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Abstract

Rationale and Obijectives: The use of natural language processing (NLP) in radiology
provides an opportunity to assist clinicians with phenotyping patients. However, the performance
and generalizability of NLP across healthcare systems is uncertain. We assessed the performance
within and generalizability across four healthcare systems of different NLP representational
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methods, coupled with elastic-net logistic regression to classify lower back pain-related findings
from lumbar spine imaging reports.

Materials and Methods: We used a dataset of 871 X-ray and magnetic resonance imaging
reports sampled from a prospective study across four healthcare systems between October 2013
and September 2016. We annotated each report for 26 findings potentially related to lower

back pain. Our framework applied four different NLP methods to convert text into feature sets
(representations). For each representation, our framework used an elastic-net logistic regression
model for each finding (i.e., 26 binary or “one-vs.-rest” classification models). For performance
evaluation, we split data into training (80%, 697/871) and testing (20%, 174/871). In the training
set, we used cross validation to identify the optimal hyperparameter value and then retrained on
the full training set. We then assessed performance based on area under the curve (AUC) for the
test set. We repeated this process 25 times with each repeat using a different random train/test split
of the data, so that we could estimate 95% confidence intervals, and assess significant difference in
performance between representations. For generalizability evaluation, we trained models on data
from three healthcare systems with cross validation and then tested on the fourth. We repeated

this process for each system, then calculated mean and standard deviation (SD) of AUC across the
systems.

Results: For individual representations, n-grams had the best average performance across all

26 findings (AUC: 0.960). For generalizability, document embeddings had the most consistent
average performance across systems (SD: 0.010). Out of these 26 findings, we considered eight as
potentially clinically important (any stenosis, central stenosis, lateral stenosis, foraminal stenosis,
daisc extrusion, nerve root displacement compression, enaplate edema, and listhesis grade 2) since
they have a relatively greater association with a history of lower back pain compared to the
remaining 18 classes. We found a similar pattern for these eight in which n-grams and document
embeddings had the best average performance (AUC: 0.954) and generalizability (SD: 0.007),
respectively.

Conclusion: Based on performance assessment, we found that n-grams is the preferred method
if classifier development and deployment occur at the same system. However, for deployment at
multiple systems outside of the development system, or potentially if physician behavior changes
within a system, one should consider document embeddings since embeddings appear to have the
most consistent performance across systems.

Keywords

Natural language processing; Lower back pain; Document embeddings; Evaluation; Lumbar spine
diagnostic imaging

INTRODUCTION

Lower back pain (LBP) is a common condition, in which patients typically exhibit
heterogeneous anatomic phenotypes and undergo a variety of treatments (1-3). LBP patients
frequently receive spinal imaging, and findings identified in the resulting radiology reports
are expected to help with phenotyping and decision-making (3). However, the association
between many findings and LBP is uncertain, because findings can be present in both
symptomatic and asymptomatic patients (4). As a result, patients with common aging-related

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Jujjavarapu et al.

Page 3

findings may be recommended for LBP-related treatments that are not etiologically linked to
their pain. To address this uncertainty, cohort studies and pragmatic trials have investigated
patterns of care among patients with LBP and sought to explore subgroups of patients

based on the presence of potentially clinically important findings (4-6). To address the
interpretation of radiology findings, the Lumbar Imaging with Reporting of Epidemiology
(LIRE) study assessed the effectiveness of including benchmark prevalences in the
asymptomatic population for findings found in radiology reports for patients who received a
diagnostic imaging test of the lumbar spine to reduce subsequent spine-related interventions
at four healthcare systems: Kaiser Permanente of Washington, Kaiser Permanente of
Northern California, Henry Ford Health System, and Mayo Clinic Health System (7). To
further assist research investigating the relationship between findings and LBP, the accurate
extraction of findings from large patient groups is needed. However, manual annotation is
time-consuming. Natural Language Processing (NLP)-based classification pipelines offer an
automated alternative to identify key findings in radiology reports (3).

An NLP-based classification pipeline is composed of two parts: NLP methods that extract
features from free-text data and convert them to a structured format (or representation)

and the machine learning (ML) model that uses these representations for classification.

