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Abstract

Rationale and Objectives: The use of natural language processing (NLP) in radiology 

provides an opportunity to assist clinicians with phenotyping patients. However, the performance 

and generalizability of NLP across healthcare systems is uncertain. We assessed the performance 

within and generalizability across four healthcare systems of different NLP representational 
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methods, coupled with elastic-net logistic regression to classify lower back pain-related findings 

from lumbar spine imaging reports.

Materials and Methods: We used a dataset of 871 X-ray and magnetic resonance imaging 

reports sampled from a prospective study across four healthcare systems between October 2013 

and September 2016. We annotated each report for 26 findings potentially related to lower 

back pain. Our framework applied four different NLP methods to convert text into feature sets 

(representations). For each representation, our framework used an elastic-net logistic regression 

model for each finding (i.e., 26 binary or “one-vs.-rest” classification models). For performance 

evaluation, we split data into training (80%, 697/871) and testing (20%, 174/871). In the training 

set, we used cross validation to identify the optimal hyperparameter value and then retrained on 

the full training set. We then assessed performance based on area under the curve (AUC) for the 

test set. We repeated this process 25 times with each repeat using a different random train/test split 

of the data, so that we could estimate 95% confidence intervals, and assess significant difference in 

performance between representations. For generalizability evaluation, we trained models on data 

from three healthcare systems with cross validation and then tested on the fourth. We repeated 

this process for each system, then calculated mean and standard deviation (SD) of AUC across the 

systems.

Results: For individual representations, n-grams had the best average performance across all 

26 findings (AUC: 0.960). For generalizability, document embeddings had the most consistent 

average performance across systems (SD: 0.010). Out of these 26 findings, we considered eight as 

potentially clinically important (any stenosis, central stenosis, lateral stenosis, foraminal stenosis, 
disc extrusion, nerve root displacement compression, endplate edema, and listhesis grade 2) since 

they have a relatively greater association with a history of lower back pain compared to the 

remaining 18 classes. We found a similar pattern for these eight in which n-grams and document 

embeddings had the best average performance (AUC: 0.954) and generalizability (SD: 0.007), 

respectively.

Conclusion: Based on performance assessment, we found that n-grams is the preferred method 

if classifier development and deployment occur at the same system. However, for deployment at 

multiple systems outside of the development system, or potentially if physician behavior changes 

within a system, one should consider document embeddings since embeddings appear to have the 

most consistent performance across systems.
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INTRODUCTION

Lower back pain (LBP) is a common condition, in which patients typically exhibit 

heterogeneous anatomic phenotypes and undergo a variety of treatments (1–3). LBP patients 

frequently receive spinal imaging, and findings identified in the resulting radiology reports 

are expected to help with phenotyping and decision-making (3). However, the association 

between many findings and LBP is uncertain, because findings can be present in both 

symptomatic and asymptomatic patients (4). As a result, patients with common aging-related 
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findings may be recommended for LBP-related treatments that are not etiologically linked to 

their pain. To address this uncertainty, cohort studies and pragmatic trials have investigated 

patterns of care among patients with LBP and sought to explore subgroups of patients 

based on the presence of potentially clinically important findings (4–6). To address the 

interpretation of radiology findings, the Lumbar Imaging with Reporting of Epidemiology 

(LIRE) study assessed the effectiveness of including benchmark prevalences in the 

asymptomatic population for findings found in radiology reports for patients who received a 

diagnostic imaging test of the lumbar spine to reduce subsequent spine-related interventions 

at four healthcare systems: Kaiser Permanente of Washington, Kaiser Permanente of 

Northern California, Henry Ford Health System, and Mayo Clinic Health System (7). To 

further assist research investigating the relationship between findings and LBP, the accurate 

extraction of findings from large patient groups is needed. However, manual annotation is 

time-consuming. Natural Language Processing (NLP)-based classification pipelines offer an 

automated alternative to identify key findings in radiology reports (3).

An NLP-based classification pipeline is composed of two parts: NLP methods that extract 

features from free-text data and convert them to a structured format (or representation) 

and the machine learning (ML) model that uses these representations for classification. 

