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Global monthly gridded 
atmospheric carbon dioxide 
concentrations under the  
historical and future scenarios
Wei Cheng   1,2, Li Dan3 ✉, Xiangzheng Deng   1,2,4 ✉, Jinming Feng3, Yongli Wang3 ✉, 
Jing Peng3, Jing Tian1 ✉, Wei Qi5, Zhu Liu   6, Xinqi Zheng7,8, Demin Zhou9,10, Sijian Jiang1,2, 
Haipeng Zhao7,8 & Xiaoyu Wang9,10

Increases in atmospheric carbon dioxide (CO2) concentrations is the main driver of global warming due 
to fossil fuel combustion. Satellite observations provide continuous global CO2 retrieval products, that 
reveal the nonuniform distributions of atmospheric CO2 concentrations. However, climate simulation 
studies are almost based on a globally uniform mean or latitudinally resolved CO2 concentrations 
assumption. In this study, we reconstructed the historical global monthly distributions of atmospheric 
CO2 concentrations with 1° resolution from 1850 to 2013 which are based on the historical monthly and 
latitudinally resolved CO2 concentrations accounting longitudinal features retrieved from fossil-fuel CO2 
emissions from Carbon Dioxide Information Analysis Center. And the spatial distributions of nonuniform 
CO2 under Shared Socio-economic Pathways and Representative Concentration Pathways scenarios 
were generated based on the spatial, seasonal and interannual scales of the current CO2 concentrations 
from 2015 to 2150. Including the heterogenous CO2 distributions could enhance the realism of global 
climate modeling, to better anticipate the potential socio-economic implications, adaptation practices, 
and mitigation of climate change.

Background & Summary
Recent satellite retrievals provide a continuous global spatial products of both column CO2, e.g., from the 
Chinese Global Carbon Dioxide Monitoring Scientific Experimental Satellite (TanSat), the Orbiting Carbon 
Observatory-2 (OCO-2) and the Greenhouse Gases Observing Satellite (GOSAT); and also mid-tropospheric 
CO2, e.g., the atmospheric infrared sounder (AIRS), those reveal the nonuniform distributions of 
mid-tropospheric CO2 concentrations1–6. The satellite-derived distributions of tropospheric CO2 are generally 
consistent with each other, though some regional discrepancies between the satellite products have been attrib-
uted to lack of independent reference observations constraints5,7. The areas with low atmospheric CO2 concen-
trations are in the high latitudes and the lack of any large CO2 emissions areas1. The areas with relatively high 
CO2 concentrations (30°S-60°N) are formed due to high CO2 emissions from ground sources, and the horizontal 
and vertical movements of winds1,8. These satellite CO2 concentrations retrievals provide a potential opportunity 
to investigate atmospheric CO2 variability at the planetary scale.
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Few climate simulation studies have been based on a globally non-uniform mean CO2 distribution pat-
terns9–11. Those produce a bias reduction in estimated mean temperatures, and consequently some under-
standing of the response of Earth’s system to the actual nonuniform CO2 concentrations. In the Beijing Normal 
University Earth System Model (BNU-ESM), the inhomogeneous CO2 simulations are driven by annual CO2 
concentrations with spatial and seasonal changes derived from satellite observation10. While in the Community 
Earth System Model (CESM), spatially inhomogeneous CO2 runs use prescribed gridded national-level monthly 
or annual CO2 emissions weighted by the grid’s population density9,11. Both BNU-ESM and CESM simulations 
with spatially inhomogeneous CO2 reproduce the progressive increases in temperature with better agreement 
with spatially distributed global surface air temperature observations than using spatially homogeneous simula-
tions10,11. The heterogenous CO2 distributions could enhance the realism of global climate modeling.

