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Abstract

Purpose: To reduce workload and inconsistencies in organ segmentation for radiation treatment 

planning, we developed and evaluated general and custom auto-segmentation models on CT for 

three major tumor sites using a well-established deep convolutional neural network (DCNN).

Methods and Materials: Five CT-based auto-segmentation models for 42 organs at risk (OARs) 

in head and neck (HN), abdomen (ABD) and male pelvis (MP) were developed using a full 

3D DCNN architecture. Two types of DL models were separately trained using either general 

diversified multi-institutional datasets or custom well controlled single institution datasets. To 

improve segmentation accuracy, an adaptive spatial resolution approach for small and/or narrow 

OARs and a pseudo scan extension approach, when CT scan length is too short to cover 

entire organs, were implemented. The performance of the obtained models was evaluated based 

on accuracy and clinical applicability of the auto-segmented contours using qualitative visual 

inspection and quantitative calculation of dice similarity coefficient (DSC), mean distance to 

agreement (MDA), and time efficiency.

Results: The five DL auto-segmentation models developed for the three anatomical sites were 

found to have high accuracy (DSC ranging from 0.8 – 0.98) for 74% OARs and marginally 

acceptable for 26% OARs. The custom models performed slightly better than the general 

models, even with smaller custom datasets used for the custom model training. The organ-based 

approaches improved auto-segmentation accuracy for small or complex organs (e.g., eye lens, 

optic nerves, inner ears, and bowels). Compared with traditional manual contouring times, the 

auto-segmentation times, including subsequent manual editing, if necessary, were substantially 

reduced by 88% for MP, 80% for HN, and 65% for ABD models.

Conclusions: The obtained auto-segmentation models, incorporating organ-based approaches 

were found to be effective and accurate for most OARs in the male pelvis, head and neck 

and abdomen. We have demonstrated that our multi-anatomical deep learning auto-segmentation 

models are clinically useful for radiation treatment planning.
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Introduction

The goal of radiation therapy (RT) is to deliver a precise and effective dose to the tumor 

while maximally sparing adjacent organs at risk (OARs)1,2. As a contributing factor for this 

goal, accurate, fast, and efficient delineation of the tumor and OARs is necessary. In current 

standard RT practice, the delineation of organs is done by manual or semi-automated (e.g., 

atlas-based) methods with manual editing on planning images (e.g., computed tomography 

(CT), magnetic resonance imaging (MRI))3,4. These processes are labor intensive and time 

consuming and inevitably introduce inter- and intra-observer variations during RT planning 

and delivery5–6. Recently, online adaptive replanning (OLAR) has been introduced into the 

clinic to account for inter-fractional anatomic and physiological changes7–9. During OLAR, 

with the patient lying on the table waiting to be treated, manual segmentation on the image 

of the day can be slow and strongly subjective, thus introducing inconsistencies between 

fractions10. Hence, a fast, robust, and consistent segmentation of tumors and OARs is a 

requirement. Deep learning (DL), such as deep convolutional neural network (DCNN) has 

posed itself as a potential solution for the aforementioned goal11–14.

Substantial efforts have been reported in the literature for using DCNN for auto-

segmentation15–18. To name a few, Kazemifar et al. developed a two-dimensional (2D) 

U-Net (a convolutional neural network) model to delineate OARs in male pelvis CT using a 

mapping function and 2D convolution layers with variable kernel sizes, channel number, 

and rectified linear unit (ReLu) as activation function. They reported an average dice 

similarity coefficient (DSC) of 0.88, 0.95, and 0.92 for the prostate, bladder, and rectum, 

respectively19. Gibson et al. reported a dense virtual network (VNet) model featuring high 

resolution activation maps with a batch-wise spatial dropout scheme. The model proved to 

be more accurate and robust than existing multi-atlas-based methods on abdominal CT20. 

Dong et al. reported an advanced U-Net-generative adversarial network (U-Net-GAN) to 

segment a thoracic CT, with high accuracy21. Ye et al. designed a dense connectivity 

embedding U-net (DEU) based on CNN for auto-segmentation on MRI for nasopharyngeal 

carcinoma22.

Until recently, the DL auto-segmentation studies have been mostly focused on singular 

anatomical site. Recently, Chen et al. reported auto-segmentation of whole-body CT with 

a total of 50 OARs using site-specific networks, e.g., Ua-Net for head and neck, 2.5D 

U-Net for thorax, and 3D U-net for abdomen and male pelvis. They reported an average 

DSC of 0.84 and 0.81, respectively, for the models trained with in-house and public 

datasets23. Similarly, Isensee et al. used a self-configuring network, nn-Unet, to develop 

auto-segmentation models for multiple anatomical sites on multimodality images (CT, MRI). 

Their algorithm smartly channeled the knowledge in three primary steps: fixed, rule-based, 

and empirical parameters, to segment 53 organs.24 Besides these DL auto-segmentation 

studies for large numbers of organs with traditional encoder-decoder networks, the attention-
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mechanism combined with DCNN and transformers were also recently introduced for image 

segmentation tasks with some level of success25–27.

