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Inhibition allocates spikes during hippocampal
ripples
Asako Noguchi1,6, Roman Huszár2,6, Shota Morikawa1,3, György Buzsáki 2,4✉ & Yuji Ikegaya 1,3,5✉

Sets of spikes emitted sequentially across neurons constitute fundamental pulse packets

in neural information processing, including offline memory replay during hippocampal sharp-

wave ripples (SWRs). The relative timing of neuronal spikes is fine-tuned in each spike

sequence but can vary between different sequences. However, the microcircuitry mechanism

that enables such flexible spike sequencing remains unexplored. We recorded the membrane

potentials of multiple hippocampal CA1 pyramidal cells in mice and found that the neurons

were transiently hyperpolarized prior to SWRs. The pre-SWR hyperpolarizations were spa-

tiotemporally heterogeneous, and larger hyperpolarizations were associated with later spikes

during SWRs. Intracellular blockade of Cl−-mediated inhibition reduced pre-SWR hyperpo-

larizations and advanced spike times. Single-unit recordings also revealed that the pre-SWR

firing rates of inhibitory interneurons predicted the SWR-relevant spike times of pyramidal

cells. Thus, pre-SWR inhibitory activity determines the sequential spike times of pyramidal

cells and diversifies the repertoire of sequence patterns.
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The timing of neuronal spikes is critical for neural coding1–3

and often generates spike sequences in which a set of
neurons serially fire action potentials. Spike sequences are

observed in many brain regions4–7 and are believed to be involved
in cognitive processes, including spatial memory6–8 and decision-
making7.

Spike times during sequences are regulated at the millisecond
level and are adaptively modifiable to generate diverse patterns of
spike sequences. Spike sequences are exemplified by memory
replays in sharp-wave ripples (SWRs), local field potentials that
reflect transient excitatory drives, and high-frequency oscillations
resulting from pyramidal cell-interneuron interactions in the
hippocampus9,10. Hippocampal pyramidal cells that are sequen-
tially activated during behavioral exploration are subsequently
reactivated as a time-compressed sequence of spikes during SWRs
while the animal is resting or sleeping11. This internal replay of
behavioral experiences has been posited to contribute to memory
consolidation, memory recall, and navigational planning12,13.
Interestingly, spike sequences during SWRs can be replayed in
both forward and backward directions depending on behavioral
states14,15. Moreover, a neuron that participates in a sequence is
reused in other sequences with different timings under different
contexts16,17. This flexible recruitment of neuron assemblies may
help increase the capacity of neural information using a limited
number of neurons18–21.

Several mechanisms have been proposed to explain sequential
spiking during SWRs16,22–24. Pyramidal cells with higher spike
rates fire earlier during SWRs than cells with lower spike rates16,
which indicates the contribution of the excitability of individual
neurons to spike times during SWRs. Another, but not mutually
exclusive, explanation attributes this phenomenon to anatomical
and molecular factors, such as cell-to-cell differences in specific
input connectivity and expression of receptors and channels24.
However, mechanisms involving either fixed intrinsic properties
or hard-wired neuronal networks cannot account for the flexible
spike organization that can vary across SWR events.

Sequential spike activity can be locally generated in the
CA1 subregion23, and thus, the microcircuit-based dynamics
within the CA1 subregion contribute to spike sequences. Inter-
neurons are often embedded in spike sequences and may provide
a temporal backbone for spiking pyramidal cells23. Consistent
with this idea, local interneurons fire temporally coordinated
spikes before or during SWRs25,26. In the present study, we
recorded intracellular activity simultaneously from multiple CA1
pyramidal cells to examine the mechanisms underlying flexible
sequential activity of CA1 pyramidal cells at the single-cell level
and found that preceding GABAergic inhibition dynamically
coordinates the spike times of individual pyramidal cells
during SWRs.

Results
Simultaneous patch-clamp recordings from multiple hippo-
campal CA1 pyramidal cells in vivo. We simultaneously patch-
clamped multiple pyramidal cells in the ipsilateral CA1 region of
the dorsal hippocampus of urethane-anesthetized mice while
monitoring CA1 local field potentials (LFPs) (Fig. 1a). Recordings
were excluded from the subsequent analyses if post hoc biocytin-
based visualization, their recording sites, and their firing prop-
erties failed to identify them as CA1 pyramidal cells. As a result,
we obtained two quadruple-patching datasets, 25 triple-patching
datasets (Fig. 1b), 74 double-patching datasets, and 32 single-
patching datasets from a total of 127 mice; the total number of
analyzed cells was 64. Recording periods ranged from 1min 53 s
to 34 min 57 s (median= 8 min 43 s), during which a total of
5971 SWRs were recorded in LFPs.

Pooled data from all 49 pyramidal cells that emitted at least one
spike during SWRs indicated that firing rates increased during
SWRs (Fig. 1c bottom), as shown in previous studies using unit
recordings27. The spike times were phase-locked to the ripple
oscillations (Supplementary Fig. 1), as reported in freely moving
animals10. Analyses of individual cells revealed that spike times
were widely distributed around SWRs (Fig. 1c top; 32.7 ± 36.1 ms
relative to the SWR onsets), indicating that individual neurons
were capable of flexibly jittering their spikes relative to the SWR
timing. Neither the means nor the standard deviations (SDs) of
SWR-relevant spike times were correlated with the distances from
the LFP electrode tips to the recorded cells (Supplementary
Fig. 2), indicating that spike times were not influenced by cell
locations, at least within our recording areas of φ < 800 μm.

Pre-SWR hyperpolarizations reflect inhibitory inputs. Sub-
threshold membrane potentials (Vm) were averaged across all
5971 SWRs recorded from 64 cells. Consistent with a previous
report28, the averaged trace consisted of (i) slow depolarization
starting ~1 s before SWRs, (ii) transient hyperpolarization ~50 ms
before SWR onset, and (iii) large depolarization during SWRs
(Fig. 2a, b top). The preceding hyperpolarization was reduced by
intracellular application of 120 mM cesium fluoride and 1 mM
4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (CsF-DIDS),
which blocks GABAA receptor-mediated Cl− conductance29