Climate modeling taking into account the CO2 distribution could address some of the known biases in tem-
perature in the control simulations11. Including the heterogenous CO2 distribution could enhance the realism 
of global climate modeling. Using BNU-ESM, global mean surface air temperature is in the inhomogeneous 
CO2 simulations is approximately 0.3 °C lower than that in spatially uniform runs over the period 1986–2005, 
reducing the warming bias seen in the uniform runs compared with the HadCRUT4 observations10. In CESM, 
spatially homogeneous CO2 simulations overestimated climate warming over the Arctic, tropical Pacific, while 
underestimated warming in the mid-latitudes, over most land areas9. The inhomogeneous runs simulated by 
CESM during 1950–2000 produces lower temperatures at both poles than the homogeneous runs, by up to 1.5 
°C including statistically significant cooling over the Barents Sea area11.

The surface air temperature responses to spatially inhomogeneous atmospheric CO2 concentrations are 
mainly controlled by changes in large scale atmospheric circulations, e.g., the Hadley cell, westerly jet, Arctic 
Oscillation and Rossby waves8–11. Local surface air temperature anomalies under nonuniform CO2 simulations 
are affected by the CO2 physiological response over vegetated areas. The land plants adjust to changes in atmos-
pheric CO2 by altering their stomatal conductance, which consequently affects the water evapotranspiration 
from plant leaf to atmosphere12. This affects environmental temperature through evaporative cooling, and the 
evaporated moisture alters the air humidity and influences low cloud amounts by the water vapor diffusion, 
which is especially obvious in summer when the plants grow vigorously. In the polar areas, the degree of warm-
ing amplification depends strongly on the locally distribution of CO2 radiative forcing, specifically through 
positive local lapse-rate feedback, with ice-albedo and Planck feedbacks playing subsidiary roles, also suggesting 
that inhomogeneous spatial distributions of CO2 concentrations is consistent with significant climatic effects13. 
In marine ecosystems, non-uniform atmospheric CO2 and temperature biases could affect the uptake and stor-
age of CO2 in the ocean, which will change regional atmospheric CO2 concentrations, ocean pH, ocean oxygen 
concentrations and primary production14.

Existing studies with spatially homogeneous atmospheric CO2 concentrations may have underestimated 
the temperature gradient from mid-latitudes to high latitudes. Some atmospheric circulation patterns, e.g., 
the Hadley cell, westerly jet and Arctic Oscillation are theoretically related to the mid- to high-latitude tem-
perature gradients, and are hence potentially incorrectly simulated9. Spatially homogeneous atmospheric CO2 
simulations underestimate interannual variability in regional temperature and precipitation relative to the 
inhomogeneous simulations9 and so can result in underrating magnitudes and frequencies of extreme event 
such as droughts, heat waves, floods, and hurricanes12. The upper 3 m of Arctic permafrost holding twice as 
much carbon as the atmosphere is accelerating its thaw due to the intensification of Arctic warming, leading to 
Greenhouse gases release and accelerating global warming15. Biases of temperature from spatially uniform CO2 
responses to ice-albedo-temperature feedbacks would lead to overestimated polar warming relative to inhomo-
geneously distributed CO2 in the historical period13.

However, climate simulation studies are almost based on a globally uniform mean CO2 or latitudinally 
resolved CO2 datasets for the historical and future scenarios in the Climate Model Intercomparison Project16–19. 
In the models including representation of the carbon cycle, the CMIP simulations can be driven by prescribed 
CO2 emissions accounting explicitly for fossil fuel combustion19. Feng et al.20 provided spatially distributed 
anthropogenic emissions historical data with annual resolution and future scenario data in 10-year inter-
vals for CMIP6. There is near-real-time daily CO2 emission dataset monitoring the variations in CO2 emis-
sions from fossil fuel combustion and cement production since January 1, 2019 at the national level21. Shan 
et al.22 constructed the time-series of CO2 emission inventories for China and its 30 provinces following the 
Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial admin-
istrative scope. The other CMIP simulations can be driven by prescribed CO2 concentrations, which enables 
these more complex models to be evaluated fairly against those models without representation of carbon cycle 
processes19. Meinshausen et al.17 provided a prescribed global-mean greenhouse gases (GHGs) concentrations 
using atmospheric concentration observations and emissions estimates in the historical period (1750–2005) 
and using four different Integrated Assessment Models in the future scenario, with some models constraining 
internally generated fields of GHG concentrations to match those global-mean values. For CMIP6, Meinshausen 
et al.18 updated those global-mean and latitudinal monthly-resolved GHG concentration dataset in the historical 
period. In the future period, there are global annual mean GHG concentration dataset in some alternative sce-
narios of future emissions and land use changes produced with integrated assessment models19.