Despite these considerable efforts, DL auto-segmentation has not been routinely used in 

radiation therapy clinics primarily because the auto-segmented contours are not always 

acceptable, thus, manual editing is often required. Limitations on performance of CT-

based auto-segmentation include intrinsic imaging quality (e.g., low soft tissue contrast, 

artifacts caused by metal implants or organ motion, inhomogeneous image intensities, and 

insufficient scan range) and DL algorithms and model building strategies (e.g., overfitting, 

over parametrization, limited quality, size and consistency of training datasets, challenges 

with small or complex organs)28. Additionally, comprehensive, and quantitative assessments 

of DL auto-segmentations based on clinically relevant criteria are generally lacking29–33.

In this work, we developed five DL auto-segmentation models for three major tumor 

sites, male pelvis (MP), head and neck (HN) and abdomen (ABD), that consist 

of a comprehensive list of organs, including those that are generally challenging in 

auto-segmentation. We employed a representative well-established DCNN network and 

incorporated organ-based approaches to specifically address the issues with small and 

complex organs. We compared our DL models trained with diversified multi-institutional 

datasets versus well-controlled single institutional datasets. In addition, we qualitatively and 

quantitatively evaluated the performance of the obtained models using various clinically 

relevant metrics including time efficiency, visual inspection, dice similarity coefficient 

(DSC) and mean distance to agreement (MDA) and compared our results with those 

from recent publications. To our knowledge, this is one of a few studies reporting DL 

auto-segmentation for large numbers of OARs for multiple anatomic sites.

Materials and Methods

DCNN auto-segmentation algorithm

A well-established 3D U-Net architecture, named ResUnet3D network34, was modified 

and used to build the auto-segmentation models. The algorithm included classic encoding 

and decoding structures35,36, in which the encoding part was responsible for generating/

learning multi-scale multi-dimensional image features in multiple levels, while the decoding 

structure was used to produce the same size label map to the corresponding input image 

driven by the learned features. In addition, short-range residual connections in residual 

block as introduced by the Residual Networks37 were used to suppress the gradient vanish 

behavior and to shorten iteration numbers during the model building process. Besides 

flexibility, this long and short connection combination allowed the decoding part to preserve 

the high-resolution features with potential localization of information, which could be 

potentially lost at the bottom of the encoding part of the network. Through these residual 

connections, information was better transmitted across different feature levels, resulting in 

improved model convergence and performance by suppressing the saturation of gradient 

backpropagation. This is especially important and useful if training is conducted from 

scratch without initializing models from some early training data. A schematic of the 

algorithm is shown in Figure 1. In this work, the building of an auto-segmentation model 
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using this algorithm was implemented in an iterative process, consisting of model training, 

model validation, and algorithm refinement based on quantitative evaluation feedback.

Improvements with organ-based approaches

The default ResUnet3D network employed the same spatial resolution in the entire dataset. 

As organ volume can vary drastically for the large number of OARs studied in this work, 

hence, the algorithm convergence for different organs can be quite different, resulting in 

different accuracy and efficiency in using the obtained model. To balance the accuracy and 

efficiency, a compromise between image input size and spatial resolution needed to be made. 

For example, an input image size of 320×320×32 with a default spatial resolution of 2×2×2 

mm3 may be used. However, this resolution may be too coarse for small and/or narrow 

organs such as the inner ear or optic nerve in the HN region. To overcome this problem, we 

adopted an adaptive spatial resolution (ASR) approach, allowing the use of a higher spatial 

resolution of 1×1×2 mm3 for a subregion where a small and/or narrow OAR is present38,39. 

This approach was implemented in four steps, as shown in Figure 2.

Another issue that can negatively affect the auto-segmentation performance is the missing 

superior and/or inferior slices due to inconsistent and/or insufficient CT scan lengths 

required to cover entire large organs, such as bowels in abdomen. To address this issue, 

we implemented a pseudo scan extension (PSE) approach to take into account the missing 

superior and/or inferior slices. In the PSE approach, the end slice with contours in the 

scan was repeated with eight-fold elastic contour transformation, mimicking the possible 

deformation beyond the end slice, thus, reconstructing the missing contours considering 

their shape changes.

Datasets

The datasets used to train and test the DL models in this study were the CTs along 

with manually drawn contours (ground truth) collected for three tumor sites, MP, HN and 

ABD. To investigate the effect of variation in training datasets, two types of datasets: (1) 

general diversified datasets obtained from multiple institutions/sources that included a wide 

variability of scanners and protocols (204 CTs for MP, and 65 CTs for HN, including 41 

from the MICCAI 201540 and 24 from multiple institutions) and (2) custom well-controlled 

datasets acquired with standard clinical protocols from a single institution (50 CTs for 

MP and 47 for HN), were used for the HN and MP model training. For abdomen, only a 

custom dataset (58 cases) was used for the training as there was no general dataset for ABD 

available to us. For the custom datasets, ground truths were carefully created manually using 

available contouring consensus and nomenclature guidelines41–45 and were independently 

checked by two experienced clinicians per anatomical site. To avoid potential bias and to 

improve robustness in both model training and testing, the datasets for each tumor site were 

purposely chosen to include a broad range of variations in image quality and anatomy.