Text conversion or feature generation can be performed using methods that range from 

relatively simple domain-dependent and highly manual, to sophisticated data-driven scalable 

strategies (8–11). Taskspecific rule-based methods identify terms in the free-text that are 

typically defined by domain experts for a specific outcome of interest. Word or phrase 

counting methods (n-grams) convert free-text to grouped consecutive words (10). Controlled 

vocabulary methods convert free-text into a standardized language, using resources such 

as the Unified Medical Language System (UMLS)’s Metathesaurus, a large vocabulary 

database that contains information about biomedical and health related concepts, their 

various names, and the relationships among them (9,12,13). Document embedding methods 

use neural networks to represent the semantics of documents as vectors of continuous 

numerical values (11). Each of these methods produces different representations that can 

influence ML performance. Previous studies have investigated the classification performance 

of these types of NLP methods (14–16), however to the best of our knowledge only 

one study assessed generalizability as well (17). With this study, they investigated the 

performance of their embeddings on a single external dataset, however without extensive 

validation on multiple external datasets, there is a risk of overestimating both NLP strategies 

and ML models’ performance (8,17,18).

We hypothesize that NLP methods will have more heterogeneous performance 

characteristics on external data compared with internal data. The LIRE data provide an 

opportunity to conduct a systematic evaluation of the utility of different representational 

methods for identification of image findings in radiology reports drawn from multiple 

healthcare systems. To assess the reproducibility and reliability of NLP methods, we need 

to test our methods on multiple external datasets. The purpose of our study is to assess the 

(1) performance within and (2) generalizability across the four LIRE healthcare systems of 

different NLP-based feature extraction methods: rules, n-grams, controlled vocabulary, and 

document embeddings, coupled with elastic-net logistic regression (i.e., the ML model) for 

classifying radiology reports for LBP-related findings.
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MATERIALS AND METHODS

Annotated Dataset

This was a retrospective study that utilized the same annotated dataset from a previous 

study that showed that ML-based models were superior to rule-based classification (3). 

Our work is an extension of this as we expanded our NLP methods to include controlled 

vocabulary and document embeddings and explicitly assessed generalizability across 

healthcare systems. All participating IRBs agreed that the LIRE study was minimal risk 

and granted waivers of both consent and Health Insurance Portability and Accountability 

Act authorization (IRB approval number is 476829). We used limited dataset consisting of a 

subsample of the LIRE cohort which consisted of approximately 250,000 patients from four 

healthcare systems who received a thoracic or lumbar spine plain X-ray, magnetic resonance 

imaging (MRI), or computed tomography (CT) between October 1, 2013 and September 

30, 2016 (7). The LIRE study was a multicenter intervention study that investigated 

whether inserting text about finding prevalence into lumbar spine imaging reports reduced 

subsequent spine-related treatments (7). Once in the study, patients were followed for two 

years and their data was regularly collected. We randomly sampled 871 index radiology 

reports, the first radiology report for each patient, and stratified by system and image 

modality (3). The sample size was determined based on prior NLP classification tasks 

(19). Each report was annotated for the presence of 26 LBP-related findings (Table 1) 

by a team of clinical experts composed of two neuroradiologists, a physiatrist, and a 

physical therapist. A single report can be annotated for multiple findings. See Supplement 

Appendix E3 for more details on this process. These findings were based on prior research 

consisting of a review (20), prospective cohort study (4), and randomized control trial 

(21) that characterized LBP based on its causes and treatments. Out of these 26, eight 

were considered to be potentially clinically important: any stenosis, central stenosis, lateral 
stenosis, foraminal stenosis, disc extrusion, nerve root displacement compression, endplate 
edema, listhesis grade 2 (4,5,7). Further details of this sampling and annotation process are 

presented in a previous study (3).

Classification Pipeline Overview

Our classification pipeline analyzed the 871 LIRE radiology reports with the goal of 

learning patterns that are predictive of each of the 26 findings (Fig 1). The pipeline can 

be separated into three steps: preprocessing, featurization, and ML.