Text conversion or feature generation can be performed using methods that range from
relatively simple domain-dependent and highly manual, to sophisticated data-driven scalable
strategies (8—11). Taskspecific rule-based methods identify terms in the free-text that are
typically defined by domain experts for a specific outcome of interest. Word or phrase
counting methods (n-grams) convert free-text to grouped consecutive words (10). Controlled
vocabulary methods convert free-text into a standardized language, using resources such

as the Unified Medical Language System (UMLS)’s Metathesaurus, a large vocabulary
database that contains information about biomedical and health related concepts, their
various names, and the relationships among them (9,12,13). Document embedding methods
use neural networks to represent the semantics of documents as vectors of continuous
numerical values (11). Each of these methods produces different representations that can
influence ML performance. Previous studies have investigated the classification performance
of these types of NLP methods (14-16), however to the best of our knowledge only

one study assessed generalizability as well (17). With this study, they investigated the
performance of their embeddings on a single external dataset, however without extensive
validation on multiple external datasets, there is a risk of overestimating both NLP strategies
and ML models’ performance (8,17,18).

We hypothesize that NLP methods will have more heterogeneous performance
characteristics on external data compared with internal data. The LIRE data provide an
opportunity to conduct a systematic evaluation of the utility of different representational
methods for identification of image findings in radiology reports drawn from multiple
healthcare systems. To assess the reproducibility and reliability of NLP methods, we need
to test our methods on multiple external datasets. The purpose of our study is to assess the
(1) performance within and (2) generalizability across the four LIRE healthcare systems of
different NLP-based feature extraction methods: rules, n-grams, controlled vocabulary, and
document embeddings, coupled with elastic-net logistic regression (i.e., the ML model) for
classifying radiology reports for LBP-related findings.
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MATERIALS AND METHODS

Annotated Dataset

This was a retrospective study that utilized the same annotated dataset from a previous
study that showed that ML-based models were superior to rule-based classification (3).

Our work is an extension of this as we expanded our NLP methods to include controlled
vocabulary and document embeddings and explicitly assessed generalizability across
healthcare systems. All participating IRBs agreed that the LIRE study was minimal risk

and granted waivers of both consent and Health Insurance Portability and Accountability
Act authorization (IRB approval number is 476829). We used limited dataset consisting of a
subsample of the LIRE cohort which consisted of approximately 250,000 patients from four
healthcare systems who received a thoracic or lumbar spine plain X-ray, magnetic resonance
imaging (MRI), or computed tomography (CT) between October 1, 2013 and September
30, 2016 (7). The LIRE study was a multicenter intervention study that investigated
whether inserting text about finding prevalence into lumbar spine imaging reports reduced
subsequent spine-related treatments (7). Once in the study, patients were followed for two
years and their data was regularly collected. We randomly sampled 871 index radiology
reports, the first radiology report for each patient, and stratified by system and image
modality (3). The sample size was determined based on prior NLP classification tasks

(19). Each report was annotated for the presence of 26 LBP-related findings (Table 1)

by a team of clinical experts composed of two neuroradiologists, a physiatrist, and a
physical therapist. A single report can be annotated for multiple findings. See Supplement
Appendix E3 for more details on this process. These findings were based on prior research
consisting of a review (20), prospective cohort study (4), and randomized control trial

(21) that characterized LBP based on its causes and treatments. Out of these 26, eight

were considered to be potentially clinically important: any stenosis, central stenosis, lateral
stenosis, foraminal stenosis, disc extrusion, nerve root displacement compression, enaplate
edema, listhesis grade 2 (4,5,7). Further details of this sampling and annotation process are
presented in a previous study (3).

Classification Pipeline Overview

Our classification pipeline analyzed the 871 LIRE radiology reports with the goal of
learning patterns that are predictive of each of the 26 findings (Fig 1). The pipeline can
be separated into three steps: preprocessing, featurization, and ML.

Preprocessing and Featurization

For preprocessing, we developed regular expressions to help isolate the finding and
impression sections of the 871 radiology reports. For featurization, rules, n-grams,

controlled vocabulary mapping, and document embedding methods were used to extract
features from the finding and impression sections. Rules require domain experts to identify
terms that are related to an outcome of interest. This method is timeconsuming, but since

the rules were developed by clinician experts, they can be considered a proxy for clinicians’
judgement for annotations. In our implementation, we developed regular expressions based
on the terms our team of clinical experts identified for each finding during the annotation
process. For each report, we split the text into sentences. For each sentence, we identified the

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Jujjavarapu et al.