(Fig. 2b bottom, n= 341 SWRs in 31 cells). The Vm changes
immediately before SWRs (the ΔVmpre values) were
−0.20 ± 1.8 mV and 1.0 ± 3.3 mV for the control and CsF-DIDS
conditions, respectively (Fig. 2b bottom inset, P= 3.0 × 10−29,
t6317=−11.3, Student’s t-test, n= 5971 (control) and 348 (CsF-
DIDS) SWRs). The more positive values of ΔVmpre in the pre-
sence of CsF-DIDS support that the main effect of CsF-DIDS was
a reduction in inhibition. Indeed, inhibitory postsynaptic currents
(IPSCs) were reduced under the voltage-clamp configuration
using CsF-DIDS-loaded pipettes (Supplementary Fig. 3). We thus
concluded that pre-SWR hyperpolarizations reflected GABAergic
synaptic activity. Using a Cs+-based intrapipette solution, we
voltage-clamped pyramidal cells at Vm values of −70 and 10 mV
to isolate excitatory and inhibitory postsynaptic conductances
(EPSGs and IPSGs), respectively. The mean EPSG and IPSG
values during the period from 2000 ms before and 400 ms after
the onset of SWRs were 3.9 ± 3.1 nS and 3.4 ± 1.4 nS, respectively.
The mean traces of the time changes in EPSGs and IPSGs during
34 and 57 SWRs from 5 cells and their ratios are shown in Fig. 2c
on the left. Similar traces were previously reported in awake
mice30. We then plotted the time evolution of the mean con-
ductances around SWR events in the EPSG-versus-IPSG space
(Fig. 2c right) and found that IPSGs were dominant before SWRs
and thereafter became linearly balanced with EPSGs. Compared
to EPSGs, IPSGs during the pre-SWR periods were more variable
in size across SWRs, which suggests that the SWR-to-SWR
variability of ΔVmpre mainly reflected the variance in inhibition
(Supplementary Fig. 4).

Pre-SWR inhibition determines times of SWR-relevant spikes
and depolarizations. When GABAA receptor-mediated Cl−

conductance was intracellularly blocked by CsF-DIDS, first spike
times shifted to an earlier phase with respect to SWR onset
(Fig. 3a, P= 0.0064, D1185,230= 0.12, Kolmogorov–Smirnov test,
n= 1185 and 230 spikes from 49 control cells and 31 CsF-DIDS-
loaded cells, respectively). Thus, GABAergic inhibition delayed
SWR-relevant spike times. We then focused on individual SWR
events. The Vm values of a CA1 pyramidal cell were often
hyperpolarized immediately before SWRs, and the transient
hyperpolarization varied in magnitude between SWR events
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within a cell (Fig. 3b; mean ± SD: 0.49 ± 2.5 mV). Importantly,
greater hyperpolarization was associated with later spikes relative
to the SWR onset times (Fig. 3c, R=−0.34, P= 0.0069, t-test of
the correlation coefficient, n= 35 spikes). When all 556 SWR-
relevant spikes were pooled from 49 cells, the ΔVmpre values were
negatively correlated with the spike times (mean ± SD:
32.8 ± 27.7 ms) (Fig. 3d, R=−0.32, P= 2.8 × 10−14, t-test of the
correlation coefficient).

Within each cell, the number of spikes per SWR event was
positively correlated with ΔVmpre (Supplementary Fig. 5a). The
mean ΔVmpre values in active cells that emitted at least one SWR-
relevant spike during our recording period were not significantly
different from those in silent cells that did not emit any spike
during SWRs (Supplementary Fig. 5b), but the SDs of ΔVmpre in
active cells were higher than those of inactive cells (Supplemen-
tary Fig. 5c). These results suggest that presynaptic interneurons
of active cells exhibit more different levels of activity across SWR
events than those of inactive cells and that specific inhibition
regulates the spikes of pyramidal cells during SWRs.

Even when CA1 neurons did not fire action potentials, they
commonly depolarized during SWRs28. As in the case of spike times,
the depolarization peak times varied across SWRs (Fig. 4a; mean ±
SD: 43.7 ± 33.1ms) and were negatively correlated with ΔVmpre

(−0.20 ± 1.8mV) (Fig. 4b, c). The same result was reproduced in Vm
data obtained from unanesthetized head-fixed mice (Fig. 4d); the
depolarization peak times and ΔVmpre values were 37.5 ± 32.2ms
and −0.34 ± 2.0mV, respectively. Thus, irrespective of whether
neurons fired spikes, their subthreshold Vm values were subject to
inhibition tuning. Neither the means nor the SDs of the

depolarization peak times were correlated with the distances from
the LFP electrode tips to the recorded cells (Supplementary Fig. 6).

To examine whether pre-SWR activity of interneurons causally
contributes to the times of activity of pyramidal cells, we
optogenetically inhibited parvalbumin (PV)-positive interneurons
(Supplementary Fig. 7a). To express eNpHR, a natronomonas
halorhodopsin, in PV-positive interneurons, the adeno-associated
virus AAV-DIO-eNpHR-EYFP was injected into the dorsal
hippocampal CA1 area of PV-Cre knockin mice. Green light
stimulation (50-ms duration) was delivered every 3 s through an
optic fiber inserted into a patch-clamp recording pipette. Under this
stimulation protocol, some trials of optical stimulation happened
immediately before SWR onset. In this case, we observed no apparent
pre-SWR hyperpolarization in the patch-clamped pyramidal cells
(Supplementary Fig. 7c). Indeed, larger ΔVmpre values were observed
when the light stimuli were timed closer to the SWR onsets
(Supplementary Fig. 7d; R= 0.39, P= 0.049, t-test of the correlation
coefficient, n= 26 SWRs from 10 neurons), indicating that inhibiting
pre-SWR activity of PV-positive interneurons reduced pre-SWR
hyperpolarization. Furthermore, the closer the light stimuli were
timed to the SWR onset, the earlier the times of the depolarization
peaks occurred (Supplementary Fig. 7e; R=−0.41, P= 0.038, t-test
of the correlation coefficient, n= 26 SWRs from 10 neurons). Thus,
the pre-SWR activity of PV-positive interneurons delays the timing
of pyramidal neuron activity during SWRs.

Pre-SWR hyperpolarizations are spatiotemporally dynamic.
We conducted a pairwise analysis of subthreshold Vm dynamics
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Fig. 1 Simultaneous patch-clamp recordings from multiple hippocampal CA1 pyramidal cells in vivo. a Schematic depiction of in vivo patch-clamp
recordings from up to four neurons in the mouse hippocampus. The right photographs show post hoc biocytin-based identification of the recorded triplets
and the LFP electrode track. Scale bar= 200 µm. 10 triplets were recorded independently. b Representative traces of LFPs, 100–250 Hz bandpass-filtered
LFPs, and simultaneously recorded subthreshold Vm values of three cells. c Top: All spike times in a total of 49 cells are shown in a raster plot, in which the
cell order is sorted so that the distances from the LFP electrode tips are shorter in higher rows. The nine cases where we could not measure the distances
are shown in the nine bottom rows. Each vertical tick mark indicates a single spike. Red dots and lines are the means ± SDs of spike times in the
corresponding cells. Bottom: Distribution of all 1185 spike times in 49 cells relative to the SWR onsets. Source data is provided as a Source data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28890-9 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1280 | https://doi.org/10.1038/s41467-022-28890-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in a total of 46 double-patching datasets that contained at least 30
SWR events during the recording periods. The time differences in
their depolarization peaks were distributed at ~0 ms (Supple-
mentary Fig. 8; mean ± SD: 0.063 ± 41ms). Therefore, neither cell
tended to depolarize first during SWRs, and depolarization timing
could be switched back and forth between the cells in a pair; note
that in this analysis, the depolarization peak time of the lateral cell
was subtracted from that of the medial cell.