Here, we provide global monthly distributions of atmospheric CO2 concentrations with 1° resolution under 
historical (1850–2013) and future (2015–2150) scenarios in CMIP6, which have equal global annual mean val-
ues in the CMIP6 standard CO2 dataset. The monthly CO2 distributions dataset can be accessed by the Zenodo 
data repository23 (https://doi.org/10.5281/zenodo.5021361). Climate modeling taking into account heteroge-
nous CO2 distributions could reduce some of the known biases in the control simulations9–11, to better anticipate 
the potential socio-economic implications, adaptation practices, and mitigation of climate change.
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Methods
The historical CO2 concentrations follows CMIP6 monthly and latitudinally resolved CO2 concentrations 
accounting longitudinal features retrieved from fossil-fuel CO2 emissions from Carbon Dioxide Information 
Analysis Center. And the spatial distributions of CO2 under SSP-RCPs scenarios were generated based on the 
spatial, seasonal and interannual features of the current CO2 concentrations distributions.

Historical CO2 concentrations spatial reconstruction.  Since lack of observational evidence of both 
seasonality and latitudinal gradients of CO2 concentrations in pre-industrial times, CMIP6 project provides con-
solidated dataset of historical atmospheric concentrations of CO2 based on the Advanced Global Atmospheric 
Gases Experiment (AGAGE) and National Oceanic and Atmospheric Administration (NOAA) networks, firn 
and ice core data, and archived air data, and a large set of published studies for the earth system modeling exper-
iments18. The dataset provides best-guess estimates of historical forcings with latitudinal and seasonal features 
(available at https://www.climatecollege.unimelb.edu.au/cmip6).

The atmospheric CO2 concentrations from CMIP6 has only spatial distributions in latitude but not in lon-
gitude. We reconstructed the CMIP6 historical CO2 concentration data with global 1° resolution based on 
the fossil-fuel CO2 emissions data from Carbon Dioxide Information Analysis Centre (CDIAC). The CDIAC 
fossil-fuel CO2 emissions used here are based on fossil-fuel consumption estimates, which distributes spatially 
on a 1° latitude by 1° longitude grid from 1751 to 201324. (available at https://cdiac.ess-dive.lbl.gov/trends/emis/
meth_reg.html). However, there is no value of the CDIAC CO2 emissions over land without human activity and 
ocean, where CO2 emissions values are filled with the average values of their latitudes of CO2 emissions. The 
processed global carbon emissions data from CDIAC is used as features of CO2 distributions and seasonal cycle 
for downscaling historical atmospheric CO2 concentrations in each month (Fig. 1). The ratio of CDIAC CO2 
emissions in each grid to its latitude averaged is calculated as:

RLAT C C/ (1)i i LAT=

where Ci represents CO2 emission in each grid, and CLAT is the corresponding latitude average CO2 emissions.
The ratio RLATi is normalized as,
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where RNLATi represents the normalized ratio RLATi, RLATmax is the maximum value of RLATi, and RLATmin 
is the minimum value of RLATi.