Model training

For MP and HN, two DL models for each were trained: the general models (general male 

pelvis (G-MP) and general head and neck (G-HN)) trained with the general datasets, and 

the custom models (custom male pelvis (C-MP) and custom head and neck (C-HN)) trained 
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with the custom datasets. For abdomen, only custom abdomen (C-ABD) model was trained. 

The G-MP and C-MP models were trained for 8 and 11 OARs, while the G-HN and C-HN 

were trained for 11 and 19 OARs, respectively. The C-ABD model was trained for 12 OARs.

For all models, CT numbers were normalized to categorize into specific ranges and were 

linearly transformed into [−1 1] range before they were used for model training and 

testing. The CT number ranges were [−400,400] HU for MP, [−1000,4000] HU for HN, 

and [−1000 4000] HU for ABD. During model training, the objective function was set to 

minimize a weighted cross-entropy loss function and ADAM’s method was adopted for this 

optimization46. The weight decay was set to be 0.0005 and the momentum parameter was 

set to 0.9. Initially, the learning rate was set to 0.002 and linear decay was set after half the 

number of training epochs. The models were trained for 200–400 epochs with online data 

augmentation that was accomplished by applying an online random 3D elastic transform/

deformation on each dataset47,48. All the models were trained on a single NVIDIA V100 

GPU, DGX-1 system.

Model evaluation

The trained models were integrated in a research tool (ADMIRE, Elekta Inc) for execution. 

All models testing was performed on an Intel ® Xeon® Gold 6132 CPU @ 2.6GHz 128GB 

RAM hardware. The performances of G-MP, C-MP, G-HN, C-HN and C-ABD models 

were tested with 50, 10, 50, 10, and 13 independent datasets, respectively. To avoid a 

predisposed evaluation, the testing cases for each model were chosen to imitate the imaging 

and anatomical variability of the training data. The model performance was evaluated for 

common OARs in RT planning. A summary of the models, numbers of training and testing 

datasets used, numbers and names of OARs in each model along with those evaluated for 

each tumor site is shown in Table 1.

Performance of the auto-segmentation models was qualitatively and quantitively assessed 

in terms of segmentation accuracy, reproducibility, and time. A qualitative assessment of 

auto-segmented contours was performed by reviewing the obtained contours slice-by-slice. 

The regions with optimal and sub-optimal contour accuracy were recorded. The 3D average 

DSC and MDA, as calculated with respect to the ground truth, were used to quantitatively 

measure the auto-segmentation accuracy. The clinical acceptability of the auto-segmentation 

was assessed based on AAPM TG-132 report, e.g., 3D average DSC > 0.8 and MDA < 2 

mm49.

Computing time for generating all OAR contours using a model for each test case was 

recorded and the average segmentation time for each model was documented. As the auto-

segmented contours are often reviewed and manually edited for inaccuracy, the segmentation 

time with a DL model should include the time for reviewing and manual editing. We 

conducted a time study to estimate the reviewing and editing time required to fix the 

inaccuracies in the auto-segmented contours. Summation of the auto-segmentation time 

(computer time) and the subsequent manual reviewing and editing time was compared with 

the time for conventional manual contouring using a commercial clinical contouring tool 

(MIM version 6.8.6, MIM Software Inc.; Beachwood, OH).
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Results

Auto-segmentation accuracy

The accuracy of the auto-segmented contours, as measured by the average 3D DSC and 

MDA, for the 5 models is presented in Figure 3 using a box plot technique50. The average 

DSC and MDA values with standard deviation for all the OARs in the 5 models are shown in 

Table 2. Comparisons of representative auto-segmented contours and the ground truth on the 

test CT for each of the 5 models are presented in Figure 4.

Male Pelvis Models—For the G-MP model, the best concordance between the auto-

segmented contours and the ground truth on the test data was demonstrated for bladder, with 

an average DSC of 0.95 ± 0.02, whereas a broader DSC range was observed for rectum 

with an average DSC of 0.89 ± 0.05, as shown in Figure 3a. Interestingly, high performance 

was also observed for prostate with an average DSC of 0.87 ± 0.04. Compared to the 

G-MP model, the C-MP model, trained with smaller dataset than that for the G-MP model, 

performed slightly better as seen in Figure 3(c, d) (e.g., reduced standard deviation of DSC 

for the prostate, rectum, and bladder segmentations). With the C-MP model, the average 

DSC values for the seminal vesicle and penile bulb were 0.82 and 0.62, respectively. The 

low DSC for penile bulb is expected as the anatomical markers or the necessary soft tissue 

contrast for the penile bulb is generally lacking on CT. For bladder, rectum, and prostate, 

as shown in Figure 5(a, b), the auto-segmented contours by the G-MP and C-MP models 

were acceptable in 46 out of 50 (92%) and 9 out of 10 (90%) test cases respectively. Filled 

green circles represent individual test cases for which the auto-segmentation accuracy met 

TG-132 clinical acceptability criteria49, while filled magenta squares indicate unacceptable 

cases. It was observed that the variability in accurately identifying and segmenting the 

recto-sigmoidal junction, commonly encountered in manual contouring, was the primary 

contributor for the broad range of accuracy for the rectum auto-segmentation.