Page 5

presence of a finding using the regular expression and checked for negation (22). However,
the presence of findings may be uncertain as radiology reports can have terms such as
“suggesting” and “not definite.” We minimized this uncertainty by coding these and other
similar terms as indicating the presence of a finding. We used Java (v4.6.0), using Apache
Lucene (v6.1.0), Porter Stemmer, and NegEx (23,24).

N-grams is a simple, but powerful method in NLP that converts free-text across the
radiology reports to n-grams (phrases of different lengths) and indicates their presence and
absence in each report (25). In our implementation, we used R (v3.6.1) package Quanteda
(v2.0.1) to convert the text into un-, bi-, and trigrams.

Controlled vocabulary is a filtered version of the n-grams approach that leverages only
clinically-related features from a standardized medical terminology mapped from the text
(9). In our implementation, we first split the text into its constituent sentences using the
maximum entropy model in the Apache OpenNLP toolkit to infer the end of a sentence (26).
We then applied MetaMap Lite and an assertion classifier developed by Bejan et al., to each
patient’s radiology text report to obtain standard UMLS concepts and assertions of whether
they were present, absent, conditional, possible or associated with someone else (27,28). We
used MetaMap L.ite because previous literature demonstrated MetaMap Lite’s performance
was comparable to or exceeded MetaMap and other similar methods (28). In addition, we
also implemented a version of the controlled vocabulary method (controlled vocabulary filter
only) that outputs recognized concepts as raw text, instead of the mapped UMLS terms to
assess how a “many-to-one” mapping affects classification performance (29).

Document embeddings is a sophisticated approach that uses a neural network to convert

the semantics of text into a continuous numerical vector (11). For the document embedding
method, we used the Python (v3.7.3) package Gensim (v3.7.1) to implement the Distributed
Bag of Words (DBOW) (11,30). We set the vector length to 600, number of epochs

to 500, and allowed the model to initially learn word embeddings using the skip-gram
architecture prior to learning document embeddings. We pretrained our DBOW architecture
on the full text using two data sets: 522,283 radiology reports from the third version

of Medical Information Mart for Intensive Care (MIMIC-III) (31), and the finding and
impression sections from 255,094 unannotated reports from the LIRE study. We refer to
these as document MIMIC and document LIRE, respectively. The former reflects a typical
pretraining scenario and the latter assesses how pretraining on a corpus similar to our actual
train/test corpus of 871 reports affects classification performance. We used these pretrained
models to derive numerical vector representations of each of the 871 radiology reports. See
Supplemental Appendix E1 for additional details. At the end of the featurization step, the
textual data from radiology reports are represented as rules, n-grams, controlled vocabulary,
controlled vocabulary filter only, document MIMIC, and document LIRE.

Rule- and Machine Learning-Based Model

For the rules, we used a rule-based model to classify a report as “positive” for a finding if

at least one mention in a report was non-negated and “negative” if there was no mention or
all mentions of the finding were negated. We then used the trapezoidal rule approximation to
calculate the area under the curve (AUC) (32). For each non-rule representation (i.e., feature
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set) and the finding labels from the annotation process, we developed an elastic-net logistic
regression model to predict the presence of each finding (i.e., 26 binary or “one-vs.-rest”
classification models) using the R (v3.5.1) package caret (v6.0-80). Within the training

set, ten-fold cross validation was used to adjust the value of our regularization parameter
(lambda) to perform feature selection on our predictors by shrinking our nonimportant
predictors’ coefficients towards 0. For each resulting finding-specific model, we identified
the optimal threshold based on the training set’s receiver operator characteristic (ROC) plot;
the threshold is the point closest to the true positive rate of 1 and false positive rate of 0 (i.e.,
the point closest to the top left corner of the curve) using Euclidean distance (33).

Performance and Generalizability Assessment

RESULTS

We used R (v3.5.1) to evaluate each representation. We used AUC of an ROC plot as

the primary evaluation metric. This is because we envision our pipeline as an efficient
“first-pass” screening tool intended to favor the identification of more true positives. For
performance assessment, we randomly split our full dataset into 80% (697/871) for training
and 20% (174/871) for evaluating our model for each finding. We assessed group-level
performance by averaging the evaluation AUC across all finding-specific models and across
all potentially clinically important finding-specific models, separately. We repeated this
process 25 times with each independent repeat using a different random train/test split

of the data, so that we could estimate 95% confidence intervals. For each finding/group,

a t-test was used to assess significant performance comparing the 25 repeats of the best
representation to the next best representation. We used Bonferroni correction to correct