The maximum difference of latitude averaged CO2 concentrations (PD) for CMIP6 data is calculated as,

n
oitcell

oc ata
D

CDIAC CO2 

emission data

(1751-2015)

CMIP6 historical CO2 

concentrations data

(1850-2013)

Monthly distribution of

CO2 concentrations using 

ARIMA method

(2015-2024)

SSP-RCPs CO2 

concentration data

(2015-2150)

Ratio of CO2 emissions

 in each grid to its latitude 

averaged 

Ratio of the monthly

 CO2 concentrations in 

each grid to 

the global mean

Maximum difference of 

latitude averaged CO2 

concentrations 

Ratio of the global 

mean CO2 concentrations 

in each month to the 

global annual mean

Difference factor

= ∗

Distribution of historical monthly 

CO2 concentrations (1850-2013)

Distribution of monthly CO2 concentrations 

in SSP-RCPS (2015-2150)

i 2,

2,

2, = 2,
+

2,

2,

,
= 2, ∗ ∗

g
nissec

or
p ata

D
g

ni
d

dir
g ata

D

Fig. 1  The processes for CO2 concentrations distributions reconstruction in the historical period and future 
scenarios.
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PD CO CO (3)max min2, 2,= −

where CO max2,  is the maximum latitude CO2 concentration, CO min2,  represents the minimum latitude CO2 
concentration.

The difference factor Wi in each grid is calculated as,

= ∗W RNLAT PD (4)i i

The reconstructed CO2 concentrations CO i
grid
2,  equals to original CO2 concentrations and the difference factor 

in each grid, as

= +CO CO W (5)i
grid

i
origin

i2, 2,

where CO i
origin
2,  is the CO2 concentrations in CMIP6.

SSP-RCPs CO2 concentrations spatial reconstruction.  In the future time period, CO2 concentration 
data for CMIP6 from 2015 were derived from the eight shared socioeconomic pathway (SSP) and representative 
concentration pathways (RCP) scenarios (Table 1) using the reduced-complexity climate–carbon-cycle model 
MAGICC7.025. The five SSP scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 that are used as pri-
ority scenarios highlighted in ScenarioMIP for the IPCC sixth assessment report19. The SSP1-1.9 and SSP1-2.6 
are both in the “sustainability” SSP1 socio-economic pathway but with about 1.9 and 2.6 W m−2 radiative forcing 
level in 2100, reflecting ways for 1.5°C and 2°C targets under the Paris Agreement, respectively. The SSP2-4.5 
follows “middle of the road” socio-economic pathway with a nominal 4.5 W m−2 radiative forcing level by 2100. 
The SSP3-7.0 is in the “regional rivalry” socio-economic pathway and a medium-high radiative forcing scenario. 
SSP5-8.5 marks the upper edge of the SSP scenario spectrum with a high reference scenario in a high fossil fuel 
development world throughout the 21st century. SSP5-3.4 follows SSP5-8.5, an unmitigated baseline scenario, 
through 2040, at which point aggressive mitigation is undertaken to rapidly reduce emissions to zero by about 
2070 and to net negative levels thereafter. In addition, the SSP4-6.0 and SSP4-3.4 scenarios update the RCP6.0 
pathway and fill a gap at the low end of the range of future forcing pathways, respectively. CMIP6 CO2 concentra-
tion data in each SSP-RCP scenario is available at https://esgf-node.llnl.gov/search/input4mips/.

The global annual mean atmospheric CO2 in the CMIP6 future scenarios are interpolated temporally and 
spatially based on the features of CO2 distributions and seasonal cycle of the current monthly atmospheric CO2 
concentrations distributions from 2015 to 2024 (the geotif2nc_2015_2024.nc file is contained within “Code.zip” 
archive accessed via the Zenodo data repository23 https://doi.org/10.5281/zenodo.5021361) simulated based 
on the monthly reconstructed historical CO2 concentrations using autoregressive integrated moving average 
(ARIMA) method26,27 (Fig. 1).