Preprocessing and Featurization

For preprocessing, we developed regular expressions to help isolate the finding and 

impression sections of the 871 radiology reports. For featurization, rules, n-grams, 

controlled vocabulary mapping, and document embedding methods were used to extract 

features from the finding and impression sections. Rules require domain experts to identify 

terms that are related to an outcome of interest. This method is timeconsuming, but since 

the rules were developed by clinician experts, they can be considered a proxy for clinicians’ 

judgement for annotations. In our implementation, we developed regular expressions based 

on the terms our team of clinical experts identified for each finding during the annotation 

process. For each report, we split the text into sentences. For each sentence, we identified the 
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presence of a finding using the regular expression and checked for negation (22). However, 

the presence of findings may be uncertain as radiology reports can have terms such as 

“suggesting” and “not definite.” We minimized this uncertainty by coding these and other 

similar terms as indicating the presence of a finding. We used Java (v4.6.0), using Apache 

Lucene (v6.1.0), Porter Stemmer, and NegEx (23,24).

N-grams is a simple, but powerful method in NLP that converts free-text across the 

radiology reports to n-grams (phrases of different lengths) and indicates their presence and 

absence in each report (25). In our implementation, we used R (v3.6.1) package Quanteda 

(v2.0.1) to convert the text into un-, bi-, and trigrams.

Controlled vocabulary is a filtered version of the n-grams approach that leverages only 

clinically-related features from a standardized medical terminology mapped from the text 

(9). In our implementation, we first split the text into its constituent sentences using the 

maximum entropy model in the Apache OpenNLP toolkit to infer the end of a sentence (26). 

We then applied MetaMap Lite and an assertion classifier developed by Bejan et al., to each 

patient’s radiology text report to obtain standard UMLS concepts and assertions of whether 

they were present, absent, conditional, possible or associated with someone else (27,28). We 

used MetaMap Lite because previous literature demonstrated MetaMap Lite’s performance 

was comparable to or exceeded MetaMap and other similar methods (28). In addition, we 

also implemented a version of the controlled vocabulary method (controlled vocabulary filter 
only) that outputs recognized concepts as raw text, instead of the mapped UMLS terms to 

assess how a “many-to-one” mapping affects classification performance (29).

Document embeddings is a sophisticated approach that uses a neural network to convert 

the semantics of text into a continuous numerical vector (11). For the document embedding 

method, we used the Python (v3.7.3) package Gensim (v3.7.1) to implement the Distributed 

Bag of Words (DBOW) (11,30). We set the vector length to 600, number of epochs 

to 500, and allowed the model to initially learn word embeddings using the skip-gram 

architecture prior to learning document embeddings. We pretrained our DBOW architecture 

on the full text using two data sets: 522,283 radiology reports from the third version 

of Medical Information Mart for Intensive Care (MIMIC-III) (31), and the finding and 

impression sections from 255,094 unannotated reports from the LIRE study. We refer to 

these as document MIMIC and document LIRE, respectively. The former reflects a typical 

pretraining scenario and the latter assesses how pretraining on a corpus similar to our actual 

train/test corpus of 871 reports affects classification performance. We used these pretrained 

models to derive numerical vector representations of each of the 871 radiology reports. See 

Supplemental Appendix E1 for additional details. At the end of the featurization step, the 

textual data from radiology reports are represented as rules, n-grams, controlled vocabulary, 
controlled vocabulary filter only, document MIMIC, and document LIRE.

Rule- and Machine Learning-Based Model

For the rules, we used a rule-based model to classify a report as “positive” for a finding if 

at least one mention in a report was non-negated and “negative” if there was no mention or 

all mentions of the finding were negated. We then used the trapezoidal rule approximation to 

calculate the area under the curve (AUC) (32). For each non-rule representation (i.e., feature 
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set) and the finding labels from the annotation process, we developed an elastic-net logistic 

regression model to predict the presence of each finding (i.e., 26 binary or “one-vs.-rest” 

classification models) using the R (v3.5.1) package caret (v6.0–80). Within the training 

set, ten-fold cross validation was used to adjust the value of our regularization parameter 

(lambda) to perform feature selection on our predictors by shrinking our nonimportant 

predictors’ coefficients towards 0. For each resulting finding-specific model, we identified 

the optimal threshold based on the training set’s receiver operator characteristic (ROC) plot; 

the threshold is the point closest to the true positive rate of 1 and false positive rate of 0 (i.e., 

the point closest to the top left corner of the curve) using Euclidean distance (33).