for multiple hypothesis testing; for the two groups, we considered p-value 0.025 (0.05/2
groups) to be significant, and for the 26 findings, we considered p-value 0.0019 (0.05/26
findings) to be significant. To assess generalizability across healthcare systems, we trained
our model on reports from three systems and evaluated on the fourth, iteratively, for each
finding. For each finding, we calculated the mean and standard deviation of the AUC across
the four systems. We calculated group generalizability by averaging the AUC across all
findings, and across all potentially clinically important findings for each system and then
calculated the mean and standard deviation. We chose mean and standard deviation to
quantify generalizability, because the former measures the quality, while the latter measures
the consistency of performance across systems. For the generalizability assessment, we
included all representations except for rules because they were developed using reports from
all four systems, eliminating the possibility of evaluation using data unavailable at the point
of algorithm development.

Additional details for these and other secondary analyses are provided in the Supplementary
Materials.

Data Summary

In our dataset (7= 871), we sampled reports with similar proportions of image type (i.e.,
X-ray and MRI) and patients’ age and gender across our healthcare systems (Table 2). For
performance assessment, we’ve shown that our training set is representative of our test set
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for 23/26 findings by using a t-test to assess the significant difference in the prevalence
between sets across the 25 repeats for each finding (Fig 2). For generalizability assessment,
we found that each healthcare system was comparable since the finding label prevalence
across healthcare systems is overall similar with any degeneration having the highest label
prevalence (0.896) and /isthesis grade 2 having the lowest label prevalence (0.028) (Fig 3).

Comparing the Group and Finding Level Predictive Performance of Individual
Representations

To assess the best performing representation, we trained and tested 26 finding-specific
models for each representation and calculated finding-level and group-level AUC. On
average across all findings, we found that the models generally performed well, with average
AUC values above 0.87. N-grams and controlled vocabulary had the best (AUC = 0.960)

and worst average (AUC = 0.879) performance, respectively (Table 3). At the finding level,
n-grams had better performance than the corresponding second-best representation (which
differed from finding to finding) for 22 findings, 11 of which were statistically significant.
These results suggest that on average, the relatively simple methodology of n-gramsis
sufficient to classify our 26 findings.

In addition to assessing the performance of n-grams, we were also interested in
characterizing the performance relative to ru/es, a representation requiring domain-expertise,
and document LIRE, an advanced data-driven representation. This comparison is of interest
as each of these three representations reflect different disciplines in featurizing textual

data that range from domain-expertise to advanced domain-agnostic implementations. On
average across all findings, ru/es (AUC = 0.897) performed worse than n-grams and
document LIRE. At the finding level, rules was out performed by n-grams for eight

out of twelve rare findings (prevalence < 20%). Additionally, while document L/RE had
better overall performance than ru/es, it was not the best representation for any of the
findings. This may be due to the fact that document L IRE may not have been the best
representation but had stable performance across findings (min AUC = 0.799, max AUC =
0.979) compared to rules (min AUC = 0.649, max AUC = 0.999). These results also suggest
when considering only rare findings, n-grams still perform better than other representations.

Comparing the Group and Finding Level Generalizability Performance of Individual
Representation Across Healthcare Systems

To assess the best generalizable representation, we trained 26 finding-specific models for
each representation on data from three systems and tested on the fourth system, iteratively.
For each finding/group, we calculated the mean and standard deviation of the test AUC
across the four systems. At the group level, n-grams had the best average performance
across all findings (mean AUC = 0.902) and at the finding level, it was the best performing
representation for 10 findings (Table 4). The next best representation was document LIRE
at the group level (mean AUC = 0.879) and it was the best method for 10 findings as

well (Table 4). Interestingly, when considering standard deviation at the group level, we
found that document LIRE and n-grams were the most (standard deviation = 0.010) and
least consistent (standard deviation = 0.051) representations across all findings, respectively
(Table 5). We found r-grams could not generalize well to system two, particularly resulting
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in a lower sensitivity and higher specificity compared to other representations (Fig 4); we
verified this result through complementary analyses (Supplemental Appendix E3). At the
finding level, document L IRE was the most consistent representation for 11 findings. These
results suggest that while n7-grams had relatively the best performance, it had the worst
consistency across systems. Instead, document embeddings pretrained on study-specific data
(document LIRE) had relatively the most consistent classification performance on average
across our systems.