Head and Neck Models—A reasonably accurate auto-segmentation was observed with 

both G-HN and C-HN models with an average DSC of > 0.8 for all organs, except 

submandibular glands, as shown in Figure 3(e–h). As shown in Figure 6(a, b), the case-based 

analysis confirmed that both models delivered clinically acceptable contours for most OARs 

with some exceptions. Compared to the G-HN model, the C-HN performed better, e.g., less 

unacceptable cases for the C-HN models (Figure 6(b)). High auto-segmentation accuracies 

in 70–100% of the test cases was observed for larynx, eyes, brain, brainstem, and mandible 

with the C-HN model. Sub-optimal segmentation was observed for submandibular glands. 

The presence of vessels, the proximity to sternocleidomastoid muscle, and the poor contrast 

in the region make the submandibular gland a difficult organ to delineate. Moreover, in the 

initial model iterations, poor and incomplete segmentation was observed for small organs 

including lens, optic nerves, and inner ears (Table 3). As shown in Table 3, and Figure 3(g–

h), the use of the ASR approach allowed a higher resolution of 1×1×2 mm3 in the subregions 

containing six small (lens, optic nerves, and inner ears) and three medium (brainstem, eyes) 

sized OARs, and yielded substantially improved auto-segmentation of these small and/or 

narrow OARs.
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Abdomen Model—While abdominal organs can have inherent geometrical distortions and 

organ-based, observer-dependent segmentation imperfections, accurate auto-segmentation 

was observed for most of the OARs with the C-ABD model, as shown in Figure 3(i, 

j). A high DSC of 0.92 to 0.97 was observed for aorta, kidneys, liver, stomach, and 

spleen. While DSC values of > 0.8 were observed for bowels and duodenum, their MDA 

values were outside the clinically acceptable tolerance range (> 2mm). This suboptimal 

auto-segmentation for the bowels, duodenum and pancreas is consistent with the difficulty 

in manual delineation of these organs on CT owing to the drastic changes in their sizes, 

shapes, and motions between slices. Proximity of vessels to the pancreatic body and tail 

was found to be the leading cause of inaccuracies, thus resulting in suboptimal performance 

(DSC 0.76), as shown in Figure 7(a, b). For the bowels, the relatively high DSC values (0.84 

– 0.87) was due in part to the use of the PSE approach. The auto-segmentation accuracy of 

bowels was found to be strongly dependent on the complexity of the anatomy, as shown by 

long whiskers in the box plots of Figure 3(i, j), indicating large variations and inaccuracies, 

e.g., mislabeling of bowels in presence of large air pockets, as shown in Figure 7c.

Auto-Segmentation Time

On average, the execution of the auto-segmentation for all the OARs on a testing CT set took 

approximately 30 seconds for male pelvis, 120 seconds for head and neck, and 70 seconds 

for abdomen. The auto-segmentation time was found to depend on the numbers of CT slices 

and OARs. The average time for visually reviewing the auto-segmented contours and the 

manual editing of inaccurate contours for complex cases took up to 5 minutes for the C-MP, 

15 minutes for C-HN, and 30 minutes for the C-ABD model. The longer time for ABD was 

primarily due to the complicated anatomy. In contrast, the average manual contouring from 

scratch ranged from 30 minutes (for MP) to up to 90 minutes (for HN and ABD). Average 

reductions on contouring times with using the auto-segmentation models as compared to the 

full manual contouring were calculated to be 88% for MP, 80% for HN, and 65% for ABD.

Comparison to recent published data

The performance of the present models was compared to three types of results recently 

published on CT-based DL auto-segmentation for large numbers of organs in multiple 

anatomic sites similar to this study, (1) the data for HN, MP and ABD by Chen et al using 

a WBNet algorithm23, (2) the data for the three sites by Isensee et al using a nnUNET 

network24, and (3) combined data of the MRI-aided DL auto-segmentation on CT for MP51 

and NH52,53 and the data of using a self-spaced DenseNet algorithm for ABD54. To our 

knowledge, the studies (1)23 and (2)24 are the only available studies so far involving all the 

similar OARs in MP, HN and ABD as in the present work. Table 4 compares DSC values 

obtained in this work to those reported in the three types of studies for 32 OARs in the 

three anatomic sites. It is seen that the present work performed slightly better in 17 out of 

32 OARs compared to all the published studies included, with DSC values greater than or 

equal to 0.8 for 26 out of 32 OARs. The current MP and ABD models outperformed the 

previously published results, except for right kidney and pancreas. The average DSCs for all 

OARs were 0.863, 0.854 and 0.833 for the current work, the study by Chen et al23 and the 

study by Isensee et al24, respectively.
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Discussion

In this work, we have developed clinically applicable auto-segmentation models for 42 

OARs in three major tumor sites: head and neck, abdomen and male pelvis using a 

well-established DL network. Two organ-based approaches, the adaptive spatial resolution, 

and the pseudo scan extension, were implemented to improve the model performance of 

small/elongated (e.g., inner ear) and large (e.g., bowels) organs. Separate DL models were 

trained with using diversified multi-institutional datasets and using well-controlled single 

institutional datasets and were evaluated based on clinically relevant criteria (e.g., required 

contour editing effort). We have found that the obtained DL models can quickly generate 

clinically acceptable contours for most of the organs in the three tumor sites. Performance 

of the models trained with the single-institutional datasets is generally better than those 

trained with the multi-institutional datasets. Performance of our models are generally better 

or comparable to those reported recently on DL auto-segmentation for multi anatomic sites.

