

Ilastik tissue segmentation. Like UnMICST, Ilastik19 assigns each pixel a 
probability of belonging to predetermined classes (for example, cell nucleus, 
membrane and background). MCMICRO relies on Ilastik’s pixel classification 
module for training and subsequent batch processing using a random forest 
classifier. Ilastik classifier training in MCMICRO is completed in several steps. 
First, regions of interest (ROIs) with a user-defined width and height are cropped 
randomly from the WSI. Second, the ROIs are annotated manually by the user on 
a local machine via Ilastik’s GUI. Third, to ensure tissue portions are accurately 
represented in cropped images, Otsu’s method is used to identify a global threshold 
across the WSI for a particular channel of interest (for example, nuclear staining). 
Finally, the user exports the cropped sections that contain the desired proportion 
of pixels above the previously determined threshold. Upon completion of the 
random forest training, whole-slide classifier predictions are deployed in headless 
mode (no GUI) for batch processing of large datasets within MCMICRO.

Cypository. Cypository is an instance segmentation module, implemented in 
PyTorch and on the basis of Mask R-CNN architecture. The underlying two-class 
model was pretrained using the Common Object in Context dataset and then 
refined to distinguish whole cells from background on the basis of a cell membrane 
channel stained with wheat germ agglutinin. Training was performed using a 
batch size of four, a learning rate of 0.005, a momentum of 0.9 and weight decay of 
0.0005 over five epochs. Unlike UnMICST, the output of Cypository is both a label 
mask and bounding boxes that encompasses each detected cell; the label mask is 
compatible with downstream modules in MCMICRO.

Watershed segmentation via S3segmenter. S3segmenter was newly implemented 
for the MCMICRO pipeline and comprises a custom marker-controlled watershed 
algorithm to identify nuclei from the probability maps generated by UnMICST 
and Ilastik. Watershed markers are obtained by convolving a LoG kernel, followed 
by a local maxima search across the image to identify seed points. The size of the 
LoG kernel and local maxima compression are tunable parameters dependent on 
the expected nuclei diameters in the image. As a byproduct, this method identifies 
false positive segments in the image background. These false positives were 
excluded by comparing their intensities to an Otsu-derived threshold calculated 

either on the raw image or on the probability map. S3segmenter currently 
offers three alternative methods for cytoplasm segmentation. First, traditional 
nonoverlapping rings (annuli) with user-defined radius are used around each 
nucleus. Second, a Euclidean distance transform is computed around each nucleus 
and masked with a user-specified channel, reflecting the overall shape of the whole 
tissue sample. An autofluorescence channel can be chosen if the signal-to-image 
background ratio is sufficiently high. Third, the cytoplasm is segmented using 
a marker-controlled watershed on the grayscale-weighted distance transform, 
where the segmented nuclei are markers and the grayscale-weighted distance 
transform is approximated by adding scaled versions of the distance transform 
and raw image together. This method is conceptually similar to that found in the 
CellProfiler Identify Secondary Objects module25. S3segmenter is also capable 
of detecting puncta by convolving a small LoG kernel across the image and 
identifying local maxima. Once nuclei and cytoplasm segmentation are complete, 
labeled masks for each region are exported as 32-bit TIFF images. Two channel 
TIFF stacks consisting of the mask outlines and raw image are also saved so that 
segmentation accuracy can be easily visually assessed.

MCQuant. Semantic segmentation in MCMICRO produces 32-bit masks, which 
are used to quantify pixel intensity (that is, protein expression) on multiplexed 
WSI for cytoplasm and nuclei. Quantification in MCMICRO is carried out using 
scikit-image—a popular Python-based image analysis library—and values of 
cellular spatial features are calculated for unique cells (cytoplasm and nuclei), in 
addition to their mean pixel intensity (protein expression). The resulting spatial 
feature tables are exported as comma-separated value (CSV) files for subsequent 
data analysis analogous to histoCAT16, which is implemented in MATLAB.

SCIMAP. The spatial feature tables produced by MCMICRO can be used 
to perform a variety of single-cell, spatially resolved analyses. SCIMAP is a 
Python-based single-cell spatial analysis toolkit designed to work with large 
datasets. We incorporated SCIMAP into MCMICRO to perform unsupervised 
clustering (Leiden clustering26, Phenograph27, KMeans) for identification of cell 
types, and also spatial clustering to identify recurrent cellular neighborhoods28. 
The SCIMAP module outputs CSV files containing cluster annotations, as well 
as heatmaps and UMAP plots for cluster visualization. In addition, the module 
outputs an AnnData object that can be imported readily for further SCIMAP 
analysis in Jupyter notebooks and visualization with napari. The AnnData  
object is compatible with well-known single-cell toolkits such as Scanpy29  
and Seurat30, allowing for seamless integration of imaging data with other 
single-cell modalities.

FastPG. FastPG31 is a C++ implementation of the popular Phenograph method 
for clustering single-cell data. The implementation scales incredibly well for 
datasets with millions of cells—such as those routinely encountered in whole-slide 
imaging—often leading to an order of magnitude faster runtimes than the original 
Phenograph. Like SCIMAP, FastPG takes as input the spatial feature tables 
produced by MCMICRO and outputs an assignment of individual cells to clusters 
in the marker expression space.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All EMIT and exemplar images are available at https://mcmicro.org/datasets.html.

Code availability
All software and code that produced the findings of the study, including all main 
and supplemental figures, are available at https://github.com/labsyspharm/mcmicro.
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