Assessing Performance and Generalizability of Potentially Clinically Important Findings

In our previous sections, we focused on all 26 findings, however we consider eight of these
findings to be potentially clinically important. As a result, we believe it’s important to
present results for this important subset of findings. For performance assessment, n-grams
had the best performance (AUC = 0.954), and it was significantly better than that of
document LIRE, the second-best representation (AUC = 0.910) (Table 3). At the finding
level, n-grams also had the best performance for all eight potentially clinically important
findings, six of which were statistically significant. For generalizability assessment, n-grams
had better performance (mean AUC = 0.898) than document LIRE (mean AUC = 0.890)
(Table 4). At the finding level, n-gramsand document LIRE had the best performance

for seven of these findings. For consistency, document LIRE was the most consistent
representation with standard deviation of 0.007 compared to n-grams’ 0.076 (Table 5). At
the finding level, document LIRE and MIMIC had the most consistent performance for six
and two potentially clinically important findings, respectively, with one tie endplate edema
(Table 5). These results indicate for this subset of findings, we still observe the same trend
where n1-grams has the best performance, but document LIRE has the best consistency.

DISCUSSION

Manual extraction of information from radiology reports can be burdensome, making
automated NLP methods attractive for such tasks. However, correctly estimating these
methods’ performance across multiple healthcare systems requires an understanding of

their generalizability on external datasets. In this study, we compared and contrasted

the performance of different NLP methods coupled with elastic-net logistic regression to
classify 26 findings related to LBP through performance and generalizability assessment.
Our study suggests that if classifier development and deployment occur at the same system,
then n-grams may be preferable. However, for deployment at multiple systems outside of the
system of development, one should consider n-grams with the caveat that it’s consistency
can vary across systems, while document embeddings pretrained on study-specific data
(document LIRE) or a publicly available dataset (document MIMIC) had the most consistent
performance.

Overall, based on performance assessment, n-grams, a relatively simple, data-driven,
domain-agnostic method, is superior to more sophisticated methods (document embeddings
and controlled vocabulary) in extracting known findings from text. These results are in

line with prior studies (14,34). Additionally, for rare findings (prevalence < 20%), n-grams
had the highest AUCs, which is consistent with a prior study evaluating n-grams coupled
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with LASSO logistic regression to classify acute LBP (prevalence of 22%) (35). However,
n-grams did not generalize well across the four healthcare systems when compared to
document embeddings. This performance-generalizability duality can be explained as
follows: the n-grams method is dependent on the precise phrasing in the training text.
When we considered performance assessment, we split the full dataset into 80% (697/871
reports) for the train set and 20% (174/871 reports) for the test set; both sets contained

the four healthcare systems, and their text were representative of each other. However,
when considering each system independently for the generalizability assessment, n-grams
were more susceptible to overfitting, i.e., they may have contained predictors more relevant
to the training systems than the test system. When comparing summary statistics of the

raw text among systems, we found that system two was indeed different from the other
systems (Supplemental Appendix E3) and changing classification thresholds for the models
tested on this system did not affect performance. In comparison, document embeddings
better captured differently worded but synonymous concepts by transforming the raw text
into abstract numerical representations that reflect semantics, leading to less deviation in
performance across systems but slightly worse performance overall.

Document embeddings are of particular interest because they represent a sophisticated
method of featurization that are pretrained on large-scale corpora to learn more generalizable
representations of text. Here, document embeddings were pretrained on two different data
sources, unannotated LIRE reports (smaller but more relevant to LBP) and MIMIC-III
(larger but less specific). While document LIRE overall performed better than document
MIMIC, the difference was modest, suggesting that a lack of task-specific corpus is not a
barrier for using document embeddings in clinical tasks. This observation is consistent with
other studies (16,36,37).

Controlled vocabulary and controlled vocabulary filter only are two representations that

can be considered filtered versions of the n-grams approach that leverages only clinically
related features. These representations differ from each other in that the former maps the
clinically relevant raw terms to standardized terms to then use as features, while the latter
does not map and instead uses the clinically relevant raw terms as features. As a result,
controlled vocabulary performs a “many-to-one” mapping that can affect performance.
When comparing these two representations, we found that controlled vocabulary marginally
outperformed controlled vocabulary filter only in both performance and generalizability. Our
study indicates that this “many-to-one” mapping is not detrimental to performance, but does
not provide a substantial improvement relative to using only the clinically relevant raw terms
as features.