We then extended the multicell analyses to 10 triple-patching
datasets that contained at least 30 SWRs each. We found that
within individual SWR events, different neurons received
different magnitudes of inhibition (Fig. 5a top), indicating that
inhibitory influences were spatially heterogeneous. For each SWR,
the order of ΔVmpre among the three cells was plotted against the
order of the depolarization peak times (Fig. 5a bottom). When the
depolarization peak times were sorted to be 1→ 2→ 3 across
three cells, the ΔVmpre order 1→ 2→ 3 was overrepresented,
whereas the orders 3→ 1→ 2 and 3→ 2→ 1 were under-
represented, compared to the chance level estimated from
10,000 simulated trials in which ΔVmpres were randomly
swapped across cells in each SWR (Fig. 5b). Therefore, even
within a single SWR event, greater hyperpolarizations were
associated with later depolarizations. We next analyzed sets of
three simultaneously recorded cells that showed their depolariza-
tions in the “forward” or “reverse” orders; note that the medial-
to-lateral direction in the cell positions was defined herein as the
forward order. More specifically, we sorted three cells in order
from their medial to lateral positions, divided the order of
depolarization times into two directions, i.e., from medial to
lateral and from lateral to medial, and separately plotted the
ΔVmpre values for these two cases (Fig. 5c). As a result, the
orders of the ΔVmpre values were reversed when the orders of

depolarization times were reversed. These results suggest that
identical triplets tend to receive the reverse order of inhibitory
strengths when they exhibit depolarizations in the reverse order.

We next plotted the ΔVmpre of three cells along consecutive
SWR events. In a representative triplet (Fig. 6a), a positive
correlation of ΔVmpre was found between cells #1 and #3 but not
between the other pairs of cells (mean ΔVmpre ± SD: 0.49 ± 2.1,
−0.20 ± 1.4, 0.60 ± 3.2 mV for cells #1, 2, and 3, respectively); that
is, greater hyperpolarization in cell #1 was associated with greater
hyperpolarization in cell #3, and vice versa. Supplementary Fig. 9
summarizes the data of all 10 triplets, demonstrating that a
fraction of the cell pairs displayed a significant ΔVmpre

correlation. These partially correlated dynamics suggest the
presence of cell assemblies31,32. Cell pairs showing stronger
ΔVmpre correlations exhibited more strongly correlated depolar-
ization peak times (Fig. 6b; R= 0.44, P= 0.0020, t-test of the
correlation coefficients, n= 46 cell pairs). More strongly
correlated ΔVmpres were found in cell pairs that were spatially
closer together (Fig. 6c; R=−0.41, P= 0.0052, t-test of the
correlation coefficients, n= 46 cell pairs). The mean correlation
coefficients of ΔVmpre and the depolarization peak times were
0.33 ± 0.23 and 0.24 ± 0.19, respectively. The mean distances
between the pairs of cells were 151 ± 149 µm.

Pre-SWR interneuron firing predicts spike times of pyramidal
cells during SWRs. To further investigate the role of inhibition in
shaping the spike times during SWRs, we recorded single-unit
activity from 2490 putative pyramidal cells and 965 putative
interneurons from the dorsal CA1 region of 6 freely moving mice.
We first analyzed the firing rates of interneurons that were dis-
charged at a fixed time with respect to SWRs. Consistent with a
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previous report27, a subset of putative interneurons (n= 75;
7.78%) were discharged prior to the onset of SWRs (Fig. 7a). In
each interneuron, the times of the firing rate increases were
consistent among SWRs, although the magnitudes of the rate
increases varied (Fig. 7b left). We divided the magnitudes of
interneuron firing into quintiles (Fig. 7b left) to examine the
effects of high versus low pre-SWR inhibition. The latencies to the
first spikes of pyramidal cells were computed for each SWR, and
their averages across SWRs belonging to the same quintiles were
used to evaluate whether the spike times depended on the pre-
SWR inhibition magnitudes (Fig. 7c). The difference in the mean
spike latency between the first and fifth quintiles revealed the
changes in spike times, which were assessed for significance by
shuffling SWRs across quintiles (Fig. 7c inset). Of the 5639 paired
pyramidal cells, 297 cells (5.3%) exhibited significantly delayed
spike times following high pre-SWR inhibition (Fig. 7d left). The
delays in the spike times of pyramidal cells were accompanied by
reduced firing rates during SWRs (Fig. 7c, d right), indicating that
our quintile-based assessment accurately extracted the effects of
inhibition. For the activity of a single interneuron, the mean delay
in the spike times of a pyramidal cell was ~6 ms, which translated
to a delay of ~6% in its rank order in the sequence of pyramidal

cell firing (Fig. 7e). Given that spike sequences during longer-
duration SWRs include cells with lower firing rates and longer
spike latencies16, it is possible that the durations of SWRs
mediated the relationship between pre-SWR firing rates of
interneurons and spike latencies of pyramidal cells. Therefore, we
quantified the durations of SWRs for each quantile of pre-SWR
firing rates of interneurons (Supplementary Fig. 10). Increased
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pre-SWR firing rates of interneurons were not associated with
changes in the SWR durations, indicating that later spike latencies
after higher pre-SWR firing rates of interneurons were not merely
a result of longer SWR durations.

The effect of pre-SWR inhibition on the structure of sequences
was further investigated by fitting a hidden Markov model
(HMM) to pyramidal cell firing during SWRs belonging to the
first and fifth quintiles (Fig. 7f)33. Sequences in a given quintile
were explained less effectively by HMMs fitted to the other
quintile than by control HMM fits where SWRs were shuffled
across quintiles (Fig. 7g left, n= 128, P= 0.018, one-tailed
Student’s t-test). We performed 100 independent shuffles and
consistently reproduced the same effect (Fig. 7g right). These
results again suggest that the pre-SWR firing rates of a given
interneuron modulated spike sequences of pyramidal cells
during SWRs.