Challenges in the DL auto-segmentation were observed in all three tumor sites. For 

male pelvis, the poor soft tissue contrast at the apex of the prostate and the seminal 

vesicles and the apex of the prostate and the rectum, led to residual auto-segmentation 

inaccuracies, consistent with the observations reported previously for manual contouring55. 

For example, in 76% of the cases tested, the G-MP model generated prostate contours 

incorporated part of the seminal vesicles (Figure 8a, violet-red contour). Inaccuracies for 

rectum auto-segmentation were observed in 62% of the test cases at the recto-sigmoidal 

junction, concurring with uncertainties existing with manual segmentation. These issues 

were addressed by including the seminal vesicles and sigmoid in the C-MP model, as shown 

in Figure 8(a,b), resulting in improved segmentation. Even with the challenges at the recto-

sigmoidal junction, the rectum segmentation was generally improved (shorter DSC range, 

and better overlap with ground truth) with the C-MP model (Figure 8b). Additionally, upon 

introducing abnormal anatomy in the testing data, the robustness of the model was probed. 

Figure 8c shows an example, where the auto-segmentation model correctly identified the 

median lobe and excluded it from the bladder contour. Taking in account the aforementioned 

challenges and the anatomical variations in the testing data, the accuracy comparison of the 

C-MP model with the recent publications (Table 4) clearly showcased superior accuracy of 

our bladder, rectum and prostate auto-segmentation.

For head and neck, the CT auto-segmentation and the manual editing can be tedious and 

time-consuming owing to the large number of OARs, small organ volumes, poor soft tissue 

contrast, and image artifacts (e.g., from dental implants)56. For the G-HN model, the dental 

artifacts resulted in incomplete delineation of the mandible in 2 out of 50 test cases. The 

auto-segmentation of the submandibular gland and left parotid gland was imperfect in nearly 

50% of the cases (Figure 6a). These substantial inaccuracies in these OARs were due to the 

high variability in their shapes and locations, as well as their proximity to vessels and/or the 

disease sites. These specific anatomic situations may not be fully represented in the training 

datasets, and consequently, the obtained model would result in inaccurate delineation in such 

situations (Figure 8d middle). The C-HN model was developed to incorporate additional 

relevant OARs and specifically address the issues of vessels in proximity of glands in 

low contrast regions. As shown in Figure 6b, the auto-segmentation for parotid glands, 
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and submandibular gland somewhat improved, a consequence of using a consistent cohort 

of site-specific training datasets. Another challenge in HN DL auto-segmentation is the 

presence of small organs39. In the earlier iterations of the C-HN model training process, we 

observed extremely poor segmentation for small organs, e.g., inner ears, eye lens and optic 

nerves. By using the ASR approach, the auto-segmentation accuracy for the small organs 

was substantially improved (Table 4). Recently, Gao et al., reported their solution to the 

auto-segmentation of small organs by using a two-stage deep neural network, FocusNetv 

with adversarial shape constraint57. Their average DSC for the inner ears is comparable with 

our result, 0.85 versus 0.83.

Abdomen is one of the most challenging tumor sites for CT auto-segmentation due primarily 

to the complex anatomy and poor soft tissue contrast. There are limited studies reporting 

DL auto-segmentation in abdomen in the literature. Mostly these studies focused on either 

relatively large or stable organs like liver, kidneys, and spleen33,58. To our knowledge, the 

current work is the first attempt to investigate DL auto-segmentation for 11 abdominal 

organs, including complex organs such as bowels. The gallbladder was not included 

in this study as it is often not a major concern in RT planning. Compared to other 

recently reported DL auto-segmentation work23,24,54, our DL models outperformed for 8 

out of 11 abdomen OARs. For the remaining three (aorta, right kidney, and pancreas), 

comparable results were seen for aorta and right kidney, whereas our model performed 

worst for the pancreas. The previous study using WBnet23 showed the higher accuracy 

with a DSC of 0.84 for pancreas. It is generally challenging to auto-segment pancreas 

on CT due to multiple factors including the lack of contrast with surrounding tissues59, 

heterogeneity inside the pancreas, and a potential bias in the training data. Moreover, 

in this study, the training data includes both diseased and normal pancreas cases, with 

more diseased cases used. Consequently, the auto-segmentation for healthy pancreas may 

become inaccurate as shown in Figure 7b, a liver cancer case. Moreover, in abdomen 

OAR segmentation, inaccuracies occur primarily at transition junctions like duodenojejunal 

and gastroesophageal. These inaccuracies are consistent with challenges faced in manual 

contouring. The most challenging organ segmentation is the bowels, separately labelled as 

large and small. In our results, a large variability in accuracy was observed due to anatomic 

complexity of the bowels, i.e., random changes in shape, location and volume variations 

owing to distensibility and contractility60. In addition, variable lengths of the CT scans 

also contributed to segmentation challenges. For DL auto-segmentation, these challenges 

lead to two scenarios; 1) incomplete segmentation of one or more loops of large bowel, 

e.g., missing descending colon, 2) mislabeling between the two bowels. To address some 

of these challenges, we introduced the PSE approach that led to increased DSC/MDA 

values for small and large bowels from 0.71/7.9 mm and 0.7/14 mm to 0.84/3.8 mm and 

0.87/2.37 mm, respectively. Representative image slices are shown in Figure S-1, where the 

auto-segmentation of three regions of bowels is compared with the ground truth, showing 

incomplete or mislabeled bowels, and improved bowel segmentation with the PSE approach.