Performance and Generalizability Assessment

We used R (v3.5.1) to evaluate each representation. We used AUC of an ROC plot as 

the primary evaluation metric. This is because we envision our pipeline as an efficient 

“first-pass” screening tool intended to favor the identification of more true positives. For 

performance assessment, we randomly split our full dataset into 80% (697/871) for training 

and 20% (174/871) for evaluating our model for each finding. We assessed group-level 

performance by averaging the evaluation AUC across all finding-specific models and across 

all potentially clinically important finding-specific models, separately. We repeated this 

process 25 times with each independent repeat using a different random train/test split 

of the data, so that we could estimate 95% confidence intervals. For each finding/group, 

a t-test was used to assess significant performance comparing the 25 repeats of the best 

representation to the next best representation. We used Bonferroni correction to correct 

for multiple hypothesis testing; for the two groups, we considered p-value 0.025 (0.05/2 

groups) to be significant, and for the 26 findings, we considered p-value 0.0019 (0.05/26 

findings) to be significant. To assess generalizability across healthcare systems, we trained 

our model on reports from three systems and evaluated on the fourth, iteratively, for each 

finding. For each finding, we calculated the mean and standard deviation of the AUC across 

the four systems. We calculated group generalizability by averaging the AUC across all 

findings, and across all potentially clinically important findings for each system and then 

calculated the mean and standard deviation. We chose mean and standard deviation to 

quantify generalizability, because the former measures the quality, while the latter measures 

the consistency of performance across systems. For the generalizability assessment, we 

included all representations except for rules because they were developed using reports from 

all four systems, eliminating the possibility of evaluation using data unavailable at the point 

of algorithm development.

Additional details for these and other secondary analyses are provided in the Supplementary 

Materials.

RESULTS

Data Summary

In our dataset (n = 871), we sampled reports with similar proportions of image type (i.e., 

X-ray and MRI) and patients’ age and gender across our healthcare systems (Table 2). For 

performance assessment, we’ve shown that our training set is representative of our test set 
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for 23/26 findings by using a t-test to assess the significant difference in the prevalence 

between sets across the 25 repeats for each finding (Fig 2). For generalizability assessment, 

we found that each healthcare system was comparable since the finding label prevalence 

across healthcare systems is overall similar with any degeneration having the highest label 

prevalence (0.896) and listhesis grade 2 having the lowest label prevalence (0.028) (Fig 3).

Comparing the Group and Finding Level Predictive Performance of Individual 
Representations

To assess the best performing representation, we trained and tested 26 finding-specific 

models for each representation and calculated finding-level and group-level AUC. On 

average across all findings, we found that the models generally performed well, with average 

AUC values above 0.87. N-grams and controlled vocabulary had the best (AUC = 0.960) 

and worst average (AUC = 0.879) performance, respectively (Table 3). At the finding level, 

n-grams had better performance than the corresponding second-best representation (which 

differed from finding to finding) for 22 findings, 11 of which were statistically significant. 

These results suggest that on average, the relatively simple methodology of n-grams is 

sufficient to classify our 26 findings.

In addition to assessing the performance of n-grams, we were also interested in 

characterizing the performance relative to rules, a representation requiring domain-expertise, 

and document LIRE, an advanced data-driven representation. This comparison is of interest 

as each of these three representations reflect different disciplines in featurizing textual 

data that range from domain-expertise to advanced domain-agnostic implementations. On 

average across all findings, rules (AUC = 0.897) performed worse than n-grams and 

document LIRE. At the finding level, rules was out performed by n-grams for eight 

out of twelve rare findings (prevalence < 20%). Additionally, while document LIRE had 

better overall performance than rules, it was not the best representation for any of the 

findings. This may be due to the fact that document LIRE may not have been the best 

representation but had stable performance across findings (min AUC = 0.799, max AUC = 

0.979) compared to rules (min AUC = 0.649, max AUC = 0.999). These results also suggest 

when considering only rare findings, n-grams still perform better than other representations.