We next examined whether the relationship between the
activity of pre-SWR firing interneurons and the spike latencies of
pyramidal neurons was also observed in artificially imposed
network patterns (Fig. 8). For this purpose, we sparsely expressed
channelrhodopsin-(ChR2)-enhanced yellow fluorescent protein
(EYFP) fusion protein in a subset of CA1 pyramidal cells and
optogenetically induced SWR-like high-frequency oscillations10,23

by delivering 125-to-145-ms blue light pulses at intervals
randomly chosen from a range between 1.3 and 1.7 s. The
properties of the artificial SWRs did not depend on the blue light
intensities (Supplementary Fig. 11). For analyses, we focused on a
total of 38 interneuron-pyramidal cell pairs, in which pre-SWR
interneuron firings modulated pyramidal spike times in sponta-
neously occurring SWRs (Fig. 7), and the pyramidal neuron

discharged more than 10 spikes across light pulses. Light
stimulation-induced changes in the firing rates were highly
variable across the interneurons (Fig. 8b), presumably due to the
sparse expression of ChR2 and the anatomical structure of the
local circuitry. This variability indicates that we could artificially
activate or suppress some of the interneurons that were activated
before SWR onsets in the spontaneous conditions. We then took
advantage of this artificially induced increase or decrease in the
firing rates of the pre-SWR activated interneurons and examined
whether the induced changes in the interneuron firing rates
resulted in the corresponding changes in the spike times of the
associated pyramidal cells. We found a significant relationship
between the within-pulse interneuronal firing rates and the spike
latencies of pyramidal cells even under these artificial conditions
(Fig. 8c; Spearman ρ= 0.365, P= 0.024, n= 38 pairs). Moreover,
pre-SWR interneurons were activated earlier than the corre-
sponding pyramidal cells on average (Fig. 8d; n= 32/38 pairs,
84.2%). These results further support the idea that variable
interneuronal activity affected the spike latencies of their
corresponding pyramidal cells.

Heterogeneity in SWR-relevant interneuronal activity. In the
analyses above, we propose that heterogeneity in interneuronal firing
affects spike sequences of CA1 pyramidal cells. However, SWR-
relevant activity of interneurons is known to be highly synchronous
(Fig. 9a)34, and may be unable to regulate the spike times of pyr-
amidal cells at such a fine timescale. However, we also recognized
further heterogeneity underlying this synchrony (Fig. 9b). Specifically,
in different SWR subsets, interneurons were more or less synchro-
nous than they were on average. To quantify this observation, we fit a
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statistical model (generalized mixture model with multivariate Pois-
son observations) to extract ensembles of the SWR-relevant inter-
neuron firing (Fig. 9c–e)35. Across all the relevant sessions that had
interneurons firing prior to SWRs (as we analyzed in Fig. 7), there
was further heterogeneity in interneuron firing throughout SWRs.
More than 2 interneuron ensembles could be detected across all
sessions (Fig. 9f), which reflected more structure than could be
expected from different average SWR-related firing rates (Fig. 9g).
The ensembles reflected co-fluctuations around the interneurons’
average firing rates (Fig. 9h), indicating that interneurons fired reli-
ably and to different extent across ensembles, rather than partici-
pating exclusively in specific SWR subsets. These results suggest that
downstream pyramidal cells would receive different amounts of
inhibition across different SWRs, which further supports the idea that
heterogeneous inhibitory control of pyramidal cells could promote a
diverse repertoire of sequential patterns.

Discussion
We discovered that ΔVmpre in hippocampal CA1 pyramidal cells
was negatively correlated with the spike times during SWRs and
that the pre-SWR firing rates of interneurons partially predicted
the spike times of pyramidal cells. These findings propose a novel
role of inhibition in SWRs; that is, pre-SWR inhibition coordi-
nates spike sequences during SWRs, whereas during-SWR and

post-SWR inhibition was previously reported to suppress the
activity of competing cell assemblies and increase firing
specificity23,36. Our findings are also consistent with in vitro
studies demonstrating that artificial stimulation of a single
interneuron can initiate SWRs37 and sequential spikes of pyr-
amidal cells in hippocampal slices38.

We found that 5.3% of the interneuron-pyramidal cell pairs
had significantly negative correlations between the pre-SWR fir-
ing rates of the interneurons and the spike latencies of the pyr-
amidal cells. This small proportion may be accounted for by the
fact that unit recordings do not identify directly connected
interneuron-pyramidal cell pairs, whereas whole-cell recordings
capture the net inhibitory input into the recorded cells. Moreover,
inhibition does not directly lead to firing, and its contribution is
hardly detected using unit recordings and can be investigated
more appropriately using whole-cell recordings. In addition, we
consider that pre-SWR inhibition is one of the factors that can
regulate the spike times of pyramidal cells. Other factors, such as
dynamic excitation16,28, also contribute to spike times, making it
difficult to isolate the pure effect of pre-SWR inhibition. For
example, cells that fire earlier in spike sequences exhibit higher
firing rates, which suggests a functional link between excitability
and spike times16.
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Consistent with a previous study in which subthreshold Vm
activity of single neurons was recorded during in vivo SWRs28,
we observed approximately three phases in the Vm dynamics
around SWRs: (i) pre-SWR ramps, (ii) sharp depolarizations
during SWR, and (iii) post-SWR hyperpolarizations. In addition,
we found that reliable, but varying-magnitude, hyperpolariza-
tions occurred immediately before SWRs and demonstrated a
crucial role in spike sequences. A previous study also demon-
strated that pyramidal cells with more depolarized Vm showed
earlier depolarization peak times28; however, in this analysis,
SWR-relevant Vm dynamics were pooled from all SWRs in all
cells recorded, and the variability across SWRs or cells was
not considered. In the present study, we directly compared pre-
SWR inhibition to the subsequent spike time of a pyramidal cell
in each SWR event and extended this approach to multiple
whole-cell recordings and provided evidence that pre-SWR
inhibition is associated with sequential activity among multiple
pyramidal cells.

We showed no significant relationships between the relative times
of the cell activity to the SWR onsets and the distances between the
recorded cells and the LFP electrodes. A previous study reported that
SWRs propagate at 300–400 µm/ms along the septotemporal axis of
the hippocampus39. The range of the recording area in the present
study was φ < 800 µm. Thus, the time lag of SWRs along the posi-
tions of LFP electrodes is estimated to be <2ms, which is sufficiently
small for the time scales in our analyses (tens of milliseconds) and
does not affect our results.