Beyond performance and generalizability, scalability and interpretability are important
factors to consider when choosing a NLP-based feature extraction method. Rules are the
most interpretable method, because they solely rely on domain experts to provide the
synonyms to search for in text. However, this method cannot scale well as expanding the
synonyms for a more complete identification of findings and larger number of findings

will require more time and domain experts. In contrast, n-grams, controlled vocabulary, and
document embeddings are domain-agnostic computational methods, and as a result they can
scale well to a large number of radiology reports and findings. These methods differ in their
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interpretability. Controlled vocabulary and n-grams are the most interpretable methods as the
former provides an ML model clinically relevant terms as features, while the latter provides
the raw text as features. It is relatively easy for a researcher to examine a model’s features
and coefficients based on either of these two methods and understand what aspects of a
radiology report are predictive of the outcome of interest. Document embeddings is the least
interpretable method as it uses a neural network to represent a document’s semantics as a
vector of continuous values. These values are no longer interpretable as they are a result

of the interactions of different word embeddings from the radiology reports in the neural
network. When considering subsequent implementation, it is important to consider factors
such as scalability and interpretability in addition to performance and generalizability.

There are several limitations to this study. First, our pipeline required binary annotations
for findings, however the presence of findings may be uncertain as radiology reports can
have terms such as “suggesting” and “not definite.” We minimized this uncertainty by
coding these and other similar terms as indicating the presence of a finding. Second, while
our sample size was in line with recommendations for classification tasks, larger training
and testing sets could have led to less variable performances across our different NLP
methods (19). Third, we evaluated the algorithms but not the entire pipeline involving the
querying and transfer of data; there may be discrepancies in our performance estimates
when compared to those at actual deployment. Fourth, we could not assess our rules’
generalizability, since the search terms were developed from reports from all four systems.
Finally, in the case of document embeddings, because of our limited computational
resources, we had to sequentially adjust hyperparameter values in the pretraining step, rather
than conducting a grid search. With a more extensive hyperparameter search, we may have
been able to improve performance.

Diagnostic imaging is often an early step for LBP patients that eventually leads to
interventions, however the association between findings and LBP is uncertain (4). Jarvik et
al. investigated this association and identified eight (potentially clinically important) findings
that may be associated with a history of LBP and of these eight, nerve root contact, disc
extrusion, and central stenosis may be associated with a new onset of pain (4,5,7). We’ve
shown that our pipeline can automate classifying reports for these potentially clinically
important findings using n-grams, and can generalize across healthcare systems using
document embeddings. Our automated pipeline can assist similar studies by developing
large cohorts quickly and inexpensively to investigate the association between findings and a
clinical outcome within and across healthcare systems using text-based data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figurel.
Overview of the Pipeline. (A) This visualization shows the different steps of our pipeline

where we collect 871 radiology reports from our four systems, perform preprocessing to
clean the text data, perform feature extraction using our four different methods. We load the
n-grams, controlled vocabulary, and document embeddings feature matrices into a logistic
regression model to predict the presence of these findings. For ru/fes, we instead use a rule-
based model that classifies a report as “positive” if at least one mention was non-negated and
“negative” if there was no mention or all mentions of the finding were negated. We perform
two types of assessments: generalizability and performance based on AUC. (B) A visual
representation using the four different NLP methods to featurize the text for two example
findings: fracture and any degeneration. The resulting finding-specific feature matrices are
then used for the machine learning model, which uses the first column as the labels and
remaining columns as features to predict the presence of these findings. AUC, Area Under
the Curve; UMLS, Unified Medical Language System.
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Figure 2.

Comparison of the Finding Label Prevalence Between the Training and Test Set. We
compared the finding label prevalence between the train and test sets across the 25 repeats.
To assess a significant difference, we performed a t-test between the two sets for each
finding. An asterisk indicates a significant difference, while “ns” indicates no significant
difference.
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Figure 3.

Comparison of the Finding Label Prevalence Across the Healthcare Systems. We compared
the finding label prevalence across the four healthcare systems. 1 = Kaiser Permanente of
Washington, 2 = Kaiser Permanente of Northern California, 3 = Henry Ford Health System,
4 = Mayo Clinic Health System, All = all four systems.
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Figure 4.
Assessing Generalizability of Individual Representations. We compared the generalizability

of each of our representations and assessed performance using sensitivity, specificity,

and AUC. For each representation, we plotted a boxplot to represent the distribution

of the 26 findings for each test performance metric across healthcare systems. CV,
Controlled Vocabulary; CVF, Controlled Vocabulary Filter Only; DM, Document MIMIC;
DL, Document LIRE; N, N-grams. 1 = Kaiser Permanente of Washington, 2 = Kaiser
Permanente of Northern California, 3 = Henry Ford Health System, and 4 = Mayo Clinic
Health System.
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TABLE 1.