Parallel to the quantitative evaluation of auto-segmentation accuracy, evaluation based on its 

time efficacy is relevant for clinical application of the DL auto-segmentation in RT planning. 

Other semi-automatic segmentation (e.g., atlas-based method) is known to save time, 

however, time efficacy assessment of DL auto-segmentation is almost nonexistent29,61–63. 
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Although DL auto-segmentation can be completed in a matter of seconds or minutes for 

all relevant OARs in a tumor site, manual edit for the inaccurate auto-segmented contours 

is required with the currently achievable performance of DL auto-segmentation and can 

take substantial time. In this study, we have estimated realistic time efficacy of the DL 

auto-segmentation for all the three anatomical sites. Increased efficiency with our DL 

auto-segmentation was demonstrated by substantial reduction of the time needed to auto-

segment, review, and manually edit versus the time required for the conventional manual 

contouring. The average time reductions were in the range of 65%−80% for the three tumor 

sites. Note that van der Veen et al. reported an average time saving of 33% for their DL 

auto-segmentation when compared to manual delineation for 16 OARs in the head and 

neck site64. In our study, we observed that, with our DL auto-segmentation techniques, the 

manual editing was not necessary for most of the OARs, except for the organs that are 

also considered challenging with manual contouring, e.g., pancreas, bowels, penile bulb, and 

inferior slices of glands.

Additionally, it was observed that the auto-segmented contours adhered closely to the 

contouring guidelines used in the training datasets. For example, the exclusion of the hilum 

of liver and kidneys in the training datasets was observed in the auto-segmented contours, 

indicating the robustness and reproducibility of our DL models (Figure 4e). For all the 

OARs, including those with inherently poor CT contrast (e.g., submandibular glands), the 

models trained using custom training datasets with the additional proximal organs and 

the consistent contouring guidelines showed slight improvement when compared with the 

general models.

This study has successfully contributed to the ongoing efforts to bring DL auto-segmentation 

into routine clinical practice, replacing the current labor-intensive and time-consuming 

manual contouring in RT planning process. There is still a large room for improvement65, 

motivating considerable on-going efforts including incorporating high soft tissue contrast 

imaging (e.g., MRI)51,53,66, developing robust algorithms (e.g., continual learning67), and 

using large and high-quality datasets.

Conclusions

We have successfully developed clinically applicable deep learning-based auto-segmentation 

models for 42 OARs in three major tumor sites by using a well-established DNCC network 

and incorporating organ-based approaches to improve model performance. The DL models 

trained with using either diversified multi-institutional datasets or well-controlled single 

institutional datasets can quickly generate clinically acceptable contours for most of the 

OARs, except for several complex organs that are also considered challenging in manual 

contouring. Performance of our DL models are generally better or comparable to those 

from the recent published studies with similar study scopes. The use of the DL models 

substantially reduced segmentation time and effort as compared to the manual contouring in 

radiation therapy planning process.
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Figure 1. 
A schematic of ResUnet3D network with encoding and decoding structures. Respective 

convolution layers of 3×3 kernel size is showed. The batch normalization layer is adopted 

between layers but is not shown explicitly in this scheme. The gray dotted arrows represent 

the long-range direct connection, and short skip connections and addition operations are 

embedded in the convolutional residual blocks. The array shape, for example, 320×320×64 

represents the resulting tensor sizes in each layer with ignoring the batch size = 1 and 

the depth of 3D volume. The last dimension number 64 represents the filter number (out-

channel number).
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Figure 2. 
A schematic of adaptive spatial resolution (ASR) approach for head and neck small and/or 

narrow organs.
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Figure 3. 
Accuracy metrics, 3D average dice similarity coefficient (DSC) and mean distance to 

agreement (MDA) for all 5 models are shown. a-b) General male pelvis (G-MP) model; 

c-d) general head and neck (G-HN) model; e-f) custom male pelvis (C-MP) model; g-h) 

custom head and neck (C-HN) model; i-j) custom abdomen (C-ABD) model. The whiskers 

in the box plot represent variability and individual data points represent outliers.
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Figure 4. 
Comparison of representative ground truth (shaded) and auto-segmented (thick lines) 

contours on axial slices of test CTs for the five models.
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Figure 5. 
Depiction of male pelvis model performance of all test cases for (a) General male pelvis 

(G-MP) model and (b) custom male pelvis (C-MP) model. For each subplot, x-axis is dice 

similarity coefficient (DSC) and y-axis is mean distance to agreement (MDA). Green circles 

and violet-red squares represent clinically acceptable and unacceptable cases respectively. 