Neurons are flexibly recruited in different orders for various
sequences, and sequences can be played either forward or
backward14,15. Because our data were recorded mainly from
head-fixed, anesthetized mice, we could not determine forward or
reverse replays of behaviorally relevant spike sequences. However,
at least in terms of the flexible sequence compositions of identical
groups of cells, pre-SWR inhibition with degrees of freedom
could be a candidate mechanism rather than neural mechanisms
based on hard-wired microcircuitry. In accordance with this idea,
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Fig. 5c suggests that the identical cell sets could receive inhibition
in the reverse order and exhibit depolarizations in the reverse
order. On the other hand, the flexibility of inhibition seems
inconsistent with the strict forward and reverse replays. The
behaviorally relevant excitatory drives from the CA3 and the
entorhinal cortex, and the partial contribution of the anatomical
structure may confine the order to activation.

It is intriguing that subthreshold Vm formed sequences among
multiple pyramidal cells. Sequences have been referred to as the
firing order, but our data suggest that even cells that are silent in a
sequence are ready to participate in the sequence. Subthreshold
dynamics may represent preadaptive states that are beneficial to
rapid and flexible plasticity in learning and memory or may
represent latent traces of plasticity that reflect past neural history.
Consistent with this idea, a recent study has demonstrated that
optogenetic prolongation of SWRs recruits spikes from a low-
firing population of pyramidal cells and extends the sequences16,
suggesting that some form of sequential activity pre-exists in
subthreshold Vm dynamics.

As a factor in the similar dynamics of the ΔVmpre values in cell
pairs, we showed that spatially clustered neurons receive more
similar pre-SWR inhibition, which is in line with a distance-
dependent decrease in the connection probability and strength of
GABAergic synapses. While the probability of place field repre-
sentation is thought to be randomly distributed in CA1 pyramidal
cells, regardless of their relative positions40, our result leads to the
question that spatially closer pyramidal neuron pairs should
behave similarly to more distant pairs. Additional studies with
large-scale single-unit recordings are needed to address this issue.

The currently dominant view about CA1 neural plasticity
assumes pyramidal-pyramidal neuronal interactions driven from
the upstream regions (often from CA3 pyramidal cells). Our data
suggest the role of inhibitory drives in spike sequences of pyr-
amidal cells, consistent with observations that synaptic connec-
tions between pyramidal cells and interneurons local to CA1 are
also plastic23,41–45. In addition to the non-uniform innervation of
interneurons by pyramidal cells, the mechanisms underlying the
heterogeneous inhibition of cell assemblies or their sequential
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activity may involve plastic changes in synaptic transmissions
between pyramidal cells and interneurons45.

It remains unclear how interneurons can be activated before
SWRs. Both CA1 pyramidal cells and interneurons receive exci-
tatory inputs from the CA3 network, a major site of SWR
initiation9. One possibility is that feedforward inhibition is more
strongly convergent than feedforward excitation. Excitatory
synapses on interneurons usually have higher transmission effi-
ciency than those on pyramidal cells46,47; thus, interneurons can
be activated earlier than pyramidal cells48. Indeed, CA1 pyr-
amidal cells and interneurons respond differently to CA3 network
synchrony in a nonlinear manner49, and a subset of interneurons
are rapidly recruited in the early phase of SWRs27. It is also
intriguing to consider the involvement of the CA2 region. CA2
neurons may directly activate CA1 interneurons while triggering
SWRs in the CA3 region, producing a multisynaptic delay of
excitation50. Consistent with the possible inhibitory role of CA2
pyramidal cells, their chemogenetic silencing facilitates reactiva-
tion of CA1 cell assemblies while it reduces the temporal preci-
sion of the reactivation, often advancing the reactivation times51.

Diverse classes of interneurons exist in the hippocampus,
exhibiting different patterns of SWR-related spikes52.
Parvalbumin-expressing basket and bistratified cells fire spikes
that were phase-locked to SWRs, whereas parvalbumin-
expressing axo-axonic cells are more likely inhibited during
SWRs52. Pre-SWR inhibitory synaptic inputs may be produced by
parvalbumin-expressing basket and bistratified cells, which are
directly innervated by CA3 pyramidal cells and can discharge tens
of milliseconds before SWRs. In support of this idea, some types
of interneurons in the CA1 pyramidal cell layer exhibit peaks in
their firing rates both before and after the maximum discharge
probability of CA1 pyramidal cells, suggesting that these cells are
activated by CA3 input before the discharge of CA1 pyramidal
cells and are inhibited in the middle of SWRs27. However, a
recent study demonstrated more detailed heterogeneity of
interneurons26. Further investigations using cell type-specific
observations and manipulations of the activity of interneurons are
necessary to clarify the interneuron class responsible for spike
sequencing.

Methods
Data. All data analyzed in this study were newly collected for this study and were
not reanalyses of past data.

Animals. Animal experiments for patch-clamp recordings were performed with
the approval of the Animal Experiment Ethics Committee at The University of
Tokyo (approval number: P29-9) and according to the University of Tokyo
guidelines for the care and use of laboratory animals. These experimental protocols
were carried out in accordance with the Fundamental Guidelines for Proper
Conduct of Animal Experiment and Related Activities in Academic Research
Institutions (Ministry of Education, Culture, Sports, Science and Technology,
Notice No. 71 of 2006), the Standards for Breeding and Housing of and Pain
Alleviation for Experimental Animals (Ministry of the Environment, Notice No. 88
of 2006) and the Guidelines on the Method of Animal Disposal (Prime Minister’s
Office, Notice No. 40 of 1995). All animals were housed under a 12/12-h light-dark
cycle (light from 07:00 to 19:00) at 22 ± 1 °C with food and water provided ad
libitum. For chronic extracellular recordings, all experiments were conducted with
the approval of the Institutional Animal Care and Use Committee of New York
University Medical Center.

Patch-clamp and LFP recording. Whole-cell recordings were obtained from
postnatal 28- to 40-day-old male ICR mice (Japan SLC, Shizuoka, Japan)53,54. After
exposure to an enriched environment for 30 min, the mice were intraperitoneally
anesthetized with 2.25 g/kg urethane. Anesthesia was confirmed by the absence of
paw withdrawal, whisker movement, and eyeblink reflexes. The skin was subse-
quently removed from the head, and a metal head-holding plate was fixed to the
skull. A craniotomy of 2.5 × 2.0 mm2 was performed55–57. The exposed hippo-
campal window was covered with 1.7% agar at a thickness of 1.5 mm. For
recordings from unanesthetized mice, mice were implanted with metal head-
holding plates under short-term anesthesia with 2–3% isoflurane. After more than