The 26 imaging findings of our study

Type of Finding

Imaging Finding

Deformities

Fracture

Anterior Column Degeneration

Posterior Column Degeneration

Associated with Leg Pain

Nonspecific Findings and Other

Listhesis-Grade 1
Listhesis-Grade 2 or higher*
Scoliosis

Fracture

Spondylosis

Annular Fissure

Disc Bulge

Disc Degeneration

Disc Desiccation

Disc Extrusion*

Disc Height Loss

Disc Herniation

Disc Protrusion

Endplate Edema or Type 1 Modic*
Osteophyte-anterior column
Any Stenosis*

Facet Degeneration

Central Stenosis*

Foraminal Stenosis*

Nerve Root Contact

Nerve Root Displaced/Compressed*
Lateral Recess Stenosis*
Any Degeneration
Hemangioma

Spondylolysis

Any Osteophyte

Page 18

Any stenosis refers to any of central, foraminal, lateral recess, or not otherwise specified. Any degeneration refers to any of disc degeneration, facet

degeneration, or degeneration not otherwise specified. * indicates the potentially clinically important findings.

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



Page 19

Jujjavarapu et al.

“UOIIRIABD PABPURIS PAPNIOUL M

‘abe pue yibus) 1xa1 abesane Yyiog 104 “auljadid Ino Joj palinbal 81am sUOII8S 3SaY) 92UIS ‘sUOIIaS Uolssaidwil pue Buipuly syl yiog Joy yibua) 1xa1 abesane ayy parejnofeds am ‘Yibus| 1xa) abesae 1o “Lodal
10 adA1 yoea pue WaIsAs aleayifeay yoes Ioj siualred ajewsy Jo uoniodoud ayr pue ‘syusied Jo sbe abelane sy ‘1odal yoes Ul suondss uoissaidwi pue Buipuly syl 4oy Yibus| 1xa] abeiane ay) parejnafed s\

850 ZY'9T ¥6L29 60T ¥ 66T 1.8 [e10L
250 LTSTF2SLS 81T F /S¢C 857 dN
€90 9L°GT ¥ 8589 vy F ¥ET ETy Key-X 1\
090 8ZLTFS8TY 06 ¥ 8T 812 [e10L
850 ¥i'GT FET'SS Y01 ¥ 222 GTT dN
190 GT'9T ¥G€'69 6EFIVT €01 Rey-x WwalsAS yyeaH a1u1ld okeN
190 ¥¥'9T 9629 LET ¥ 66T 812 [e10L
G0 LL'ST¥56'85 28T ¥ 892 GTT dN
2.0 vO9TFGT'L9 LSFTCT €01 Rey-x WwalsAs yieaH piod AlusH
950  89'9T ¥90°29 L6 F 012 812 [e10L
€50 96VTFT'LS G6 F 0.2 141 dN
190 89T F 1529 8 F €71 0T Aey-X  e1uI0jI[eD UIBYHON JO 8juBUBWLIBd J8SIe]
v§0 0Z'STF8CH9 SOT ¥ €02 A4 [e10L
670 SEVT ¥ 0685 90T F 292 GTT dN
090 VY8ETFSE0L YE F ZET 20T Rey-x U0IBUIYSBAA JO BlUBLBLLIR JasIeM
oporwa4 abyabelony yibueixol abelony jeserequIN  adA] abew | wesis

SWaISAS aJeayijeaH Ino4 ayl SS0IJY Japuas) pue aby ,Siuslied pue ‘Yibua 1xaL abelany ‘adAL abew| uo paseg suoday T/8 ayl Jo Arewwns

Author Manuscript

‘¢31avl

Author Manuscript

Author Manuscript

Author Manuscript

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



Page 20

Jujjavarapu et al.