Comparing the Group and Finding Level Generalizability Performance of Individual 
Representation Across Healthcare Systems

To assess the best generalizable representation, we trained 26 finding-specific models for 

each representation on data from three systems and tested on the fourth system, iteratively. 

For each finding/group, we calculated the mean and standard deviation of the test AUC 

across the four systems. At the group level, n-grams had the best average performance 

across all findings (mean AUC = 0.902) and at the finding level, it was the best performing 

representation for 10 findings (Table 4). The next best representation was document LIRE 
at the group level (mean AUC = 0.879) and it was the best method for 10 findings as 

well (Table 4). Interestingly, when considering standard deviation at the group level, we 

found that document LIRE and n-grams were the most (standard deviation = 0.010) and 

least consistent (standard deviation = 0.051) representations across all findings, respectively 

(Table 5). We found n-grams could not generalize well to system two, particularly resulting 
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in a lower sensitivity and higher specificity compared to other representations (Fig 4); we 

verified this result through complementary analyses (Supplemental Appendix E3). At the 

finding level, document LIRE was the most consistent representation for 11 findings. These 

results suggest that while n-grams had relatively the best performance, it had the worst 

consistency across systems. Instead, document embeddings pretrained on study-specific data 

(document LIRE) had relatively the most consistent classification performance on average 

across our systems.

Assessing Performance and Generalizability of Potentially Clinically Important Findings

In our previous sections, we focused on all 26 findings, however we consider eight of these 

findings to be potentially clinically important. As a result, we believe it’s important to 

present results for this important subset of findings. For performance assessment, n-grams 
had the best performance (AUC = 0.954), and it was significantly better than that of 

document LIRE, the second-best representation (AUC = 0.910) (Table 3). At the finding 

level, n-grams also had the best performance for all eight potentially clinically important 

findings, six of which were statistically significant. For generalizability assessment, n-grams 
had better performance (mean AUC = 0.898) than document LIRE (mean AUC = 0.890) 

(Table 4). At the finding level, n-grams and document LIRE had the best performance 

for seven of these findings. For consistency, document LIRE was the most consistent 

representation with standard deviation of 0.007 compared to n-grams’ 0.076 (Table 5). At 

the finding level, document LIRE and MIMIC had the most consistent performance for six 

and two potentially clinically important findings, respectively, with one tie endplate edema 
(Table 5). These results indicate for this subset of findings, we still observe the same trend 

where n-grams has the best performance, but document LIRE has the best consistency.

DISCUSSION

Manual extraction of information from radiology reports can be burdensome, making 

automated NLP methods attractive for such tasks. However, correctly estimating these 

methods’ performance across multiple healthcare systems requires an understanding of 

their generalizability on external datasets. In this study, we compared and contrasted 

the performance of different NLP methods coupled with elastic-net logistic regression to 

classify 26 findings related to LBP through performance and generalizability assessment. 

Our study suggests that if classifier development and deployment occur at the same system, 

then n-grams may be preferable. However, for deployment at multiple systems outside of the 

system of development, one should consider n-grams with the caveat that it’s consistency 

can vary across systems, while document embeddings pretrained on study-specific data 

(document LIRE) or a publicly available dataset (document MIMIC) had the most consistent 

performance.

Overall, based on performance assessment, n-grams, a relatively simple, data-driven, 

domain-agnostic method, is superior to more sophisticated methods (document embeddings 

and controlled vocabulary) in extracting known findings from text. These results are in 

line with prior studies (14,34). Additionally, for rare findings (prevalence < 20%), n-grams 

had the highest AUCs, which is consistent with a prior study evaluating n-grams coupled 
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with LASSO logistic regression to classify acute LBP (prevalence of 22%) (35). However, 

n-grams did not generalize well across the four healthcare systems when compared to 

document embeddings. This performance-generalizability duality can be explained as 

follows: the n-grams method is dependent on the precise phrasing in the training text. 