24 h of recovery, the mice received head-fixation training on a custom-made ste-
reotaxic fixture for 1–2 h per day. The training continued for up to 5 days until the
mice learned to remain calm. To increase the occurrence of SWRs, the mice were
exposed to an enriched environment for 1–2 h before electrophysiological
experiments58. One LFP-recording electrode and four patch-clamp pipettes were
serially inserted into the hippocampus. LFPs were recorded from the dorsal CA1
region using a tungsten electrode (3.5–4.5 MΩ, catalog #UEWMGCSEKNNM,
FHC, USA) coated with a crystalline powder of 1,1′-dioctadecyl-3,3,3′,3′-tetra-
methylindocarbocyanine perchlorate (DiI). Whole-cell patch-clamp recordings
were obtained from neurons in the CA1 pyramidal cell layer (AP: −1.0 to
−3.0 mm; ML: 1.0–2.5 mm; DV: 1.1–1.3 mm) using borosilicate glass electrodes
(3–8MΩ). Pyramidal cells were identified based on regular spiking properties in
response to step-pulse current injection and morphological features, including
apical, oblique, and basal dendrites with spines, in post hoc histology. A cell was
discarded unless it was identified as a pyramidal cell. For current-clamp recordings,
the intrapipette solution consisted of the following reagents: 120 mM K-gluconate,
10 mM KCl, 10 mM HEPES, 10 mM creatine phosphate, 4 mM MgATP, 0.3 mM
Na2GTP, 0.2 mM EGTA (pH 7.3), and 0.2% biocytin. The intrapipette solution to
prevent Cl−-mediated inhibitory currents consisted of the following reagents:
120 mM CsF, 10 mM KCl, 10 mM HEPES, 5 mM EGTA, and 1 mM DIDS. Liquid
junctions were corrected offline. Cells were discarded when the mean liquid resting
potential exceeded −50 mV and the action potentials were below −20 mV. For
voltage-clamp recordings, the intrapipette solution consisted of the following
reagents: 130 mM CsMeSO4, 10 mM CsCl, 10 mM HEPES, 10 mM phosphocrea-
tine, 4 mM MgATP, 0.3 mM NaGTP, and 10 mM QX-314. Cells were discarded if
the access resistance exceeded 60MΩ. Signals recorded by LFP electrodes were
amplified using a DAM80 AC differential amplifier. Signals recorded by patch-
clamp electrodes were amplified using MultiClamp 700B amplifiers. Both types of
signals were digitized at a sampling rate of 20 kHz using a Digidata 1440A digitizer
that was controlled by pCLAMP 10.3 software (Molecular Devices).

Histology. Following each experiment, the electrode was carefully withdrawn. The
mice were transcardially perfused with 4% paraformaldehyde followed by over-
night postfixation. The brains were sagittally sectioned at a thickness of 100 μm
using a vibratome. The sections were incubated with 2 μg/ml streptavidin-Alexa
Fluor 594 (647 for the experiments using PV-Cre mice in Supplementary Fig. 7)
conjugate and 0.2% Triton X-100 for 4 h, followed by incubation with 0.4%
NeuroTrace 435/455 Blue Fluorescent Nissl Stain (Thermo Fisher Scientific;
N21479) for 2–4 h. For each section, 6–31 fluorescent images were acquired at a Z-
step size of 2.0 µm using an Olympus FV1000 or FV1200 confocal microscope with
a ×10 dry objective lens (numerical aperture: 0.4) and were stacked as maximum-
intensity Z-projections. The location of each LFP electrode was detected based on
the track of DiI fluorescence. The cell morphology was evaluated based on the
silhouette of Alexa Fluor 594 fluorescence. Recorded cells and post hoc visualized
cells were matched by reference to the positions of the glass electrode tips relative
to the brain surface. The locations of LFP electrodes and recorded cells were
measured; the positions of the soma and the electrode tips were roughly aligned
along the proximodistal axis in sections, and their coordinates were then three-
dimensionally reconstructed and calculated on the x-(mediolateral) and y- (ante-
roposterior) axes relative to the bregma.

To confirm the expression of eNpHR3.0-EYFP in PV-positive interneurons
(Supplementary Fig. 7), we conducted immunohistochemical staining after post
hoc visualization of patch-clamped cells. For immunohistochemical staining,
sections were blocked with 10% goat serum and 0.3% Triton X-100 in PBS for
60 min and incubated with a chicken primary antibody against green fluorescent
protein (GFP; 1:1000, ab13970, Abcam) and a guinea pig primary antibody against
parvalbumin (1:500, 195 004, Synaptic Systems) for 16 h. Sections were washed
three times for 10 min with PBS and incubated with Alexa Fluor 488-conjugated
goat secondary antibody against chicken IgG (1:500, A11039, Thermo Fisher
Scientific), Alexa Fluor 594-conjugated goat secondary antibody against guinea pig
IgG (1:500, A11076, Thermo Fisher Scientific), and blue fluorescent NeuroTrace
(1:500, N21479, Thermo Fisher Scientific, MA, USA) for 6 h.

ΔVm analysis. Data were analyzed offline using custom-made MATLAB (R2017b,
Natick, Massachusetts, USA) routines. The summarized data are reported as the
means ± SDs unless otherwise specified. For box plots, the centerline shows the
median, the box limits show the upper and lower quartiles, the whiskers cover
10–90% quantiles, and the points are all data points. For correlation plots, the
significance was determined based on Pearson’s correlation coefficient and a t-test
of the correlation coefficients. P < 0.05 was considered statistically significant. All
statistical tests were two-sided.

To detect SWRs from LFP traces recorded by a tungsten electrode, LFP traces
were downsampled to 500 Hz and bandpass filtered between 100 and 250 Hz.
Ripples, referred to here as SWRs, were detected at a threshold of 3 × SD of the
baseline noise59. The detected events were subsequently scrutinized by eye and
manually rejected if the detection was erroneous. We used patching datasets that
included at least 30 SWRs for further analyses.

Spikes were detected as peaks during periods with Vm greater than −20 mV in
raw 20-kHz traces of whole-cell recordings. To average subthreshold Vm values,
spikes were truncated as follows: (i) raw Vm traces were smoothed using the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28890-9 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1280 | https://doi.org/10.1038/s41467-022-28890-9 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


moving average with a window of 1 ms, (ii) the minimum index at which the rate
of change exceeded 4 V/s was detected as the leading edge of a spike, and (iii) traces
were linearly interpolated from the leading edge until the time point that first
showed a Vm value below the edge value. When multiple edges, such as those of
complex spikes, were detected within a period of 30 ms, these edges were
individually interpolated from the previous edge until the next time point that first
showed a Vm value below the edge value. They were aligned to the SWR onset
times and additively averaged across SWRs.

To quantify Vm during SWRs, we searched for the highest peak value of Vm
between −20 ms and +120 ms relative to the SWR onset time. ΔVmpre was
computed for each SWR event accompanied by depolarization. To quantify
ΔVmpre, we first averaged Vm between −2000 ms and −1000 ms relative to the
SWR onset time as the baseline Vm. We then identified the time point that gave the
minimum Vm between −50 and 0 ms relative to the SWR onset time (pre-SWR).
Vm was averaged between −25 ms and +25 ms relative to the time point, and the
baseline Vm was subtracted to obtain ΔVmpre.

