Skip to main content
. 2022 Mar 11;12:4284. doi: 10.1038/s41598-022-08231-y

Table 2.

Comparison with previous studies for EMCI/LMCI classification.

Authors Target Approach Feature extraction Feature selection Classifier ACC AUC
Goryawala et al. (2015) EMCI (114) vs. LMCI(91) MRI (Cortical volume) + Neuropsychological scores *SLRM for MRI and Neuropsychological test *LDA 0.736 N/A
Jie et al. (2018) EMCI (56) vs. LMCI(43) DCN(dynamic connect. network) from rs-fMRI Temporal & spatial Variability (DCNs) *M2FL method SVM 0.788 0.783
Nozadi et al. (2018) EMCI(164) vs. LMCI(189) FDG-PET, AV45-PET Multimodal PET-MRI registration + ROIs-based or whole brain select RF 0.725 0.79
Sheng et al. (2019) EMCI(24) vs. LMCI(24) BCT(Brain Connectivity Toolbox) from rs-fMRI Network-based measures (BCT) mRMR, Chi-square, Gini score,Kruskal–Wallis test, Fisher score(FS), Relief feature score  > 20Classifiers + *DNN 0.875 (SVM) N/A
Zhang et al. (2019) EMCI(33) vs. LMCI(29) Graph theory (rs-fMRI) 3Network features + 3 freq. bands mRMR, SS-LR, Fisher Score (FS) SVM 0.838 0.905
Shi and Liu (2020) EMCI(77) vs. LMCI(64) rs-fMRI Hilbert-Huang transform (HHT) Hilbert weighted frequencies(HWFs) Independent two-sample t-test SVM 0.879 N/A

*SLRM stepwise linear regression models.

*M2FL method Manifold regularized multi- task feature selection.

*DCN dynamic connectivity network.

*LDA linear discriminant analysis.

*DNN deep neural network.