The ratio (Si
m) of the monthly CO2 concentrations in each grid to the global mean averaged during 2015–

2024 is calculated as
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The ratio (Rm) of the global mean CO2 concentrations in each month to the global annual mean averaged 
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where CO mean
annual
2,  is the global annual mean CO2 concentration averaged during 2015–2024.

The CO2 concentrations distributions COi
grid m,  in each year are obtained by

Scenario name SSP category Forcing category 2100 forcing (W m−2)

SSP1-1.9 Sustainability Low 1.9

SSP1-2.6 Sustainability Low 2.6

SSP2-4.5 Middle of the road Medium 4.5

SSP3-7.0 Regional rivalry High 7.0

SSP4-3.4 Inequality Low 3.4

SSP4-6.0 Inequality Medium 6.0

SSP5-3.4 Fossil-fueled development Low 3.4

SSP5-8.5 Fossil-fueled development High 8.5

Table 1.  Summary for experimental scenarios designed in ScenarioMIP19.
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where CO year
annual
2,  is the global annual mean CO2 concentrations in the CMIP6 future scenarios.

Data Records
All atmospheric CO2 output grids can be accessed via the Zenodo data repository23 (https://doi.org/10.5281/
zenodo.5021361). The data records include 1 file Network Common Data Form (NetCDF) format for CO2 dis-
tributions in historical period named CO2_1deg_month_1850–2013.nc, and 8 files NetCDF format with the 
naming convention CO2_SSP{XYY}_2015_2150.nc, where X and YY are the shared socioeconomic pathway 
and radiative forcing level at 2100, respectively, for CO2 distributions in the future scenarios. Each NetCDF file 
includes 3 dimensions: time (month of the year expressed as days since the first day of 1850, n = 1968 and 1632 
for the historical and the future, respectively); latitude (Degrees North of the equator [cell centres], n = 180); 

Fig. 2  The maps of global historical atmospheric CO2 concentrations (ppm) averaged during 1890–1989 (Top) 
and averaged during 2004–2013 (Bottom).

Regional CO2 concentrations (ppm) 1861–1880 1901–1920 1941–1960 1981–2000 2004–2013

Australia 287.83 299.66 313.07 353.11 384.32

Brazil 287.53 299.79 313.66 354.54 385.71

Canada 287.59 300.12 314.04 355.73 388.46

China 287.60 300.04 313.87 356.59 391.16

India 287.57 300.52 314.55 356.56 389.25

United States 287.83 300.8 314.61 356.25 389.99

United Kingdom 290.90 303.38 317.29 358.73 391.65

Table 2.  Multi-year average atmospheric CO2 concentrations in various historical periods for some countries.

https://doi.org/10.1038/s41597-022-01196-7
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longitude (Degrees East of the Prime Meridian [cell centres], n = 360). Each NetCDF file contains a monthly 
variable representing mole fraction of carbon dioxide in air (variable name: values in the historical file and in 
the future scenario files) with the unit ppm and the 1° × 1° resolution. There are 127,526,400 and 105, 753,600 
unique data points for the historical file and each future scenario file. All grids are bottom-left arranged with 
coordinates referenced to the prime meridian and the equator.

The spatial distributions of historical CO2 concentrations averaged during 1890–1989 shows that the high 
CO2 concentrations appears in the developed regions, e.g., Europe and Eastern part of the United States (Fig. 2). 
CO2 concentrations in the United Kingdom and the United States are 290.90 ppm and 287.83 ppm, respectively, 
during 1861–1880 (Table 2). During 2004–2013, the average CO2 concentrations in the United Kingdom and the 
United States increase to 391.65 ppm and 389.99 ppm, respectively (Table 2), which are associated with regional 
CO2 emissions. In addition, the CO2 concentration 391.16 ppm in China is slightly less than that in the United 
Kingdom, which is associated with the low CO2 concentrations in the west of China (Fig. 2). Fig. 3 shows the 

Fig. 3  The maps of seasonal atmospheric CO2 concentrations (ppm) averaged during 1890–1989 (a) and 
averaged during 2004–2013 (b) in these March-April-May (MAM), June-July-August (JJA), September-
October-November (SON), and December-January-February (DJF).

https://doi.org/10.1038/s41597-022-01196-7
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distributions of seasonal atmospheric CO2 concentrations (ppm) in these seasons March-April-May (MAM), 
June-July-August (JJA), September-October-November (SON), and December-January-February (DJF).