When we considered performance assessment, we split the full dataset into 80% (697/871 

reports) for the train set and 20% (174/871 reports) for the test set; both sets contained 

the four healthcare systems, and their text were representative of each other. However, 

when considering each system independently for the generalizability assessment, n-grams 

were more susceptible to overfitting, i.e., they may have contained predictors more relevant 

to the training systems than the test system. When comparing summary statistics of the 

raw text among systems, we found that system two was indeed different from the other 

systems (Supplemental Appendix E3) and changing classification thresholds for the models 

tested on this system did not affect performance. In comparison, document embeddings 

better captured differently worded but synonymous concepts by transforming the raw text 

into abstract numerical representations that reflect semantics, leading to less deviation in 

performance across systems but slightly worse performance overall.

Document embeddings are of particular interest because they represent a sophisticated 

method of featurization that are pretrained on large-scale corpora to learn more generalizable 

representations of text. Here, document embeddings were pretrained on two different data 

sources, unannotated LIRE reports (smaller but more relevant to LBP) and MIMIC-III 

(larger but less specific). While document LIRE overall performed better than document 
MIMIC, the difference was modest, suggesting that a lack of task-specific corpus is not a 

barrier for using document embeddings in clinical tasks. This observation is consistent with 

other studies (16,36,37).

Controlled vocabulary and controlled vocabulary filter only are two representations that 

can be considered filtered versions of the n-grams approach that leverages only clinically 

related features. These representations differ from each other in that the former maps the 

clinically relevant raw terms to standardized terms to then use as features, while the latter 

does not map and instead uses the clinically relevant raw terms as features. As a result, 

controlled vocabulary performs a “many-to-one” mapping that can affect performance. 

When comparing these two representations, we found that controlled vocabulary marginally 

outperformed controlled vocabulary filter only in both performance and generalizability. Our 

study indicates that this “many-to-one” mapping is not detrimental to performance, but does 

not provide a substantial improvement relative to using only the clinically relevant raw terms 

as features.

Beyond performance and generalizability, scalability and interpretability are important 

factors to consider when choosing a NLP-based feature extraction method. Rules are the 

most interpretable method, because they solely rely on domain experts to provide the 

synonyms to search for in text. However, this method cannot scale well as expanding the 

synonyms for a more complete identification of findings and larger number of findings 

will require more time and domain experts. In contrast, n-grams, controlled vocabulary, and 

document embeddings are domain-agnostic computational methods, and as a result they can 

scale well to a large number of radiology reports and findings. These methods differ in their 
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interpretability. Controlled vocabulary and n-grams are the most interpretable methods as the 

former provides an ML model clinically relevant terms as features, while the latter provides 

the raw text as features. It is relatively easy for a researcher to examine a model’s features 

and coefficients based on either of these two methods and understand what aspects of a 

radiology report are predictive of the outcome of interest. Document embeddings is the least 

interpretable method as it uses a neural network to represent a document’s semantics as a 

vector of continuous values. These values are no longer interpretable as they are a result 

of the interactions of different word embeddings from the radiology reports in the neural 

network. When considering subsequent implementation, it is important to consider factors 

such as scalability and interpretability in addition to performance and generalizability.

There are several limitations to this study. First, our pipeline required binary annotations 

for findings, however the presence of findings may be uncertain as radiology reports can 

have terms such as “suggesting” and “not definite.” We minimized this uncertainty by 

coding these and other similar terms as indicating the presence of a finding. Second, while 

our sample size was in line with recommendations for classification tasks, larger training 

and testing sets could have led to less variable performances across our different NLP 

methods (19). Third, we evaluated the algorithms but not the entire pipeline involving the 

querying and transfer of data; there may be discrepancies in our performance estimates 

when compared to those at actual deployment. Fourth, we could not assess our rules’ 

generalizability, since the search terms were developed from reports from all four systems. 

Finally, in the case of document embeddings, because of our limited computational 

resources, we had to sequentially adjust hyperparameter values in the pretraining step, rather 

than conducting a grid search. With a more extensive hyperparameter search, we may have 

been able to improve performance.