For SWR-triggered analysis of excitatory and inhibitory postsynaptic
conductances (EPSGs and IPSGs), we took a postsynaptic current at a given time
between −2000 ms and +400 ms relative to the SWR onset and subtracted the
mean current between −2000 ms and −1000 ms. The current traces were averaged
across SWRs. EPSGs and IPSGs were calculated as IE/I/(Vh− Erev, E/I), where IE/I is
the excitatory/inhibitory current at a given time; Vh is the holding potential of
−70 mV and +10 mV for EPSGs and IPSGs, respectively30; and Erev and E/I are the
reversal potentials of 0 mV and −90 mV for EPSGs and IPSGs, respectively60.

Optogenetical manipulation with patch-clamp and LFP recordings. For opto-
genetical manipulation (Supplementary Fig. 7), PV-Cre mice (Stock No. 017320,
The Jackson Laboratory) were used. Three- to four-week-old mice anesthetized
with isoflurane (Pfizer Inc., New York, NY) were placed in a stereotaxic frame.
AAV-Ef1a-DIO-eNpHR 3.0-EYFP (1.56 × 1013 VG/ml, 300 nl; Addgene plasmid #
26966) was unilaterally injected into the dorsal hippocampal CA1 area (caudal
−1.9 mm, lateral +1.6 mm from the bregma, and ventral 1.0 mm from the surface
of the brain) at a rate of 100 nl/min using a syringe pump (KD Scientific Inc.,
Holliston, MA, USA) connected to glass pipettes (30-0034; Harvard Apparatus,
Holliston, MA). After the surgery, the mice were returned to their home cages.
More than 2 weeks after the virus injection, the mice were prepared for in vivo
whole-cell recordings as mentioned above. Simultaneous optical stimulation (50-
ms duration, 3-s intervals, 5–8 mW) was delivered using a 561-nm laser (MGL-FN-
561, Changchun New Industries Optoelectronics Technology, Changchun, China)
through optical fibers in the glass pipettes held by a homemade pipette holder with
two holes for the silver wire and the optical fiber.

Unit recordings. For chronic extracellular recordings, adult wild-type C57BL/6J
mice from Charles River Laboratory (5 male, 1 female; 4–6-month old) were
anesthetized with 1.5–2% isoflurane and implanted with silicon probes (Cambridge
NeuroTech; ASSY-156-E-1) directed at the dorsal CA1 region (2 mm posterior and
1.7 mm lateral to bregma). Half of the animals had probes implanted in the left
hemisphere, while the other half had probes implanted in the right hemisphere. All
animals expressed ChR2-EYFP in a subset of CA1 pyramidal cells (pAAV-CaM-
KIIa-hChR2(H134R)-EYFP; Addgene plasmid # 26969), transfected with in utero
electroporation. Each probe was mounted on a custom-built microdrive and
implanted at a 45° angle along the anteroposterior axis at a depth of ~0.7 mm.
Craniotomies were sealed with a mix of dental wax and mineral oil, and a copper
mesh cage was constructed to provide shielding. A stainless steel screw placed over
the cerebellum served as the ground. Postoperatively, animals received a single
intramuscular injection of 0.06 mg/kg buprenorphine (0.015 mg/ml), followed by
additional doses as needed for the following 1–3 days. Following a 7-day recovery
period, neural signals were recorded in the home cage while probes were advanced
into the CA1 pyramidal layer, which was identified physiologically via sharp wave
reversal. Neural data were amplified and digitized at 30 kHz using Intan amplifier
boards (RHD2132/RHD2000 Evaluation System, Intan). All recordings (39 sessions
ranging in duration from 113.7 min to 473.7 min; median duration= 317.4 min)
were performed in the home cage while animals cycled between sleep and wake
status.

Unit isolation and classification. Spikes were extracted and classified into putative
single units using Kilosort61. Manual curation was performed in Phy software with
the aid of custom-built plugins. Throughout the manual curation step, isolation
quality was judged by inspecting cross-correlograms for incorrect splits of single
units (i.e., autocorrelogram structure detectable in the cross-correlogram). Cells
were classified as putative pyramidal cells and interneurons via CellEx-
plorer (https://cellexplorer.org). Briefly, putative interneurons were identified via
hard thresholds imposed on the waveform shape (trough to peak) and the auto-
correlogram rise and decay time constants. A total of 2490 well-isolated putative
pyramidal cells and 965 putative interneurons were identified in this way.

SWR detection from silicon probe recordings. Ripples, referred to here as SWRs,
were detected as described in Tingley et al.62. In short, wideband signals were
downsampled to 1250 Hz and bandpass filtered between 130 and 200 Hz using a

fourth-order Chebyshev filter, and the normalized squared signal was calculated.
SWR peaks were detected by thresholding the normalized squared signal at 5 SDs
above the mean, and the surrounding SWR start and stop times were identified as
crossings of 2 SDs around this peak. SWR duration limits were set to be between 20
and 200 ms. An exclusion criterion was provided by designating a ‘noise’ channel
(no detectable SWRs in the LFP), and events detected on this channel were
interpreted as false-positives (e.g., electromyography artifacts).

Unit analysis. Interneurons that fired prior to SWRs were identified by inspecting
their peri-event time histograms around the onsets of SWRs (2.5-ms bins). Overall,
peak firing times with respect to SWR onset were skewed toward positive values
(peak firing following SWR onset). For statistical analysis, the 75 interneurons with
the most negative peak firing times were selected. All of these values fell 1.5 SDs
below the mean time of peak firing.

To estimate the interneuron firing rate prior to the onset of a single SWR, the
spike trains of interneurons were smoothed using a Gaussian kernel with a full
width at half maximum of 15 ms. The average rate in a 30-ms window prior to
SWR onset was used as an estimate of the pre-SWR rate. The distribution of pre-
SWR rates was divided into quintiles, effectively grouping SWRs by the magnitude
of prior interneuron firing (Q1= high firing rate quintile; Q5= low-firing rate
quintile).

For each pyramidal cell, the latency to the first spike and the rank order were
computed for each SWR. Rank order was defined as the normalized temporal firing
position in the sequence of all pyramidal cells participating in the SWR. The
average latency to the first spike was then computed within each quintile. The
difference in spike latency averages was computed between Q1 and Q5 to estimate
delays in pyramidal cell spike latency (longer latencies in Q1 than in Q5) that were
concomitant with changes in pre-SWR interneuron rates. To quantify the
significance of these differences, latencies to the first spike were shuffled across
quintiles, and the spike latency averages between Q1 and Q5 were recomputed.
This procedure was repeated 500 times to generate a null distribution. Observed
spike latency changes outside the 95% confidence interval were considered
significant.