The dashed lines indicate the TG-132 metrics tolerances (DSC > 0.8, MDA < 2mm).
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Figure 6. 
Clinical acceptability of all test cases for (a) general head and neck (G-HN) model and (b) 

custom head and neck (C-HN) model. For each subplot, x-axis is dice similarity coefficient 

(DSC) and y-axis is mean distance to agreement (MDA). Green circles and violet-red 

squares represent clinically acceptable and unacceptable cases respectively. The dashed lines 

indicate the TG-132 metrics tolerances (DSC > 0.8, MDA < 2mm).
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Figure 7. 
a) Performance of the custom abdomen model (C-ABD) of all test cases. For each subplot, 

x-axis is dice similarity coefficient (DSC) and y-axis is mean distance to agreement (MDA). 

Green circles and violet-red squares represent clinically acceptable and unacceptable cases 

respectively. The dashed lines indicate the TG-132 metrics tolerances (DSC > 0.8, MDA 

< 2mm); b) the ground truth (blue) vs. inaccurate auto-segmentation (yellow) for normal 

pancreas; c) ground truth (green) vs. inaccurate auto-segmentation (yellow) (mislabeled air 

pockets) for the large bowel, and ground truth (red) vs. inaccurate auto-segmentation (cyan) 

for the small bowel.
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Figure 8. 
a) A comparison of three contour sets: ground truth (cyan filled), general male pelvis 

(G-MP) segmentation (violet-red) and custom male pelvis (C-MP) segmentation (yellow) 

for prostate, seminal vesicle and rectum on an axial slice; b) a comparison of general 

male pelvis (G-MP) segmented rectum (red) with custom male pelvis (C-MP) segmented 

sigmoid (cyan) and rectum (purple) and ground truth (yellow); c) accurate segmentation of 

bladder is observed with exclusion of the median lobe, as observed by a good overlap of 

the general male pelvis (G-MP) segmentation (violet-red line) on the ground truth (cyan 

filled); and d) examples of the sub-optimal performance of general head and neck (G-HN) 

auto-segmentation (violet-red line) as compared with the ground truth (green filled) in 

the presence of artifacts and anatomical uncertainties. Showing from left-to-right are poor 

boundary delineation due to the low contrast, vessels in vicinity of submandibular glands, 

and image artifact from dental implants.
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TABLE 1.

Summary of presented models; including training/testing datasets for each and trained and evaluated 

(underlined) OARs.

# of training / testing 
CT datasets

# of trained OARs / nomenclature of OARs

General male pelvis (G-MP) 204 / 50 8 / Bladder, Prostate, Rectum, Femure_L, Femure_R, Pelvis_L, Pelvis_R, patient 
external

General head and neck (G-
HN) 65 / 50 8 / Brainstem, Bone_Mandible, Parotid_(L/R), Glnd_Submand_(L/R), SpinalCord, 

patient external

Custom male pelvis (C-MP) 50 / 10 11 / Bladder, PenileBulb, Prostate, Rectum, SeminalVes, Sigmoid, Femure_L, 
Femure_R, Pelvis_L, Pelvis_R, patient external

Custom head and neck (C-
HN) 47 / 10

19 / Brain, Brainstem, Bone_Mandible, Esophagus, Eye_(L/R), Inner Ear_(L/R), 
Larynx, Lens_(L/R), OpticNerve_(L/R), Parotid_(L/R), Glnd_Submand_(L/R), 
SpinalCord, patient external

Custom abdomen (C-ABD) 58 / 13 12 / A_Aorta, Bowel_Large, Bowel_Small, Duodenum, Kidney_(L/R), Liver, 
Pancreas, SpinalCord, Spleen, Stomach, patient external
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TABLE 2.

Summary of average accuracy metrics dice similarity coefficient (DSC) and mean distance to agreement 

(MDA) calculated for all models. The custom models shown in bold are the final results.