CO2_SSP{XYY}_2015_2150.nc files are generated based on the eight SSP and RCP scenarios, including SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, SSP5-3.4 and SSP5-8.5 which provide global distributions of 
CO2 concentrations under different socio-economic development pathway associated radiative forcing levels. In 
these eight scenarios, the average CO2 concentrations in the Northern Hemisphere (NH) is higher than that in the 
Southern Hemisphere (SH). High CO2 concentrations relative to the global average is mainly distributed in Europe, 
Eastern United States, and East Asia. Under each scenario, global CO2 concentrations averaged in 2041-2060 ranges 
420–590 ppm, and the CO2 concentrations averaged during 2081–2100 is between 380–1030 ppm (Figs. 4, 5). 

Fig. 4  The maps of global atmospheric CO2 concentrations (ppm) averaged during 2041–2060 in the SSP1-1.9, 
SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, SSP5-3.4 and SSP5-8.5 scenarios. The period of 2041–2060 
selected is for the average state in the middle of this century, the key time for carbon neutrality.

https://doi.org/10.1038/s41597-022-01196-7
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Under SSP5-8.5, the average CO2 concentrations in China and the United Kingdom are 1020.70 ppm and 1021.51 
ppm, respectively, during 2081–2100, while the CO2 concentration is 998.28 ppm in Australia (Table 3).

Technical Validation
In this validation section, GOSAT surface CO2 concentrations and AIRS mid-tropospheric CO2 concentrations 
products were used for comparison with the reconstructed distributions of atmospheric CO2 concentrations. 
The GOSAT launched in January 2009 observing infrared light reflected and emitted from the earth’s surface and 
the atmosphere provides three-dimensional distributions of CO2 products calculated from the Level 4 A data 

Fig. 5  The maps of global atmospheric CO2 concentrations (ppm) averaged during 2081–2100 in the SSP1-1.9, 
SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, SSP5-3.4 and SSP5-8.5 scenarios. The period of 2081–2100 in 
the Fig. 5 chosen is for the average state at the end of this century.

https://doi.org/10.1038/s41597-022-01196-7
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product using a global atmospheric transport model from 200928–30. The data product has a horizontal resolution 
of 2.5° × 2.5° and a time step of six hours. The satellite Aqua was launched in May 2002 and operates in a near 
polar sun-synchronous orbit, and its mission is to observe the global water and energy cycle, climate change 
trend, and response of the climate system to the increase in greenhouse gases1,31. It retrieves the global daily or 
monthly CO2 concentrations over land, ocean and polar regions6. AIRS mid-tropospheric CO2 concentrations 
product is retrieved using the Vanishing Partial Derivative method32, with the 90 km × 90 km spatial resolution 
covering 90°N–60°S. The AIRS CO2 retrieval product provides a continuous global nonuniform distributions of 
mid-tropospheric CO2 concentrations from 2003 to 2016.

The multi-year mean reconstructed atmospheric CO2 concentrations are slightly higher than that of the AIRS 
mid-tropospheric CO2 concentrations product in the NH high latitudes and mid-latitudes of the SH, but lower 
in the mid-latitudes of the SH. In the 45°S-60°S latitude band, about 10 ppm (3%) increase in the reconstructed 
CO2 concentrations is statistically significant relative to the AIRS averaged during 2003–2016 (Fig. 6a). The 
reconstructed CO2 concentrations are about 4 ppm (1%) higher and lower than the GOSAT surface CO2 con-
centrations in the 30°S-60°S latitude band and in the East Asia and its adjacent sea areas, respectively, however, 
the biases are both not statistically significant at the 5% level using the Student’s t test (Fig. 6b).