Diagnostic imaging is often an early step for LBP patients that eventually leads to 

interventions, however the association between findings and LBP is uncertain (4). Jarvik et 

al. investigated this association and identified eight (potentially clinically important) findings 

that may be associated with a history of LBP and of these eight, nerve root contact, disc 
extrusion, and central stenosis may be associated with a new onset of pain (4,5,7). We’ve 

shown that our pipeline can automate classifying reports for these potentially clinically 

important findings using n-grams, and can generalize across healthcare systems using 

document embeddings. Our automated pipeline can assist similar studies by developing 

large cohorts quickly and inexpensively to investigate the association between findings and a 

clinical outcome within and across healthcare systems using text-based data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the Pipeline. (A) This visualization shows the different steps of our pipeline 

where we collect 871 radiology reports from our four systems, perform preprocessing to 

clean the text data, perform feature extraction using our four different methods. We load the 

n-grams, controlled vocabulary, and document embeddings feature matrices into a logistic 

regression model to predict the presence of these findings. For rules, we instead use a rule-

based model that classifies a report as “positive” if at least one mention was non-negated and 

“negative” if there was no mention or all mentions of the finding were negated. We perform 

two types of assessments: generalizability and performance based on AUC. (B) A visual 

representation using the four different NLP methods to featurize the text for two example 

findings: fracture and any degeneration. The resulting finding-specific feature matrices are 

then used for the machine learning model, which uses the first column as the labels and 

remaining columns as features to predict the presence of these findings. AUC, Area Under 

the Curve; UMLS, Unified Medical Language System.
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Figure 2. 
Comparison of the Finding Label Prevalence Between the Training and Test Set. We 

compared the finding label prevalence between the train and test sets across the 25 repeats. 

To assess a significant difference, we performed a t-test between the two sets for each 

finding. An asterisk indicates a significant difference, while “ns” indicates no significant 

difference.
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Figure 3. 
Comparison of the Finding Label Prevalence Across the Healthcare Systems. We compared 

the finding label prevalence across the four healthcare systems. 1 = Kaiser Permanente of 

Washington, 2 = Kaiser Permanente of Northern California, 3 = Henry Ford Health System, 

4 = Mayo Clinic Health System, All = all four systems.
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Figure 4. 
Assessing Generalizability of Individual Representations. We compared the generalizability 

of each of our representations and assessed performance using sensitivity, specificity, 

and AUC. For each representation, we plotted a boxplot to represent the distribution 

of the 26 findings for each test performance metric across healthcare systems. CV, 

Controlled Vocabulary; CVF, Controlled Vocabulary Filter Only; DM, Document MIMIC; 

DL, Document LIRE; N, N-grams. 1 = Kaiser Permanente of Washington, 2 = Kaiser 

Permanente of Northern California, 3 = Henry Ford Health System, and 4 = Mayo Clinic 

Health System.
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TABLE 1.

The 26 imaging findings of our study

Type of Finding Imaging Finding

Deformities Listhesis-Grade 1

Listhesis-Grade 2 or higher*

Scoliosis

Fracture Fracture

Spondylosis

Anterior Column Degeneration Annular Fissure

Disc Bulge

Disc Degeneration

Disc Desiccation

Disc Extrusion*

Disc Height Loss

Disc Herniation

Disc Protrusion

Endplate Edema or Type 1 Modic*

Osteophyte-anterior column

Posterior Column Degeneration Any Stenosis*

Facet Degeneration

Associated with Leg Pain Central Stenosis*

Foraminal Stenosis*

Nerve Root Contact

Nerve Root Displaced/Compressed*

Lateral Recess Stenosis*

Nonspecific Findings and Other Any Degeneration

Hemangioma

Spondylolysis

Any Osteophyte

Any stenosis refers to any of central, foraminal, lateral recess, or not otherwise specified. Any degeneration refers to any of disc degeneration, facet 
degeneration, or degeneration not otherwise specified. * indicates the potentially clinically important findings.
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