DSC ± std MDA ± std

General male pelvis (G-MP) model OARs

Bladder 0.95 ± 0.02 0.91 ± 0.41

Prostate 0.87 ± 0.04 1.38 ± 0.39

Rectum 0.89 ± 0.05 1.13 ± 0.75

General head and neck (G-HN) model OARs

Bone_Mandible 0.87 ± 0.04 0.68 ± 0.19

Brainstem 0.83 ± 0.10 1.46 ± 0.90

Gland_Submand_L 0.75 ± 0.10 1.39 ± 0.67

Gland_Submand_R 0.78 ± 0.10 1.27 ± 0.65

Parotid_L 0.82 ± 0.06 1.50 ± 0.62

Parotid_R 0.84 ± 0.04 1.36 ± 0.48

SpinalCord 0.81 ± 0.08 0.91 ± 0.35

Custom male pelvis (C-MP) model OARs

Bladder 0.96 ± 0.01 0.67 ± 0.08

PenileBulb 0.62 ± 0.14 1.82 ± 0.81

Prostate 0.88 ± 0.03 1.26 ± 0.36

Rectum 0.89 ± 0.03 1.13 ± 0.39

SeminalVes 0.82 ± 0.04 0.91 ± 0.13

Custom head and neck (C-HN) model OARs

Brain 0.98 ± 0.01 0.58 ± 0.21

Bone_Mandible 0.88 ± 0.03 0.68 ± 0.30

Brainstem 0.90 ± 0.01 0.20 ± 0.06

Esophagus 0.78 ± 0.06 0.98 ± 0.27

Eye_L 0.91 ± 0.01 0.13 ± 0.05

Eye_R 0.91 ± 0.01 0.15 ± 0.07

Gland_Submand_L 0.77 ± 0.10 1.30 ± 0.71

Gland_Submand_R 0.80 ± 0.07 1.10 ± 0.36

InnerEar_L 0.83 ± 0.01 0.24 ± 0.05

InnerEar_R 0.82 ± 0.02 0.32 ± 0.08

Larynx 0.85 ± 0.07 1.03 ± 0.42

Lens_L 0.74 ± 0.06 0.32 ± 0.07

Lens_R 0.80 ± 0.02 0.25 ± 0.07

OpticNerve_L 0.78 ± 0.01 0.36 ± 0.06

OpticNerve_R 0.79 ± 0.04 0.38 ± 0.14

Parotid_L 0.82 ± 0.05 1.52 ± 0.38

Parotid_R 0.82 ± 0.04 1.48 ± 0.40

SpinalCord 0.83 ± 0.06 2.27 ± 4.90

Custom abdomen (C-ABD) model OARs
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DSC ± std MDA ± std

A_Aorta 0.92 ± 0.03 0.71 ± 0.34

Bowel_Large 0.87 ± 0.13 2.37 ± 2.80

Bowel_Small 0.84 ± 0.15 3.80 ± 6.88

Duodenum 0.82 ± 0.09 2.10 ± 1.64

Kidney_L 0.96 ± 0.01 0.60 ± 0.20

Kidney_R 0.94 ± 0.02 0.97 ± 0.80

Liver 0.97 ± 0.01 0.76 ± 0.27

Pancreas 0.76 ± 0.09 1.92 ± 0.73

SpinalCord 0.88 ± 0.05 0.68 ± 0.29

Spleen 0.97 ± 0.01 0.50 ± 0.20

Stomach 0.95 ± 0.02 0.85 ± 0.37
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TABLE 3.

Improved segmentation with the custom head and neck (C-HN) model of small and mid-sized organs with the 

implementation of adaptive spatial resolution (ASR) approach. The best results with ASR are shown in bold.

Modified ResUnet3D Modified ResUnet3D with ASR

DSC MDA DSC MDA

Brainstem 0.842 1.293 0.904 0.202

Eye_L 0.891 0.810 0.913 0.130

Eye_R 0.909 0.589 0.914 0.153

Innerear_L 0.758 0.661 0.828 0.235

Innerear_R 0.720 0.732 0.818 0.315

Lens_L 0.240 1.567 0.743 0.316

Lens_R 0.191 1.846 0.803 0.246

Opticnerve_L 0.442 1.710 0.782 0.360

Opticnerve_R 0.268 2.390 0.792 0.377
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TABLE 4.

Comparison of dice similarity coefficients for selected OARs from the current work, the study by Chen et al23, 

the study by Isensee et al24, and the combined datasets51–54. Bold numbers represent the best results.

Current work Study by Chen23 Study by Isensee24 Combined datasets51–54

Bladder 0.96 0.93 0.92 0.95

Prostate 0.88 0.87

Rectum 0.89 0.8 0.83 0.89

Brain 0.98 0.95

Bone_Mandible 0.88 0.94 0.94 0.89

Brainstem 0.90 0.87 0.9 0.9

Esophagus 0.78 0.76 0.81 0.85

Eye_L 0.91 0.92 0.84 0.89

Eye_R 0.91 0.93 0.86 0.87

Gland_Submand_L 0.77 0.82 0.79

Gland_Submand_R 0.80 0.82 0.8

InnerEar_L 0.83 0.74 0.73 0.76

InnerEar_R 0.82 0.77 0.73 0.75

Larynx 0.85 0.9 0.79 0.9

Lens_L 0.74 0.83 0.77 0.79

Lens_R 0.80 0.84 0.79 0.77

OpticNerve_L 0.78 0.76 0.72 0.72

OpticNerve_R 0.79 0.75 0.75 0.72

Parotid_L 0.82 0.85 0.8 0.89

Parotid_R 0.82 0.85 0.78 0.88

SpinalCord 0.83 0.86 0.86 0.86

A_Aorta 0.92 0.94

Bowel_Large 0.87 0.8 0.82

Bowel_Small 0.84 0.82 0.81

Duodenum 0.82 0.77 0.74 0.69

Kidney_L 0.96 0.96 0.88 0.94

Kidney_R 0.94 0.96 0.89 0.95

Liver 0.97 0.94 0.96 0.96

Pancreas 0.76 0.84 0.83 0.79

SpinalCord 0.88 0.88 0.85

Spleen 0.97 0.96 0.95 0.95

Stomach 0.95 0.9 0.91 0.88
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