Relative to the AIRS, there are some statistically significant seasonal overestimations of the reconstructed 
CO2 concentrations with over 12 ppm averaged during 2003–2016 mainly located in the 45°S–60°S latitude 
band in DJF (Fig. 7). In MAM, the reconstructed CO2 concentrations are 2-6 ppm lower in the NH and 2-6 ppm 
higher in the SH than that in the AIRS. In JJA, the reconstructed CO2 concentrations are 2-6 ppm lower at the 
latitude bands of 30°N–60°N, 15°S–30°S, and 45°S–60°S, and 2-6 ppm higher in the 60°N–90°N latitude band 
than that in the AIRS. In SON, the bias of the reconstructed CO2 concentrations is from −2 to 2 ppm in most 
regions of the world, except in 45°S-60°S latitude band relative to the AIRS.

Relative to the GOSAT, there are some statistically significant seasonal overestimations of the reconstructed 
CO2 concentrations between 8 to 10 ppm averaged during 2010–2018 mainly at the 45°S-70°S latitude bands in 
DJF (Fig. 8). In JJA, the reconstructed CO2 concentrations are over 10 ppm higher than the GOSAT data in the 
Far eastern and North-western federal districts of Russia, and Eastern Canada. In MAM, the reconstructed CO2 
concentrations are 2-8 ppm lower in the NH and 2-6 ppm higher in the SH than that in the GOSAT. In SON, 
the overestimations of the reconstructed CO2 concentrations are from 2 to 6 ppm, and the underestimations of 
the reconstructed CO2 concentrations is from −6 to −2 ppm in some areas of South America, South Africa and 
Eastern China relative to the GOSAT.

Regional CO2 concentrations 
during 2081–2100 (ppm) SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-3.4 SSP4-6.0 SSP5-3.4 SSP5-8.5

Australia 401.47 452.88 592.52 786.85 480.57 644.23 514.99 998.28

Brazil 404.42 456.21 596.88 792.64 484.11 648.98 518.78 1005.63

Canada 408.62 460.95 603.07 800.87 489.13 655.71 524.16 1016.06

China 410.48 463.05 605.82 804.52 491.36 658.70 526.56 1020.70

India 408.62 460.95 603.08 800.88 489.13 655.72 524.17 1016.07

United States 409.14 461.54 603.85 801.90 489.76 656.55 524.84 1017.37

United Kingdom 410.81 463.42 606.31 805.17 491.75 659.23 526.98 1021.51

Table 3.  Multi-year average atmospheric CO2 concentrations between 2081–2100 in some countries under 
future scenarios.

Fig. 6  Changes in CO2 concentrations (ppm) between the reconstructed and AIRS (a) averaged during 2003–
2016 (excluding 2014), and between the reconstructed and GOSAT (b) averaged during 2010–2018 (excluding 
2014). The time periods selected are decided by data available. Hatched areas are regions where changes are 
statistically significant at the 5% level using the Student’s t test.
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Compared with the GOSAT surface atmospheric CO2 concentrations, there is similar trend and seasonal 
cycles with the monthly global mean reconstructed CO2 concentrations (Fig. 9a). The seasonal cycle with high 
CO2 concentrations in MAM and low CO2 concentrations in JJA is closely related to the seasonal cycle of plant 
growth33. The monthly global mean AIRS mid-tropospheric CO2 concentrations have a similar trend and the 

Fig. 7  Changes in the seasonal (a, MAM; b, JJA; c, SON; d, DJF) CO2 concentrations (ppm) between the 
reconstructed and the AIRS product averaged during 2003–2016 (excluding 2014). The time period selected is 
decided by data available. Hatched areas are regions where changes are statistically significant at the 5% level 
using the Student’s t test.