Sequence analysis. To capture the statistics of sequential firing within SWRs,
HMMs with Poisson emissions were fitted to binned spike count data33. For each
SWR, spikes from N putative pyramidal cells were binned into nonoverlapping
15 ms bins, resulting in a sequence of spike count vectors y1:T that was treated as a
single observation under the model. At any given time point, the network was
assumed to dwell in one of M latent states St 2 f1; :::;Mg, and transitions between
states were assumed to be first-order Markovian, i.e., PðSt jSt�1; St�2Þ ¼ PðSt jSt�1Þ.
Within each state, the spike count of each neuron was treated as arising from a
Poisson process. Given a training set D consisting of X SWRs, the model likelihood
is as follows:

PðD; SjΘÞ ¼
YX

i¼1
PðyðiÞ1:Ti

jΘ; SðiÞ1:Ti
ÞPðSðiÞ1:Ti

Þ ð1Þ

where Θ 2 fπ;A;Λg are the model parameters, π is a 1 ×M vector specifying the
probability distribution over states at the start of each sequence, A is an M ×M
transition probability matrix, and Λ is an N ×M matrix holding the expected spike
counts of the N neurons in each of the M states. Parameters were estimated using
the expectation maximization (EM) algorithm, and the log-likelihood of each SWR
sequence was calculated using the forward-backward algorithm. Across all sessions,
the hyperparameter M, representing the number of states, was set to 15, a value
identified via twofold cross-validation.

To compare the statistical structure of sequences of SWRs preceded by different
interneuron firings, HMMs were fitted separately to Q1 and Q5 SWRs (the fastest
and slowest pre-SWR rates, respectively), and the log-likelihoods (normalized to
the lengths of the sequences) were evaluated for each set of SWRs. More
specifically, the HMM was fitted to a particular quintile of SWRs, Qtrain (e.g., Q1),
making the remaining quintile the test set, Qtest (e.g., Q5). The difference of
normalized log-likelihoods LL(Qtest)− LL(Qtrain) was used to estimate the
dissimilarity of the sequences across SWR quintiles. A negative value indicated that
the HMM more accurately captured sequences on which it was trained than
sequences from the test set. Each interneuron exhibiting pre-SWR firing associated
with a pyramidal cell spike delay (n= 64 interneurons) yielded a unique grouping
of SWRs into quintiles, and for each such grouping, two differences in likelihood
values were estimated (fit on Q1, test on Q5; fit on Q5, test on Q1), resulting in
n= 124 values. As a control, SWRs were randomly reassigned to quintiles, and the
differences in log-likelihoods under refitted HMMs were computed.

Interneuron firing heterogeneity in SWRs. In recording sessions where we
identified interneurons whose pre-SWR firing was associated with delayed spiking of
pyramidal cells, a generalized mixture model framework was adopted using a Python
toolbox (https://pomegranate.readthedocs.io/en/latest/GeneralMixtureModel.html) to
further quantify the heterogeneity of interneuron firing across SWRs. For each SWR,
we obtained the spike count across N interneurons, resulting in vector yð1:NÞ . These
data were assumed to arise from one of M discrete latent states (“ensembles”), where
the spike count of each interneuron followed a Poisson distribution. Given a training
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set D consisting of X SWRs, the model likelihood was as follows:

PðDjΘÞ ¼
YX

i¼1
∑M

j¼1πjPðyðiÞ1:N jλjÞ; ð2Þ
where Θ 2 π; λf g are the model parameters; π is a vector ofM ensemble probabilities
(summing to 1), and λ is an N ×M matrix of expected spike counts, one for each of
the N interneurons in each of the M ensembles. Parameters were estimated via the
EM algorithm. In each session, M was a free parameter estimated via 20-fold cross-
validation63,64. For a set value ofM, spanning a range from 2 to 30, the test data log-
likelihood (LL) was averaged across the 20 “test” folds and expressed as a deviance
(−2 × LL). Deviance tended to decrease as M increased across sessions (Fig. 9d, e),
which we captured analytically using a monotonically descending exponential func-
tion. The number of ensembles M was chosen to be the value that maximized the
curvature of this function, i.e., the value just before the curve plateaus. With an
identified number of ensembles M, the goodness-of-fit was assessed against a sur-
rogate dataset. Briefly, the same 20-fold cross-validation was performed, with data LL
computed on each test fold. In addition, we computed the LL on a surrogate fold, in
which spike counts were randomly permuted across test set SWRs for each inter-
neuron, thereby breaking their co-firing statistics while preserving their average spike
counts. The difference between these LLs was stored, and the procedure was repeated
50 times for each fold, resulting in 50 × 20= 1000 LL differences per session. Positive
LL differences indicate that the LL of the original data exceeds that of their shuffled
surrogates. The distribution of LL differences in each session was tested for sig-
nificance using a one-sample t-test.

Optically induced high-frequency oscillations. To explore the relationship
between the firing rates of interneurons and the spike timing of pyramidal neurons
in the context of an artificially imposed network pattern, we considered a subset of
recording sessions that involved optogenetically induced high-frequency
oscillations10,23. Blue light pulses were 125–145 ms in duration and delivered at
intervals randomly chosen from a range between 1.3 and 1.7 s. In each pulse, light
intensity was ramped up using a 5 Hz quarter sinusoid with a pulse-like offset.
Light was delivered in blocks of 5, with increasing light intensity across pulses. In
all sessions, all light intensities produced high-frequency oscillations. A total of
500–1000 pulses were delivered per session. Blue light was delivered via a 100 µm
diameter optic fiber attached to the silicon probe using laser diodes driven by the
open-source Cyclops LED driver65 (https://github.com/jonnew/cyclops). Our
analysis focused on interneuron-pyramidal cell pairs in which pre-SWR inter-
neuron firing affected pyramidal spike timing in spontaneously occurring SWRs.
The intersection of these pairs with sessions that included optogenetically induced
high-frequency oscillations resulted in a total of 50 interneuron-pyramidal cell
pairs across 8 sessions and 3 animals. Pairs in which the pyramidal neuron dis-
charged fewer than 10 spikes across light pulses were discarded, resulting in n= 38
pairs in the final analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The extracellular dataset generated for the current study will be made publicly available
in the Buzsáki lab repository (https://buzsakilab.nyumc.org/datasets/). Any additional
data that support the findings of this study are available from the corresponding author
upon reasonable request. Source data are provided with this paper.

Code availability
All code used in this study is available from the corresponding authors upon reasonable
request.
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