Fig. 8  Changes in the seasonal (a, MAM; b, JJA; c, SON; d, DJF) CO2 concentrations (ppm) between the 
reconstructed and the GOSAT product averaged during 2010–2018 (excluding 2014). The time period selected 
is decided by data available. Hatched areas are regions where changes are statistically significant at the 5% level 
using the Student’s t test.
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peak feature of each seasonal cycle with the reconstructed and GOSAT CO2 concentrations, but the valley fea-
ture of seasonal cycles, which is associated with the transport of atmospheric CO2 and less impacts from plant 
CO2 absorption34,35. The R-squared correlation (R2) is 0.95 between the monthly global mean reconstructed 
CO2 and the AIRS CO2 product, and the R2 between the reconstructed and the GOSAT product is 0.99 (Fig. 9b).

Figure 10 shows the zonal mean CO2 concentrations (ppm) for the AIRS, the GOSAT, and the reconstructed 
data during 2010 to 2013 averaged over land and averaged over ocean, separately. The zonal mean CO2 concen-
trations for the reconstructed data averaged over land and over ocean both have a similar distribution pattern 
with the surface CO2 concentrations in GOSAT, with higher CO2 values in the Northern Hemisphere than that 
in the Southern Hemisphere, though there are some overestimates in the middle latitudes for the reconstructed 
CO2 concentrations, which is consistent with the high CO2 emissions in the middle latitude bands (Fig. 10). In 
the low and middle latitudes of the Southern Hemisphere, the reconstructed CO2 concentrations over land and 
over ocean are both between the AIRS and the GOSAT range of CO2 concentrations, respectively (Fig. 10). We 
also note that our historical CO2 concentrations distributions should be regarded as highly uncertain. However, 
some plausibility of the CO2 concentrations distributions is obtained by comparison with satellite observations 
(e.g., ARIS, GOSAT satellite CO2 concentrations products) at the zonal mean and grid scales.
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Fig. 9  Monthly global mean time evolution of CO2 concentrations (ppm) for the AIRS (red, from Jan 2003 to 
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Fig. 10  Zonal mean CO2 concentrations (ppm) averaged over land (a) and over ocean (b) for the AIRS, the 
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also showed using the right y axis in each panel from Carbon Dioxide Information Analysis Center (CDIAC) 
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Usage Notes
This data is intended for use as a prior in global climate modeling, potential socio-economic implications and 
mitigation of climate change, and adaptation practices. The historical global monthly distributions of atmos-
pheric CO2 concentrations with 1° resolution from 1850 to 2013, including 1 file NetCDF format file named 
CO2_1deg_month_1850-2013.nc And the spatial distributions of nonuniform CO2 under SSP-RCP scenarios are 
from 2015 to 2150, including 8 files NetCDF format with the naming convention CO2_SSP{XYY}_2015_2150.
nc, where X and YY are the shared socioeconomic pathway and radiative forcing level at 2100, respectively. Each 
NetCDF file contains a monthly variable representing mole fraction of carbon dioxide in air (ppm). including 
3 dimensions: time (month of the year expressed as days since the first day of 1850, n = 1968 and 1632 for the 
historical and the future, respectively); latitude (Degrees North of the equator [cell centres], n = 180); longitude 
(Degrees East of the Prime Meridian [cell centres], n = 360). We anticipate that the dataset will be widely used by 
Earth system modeling, agriculture management, and socio-economic analysis, to assess the climate, environ-
mental and socio-economic implications of considering past and on-going inhomogeneous CO2 distributions, 
and for formulating strategies of spatial, as well as global carbon reduction.

Code availability
The code used to perform all steps described here and shown in Fig. 1 is contained within a.zip archive named 
“Code.zip”. The code can be accessed via the Zenodo data repository23 (https://doi.org/10.5281/zenodo.5021361).
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