+(0T0'T '8¥6°0) 086°0
(26°0'8280) G¢6°0
(6v6'0 'L18'0) £88'0
(€26'0 '528°0) ¥28'0
(8v6'0 'v58'0) T06°0
+(¥56°0 '€98°0) 6060
(686°0 '706°0) L¥6°0
(¥6'0 '678°0) 088°0
(0560 ‘2580) T06°0
(¥96°0 ‘968'0) 0€6°0
(786°0 '026°0) 2560
(2860 '5€6°0) T96°0
+(086°0 '928°0) 828°0
(T96°0 '€88'0) 2¢6°0
(€v6'0 '288'0) £16°0
(568'0 '€18°0) ¥58'0

(206°0 ‘258°0) 6/8°0

+(070°T '266'0) 2860
(096°0 '898°0) ¥T6°0
(¥96°0 '9€8°0) 006°0
(€€6°0 '1€8°0) 288°0
(6v6°0 '058°0) 006°0

+(926°0 '2¥80) 606'0
(£86°0 '€06°0) 5v6°0
(€€6°0 '818°0) 528'0
(€56'0 '198°0) L06'0
(996'0 '868'0) 2€6'0
(286°0 '€26'0) G56'0
(¥86'0 '926'0) G560
(5€6°0 '218°0) 7280
(696°0 '888°0) £26'0

+(196°0 'T16°0) 9€6'0
(¥68°0 'T¢8'0) L58'0

(T06°0 ‘298°0) 2880

(¥56°0 '998°0) 0T6°0
(£596°0 '6€8'0) 968'0
(556°0 '9¥80) T06'0
(206°0 '582°0) 9¥8'0
(T£6°0 '288'0) 626'0
(zv8'0'922'0) ¥8L°0
(196°0 '858'0) 016°0
(2€6°0 '5€80) 988'0
+(Lv6°0 'v88'0) G160
+(596°0 '906°0) 9€6'0
(7660 ‘6€6°0) L96°0
+(886°0 'S¥6°0) L96°0
(988°0 '7220) 0£8'0
(6.6°0 '616°0) 676'0
(896'0 '682°0) 728'0
(026°0 '958'0) 888'0

(9T6°0 ‘'2.8°0) ¥68°0

(v26°0 '6.8°0) L26°0
(56°0'978°0) €88°0

L0101
'¥16°0) 0660

+(¥s6°0
‘2/8°0) €T6°0

+(¥66°0
'¥26°0) 656°0
(¥¥6°0 '598°0) ¥06°0

+(686°0
‘826°0) 856°0

+(356°0

'¥68'0) G26'0

(5180 'T€L°0) €220
(256'0 '928'0) ¥16'0
(000°T '€56'0) 9260
(0£6'0 '958'0) €680
(526°0 '6¢8'0) L28°0
(¥16°0 '2€8°0) £8°0
(T€6°0 '022°0) 058'0

(258°0 '682°0) T28°0

(T76°0 '288°0) L68°0

(€6°0'906°0) 0%6°0
+(€L6°0 'T26°0) L¥6°0
(66'0 ‘788°0) 9€6'0
(¥76°0 ‘'0280) L98°0
(196°0 '888'0) ¥'26'0
(698'0 ‘262°0) 0£8'0
(¥26°0 ‘'0880) 226'0
(z€6'0 's¥8°0) 888°0
(0£6'0 '928'0) €060
(T26'0 '668'0) €60
+(000'T '956'0) 826°0
(€86'0 '0£6°0) LG6°0
(5/80'162°0) £€8°0
+(166°0 ‘G€6°0) £96°0
(2£6°0'028'0) 968'0
+(2r6°0 '828°0) 0160

+(626°0 '268°0) 0T6°0

(000'T '€56°0) 2L6°0

+(186°0
'216°0) 6760

+ot10T
'116°0) 266°0

+(9260
‘0£6°0) £56°0

+(¥66°0
‘€76°0) 696°0

+(€L6°0
'868'0) S€6°0

+(¥66°0
‘T¥6°0) L96°0

+(¥66°0
‘976°0) 5560

+(186°0
‘6T6°0) 0560

+(8260
'2¢6°0) 056°0

+(000T
'216°0) 986°0

+(r66°0
‘056°0) 2L6°0

+0260
‘168'0) T€6'0

+(666°0
‘076'0) 0.6°0

+(686°0
'906°0) L1760

+(€86°0
'G26°0) 756°0

+(zL670
'676°0) 0960

87€69°0

L¥929°0

¥.66€°0

10T-3€T'S

9¢.€0°0

€0¢00°0

888€0°0

1L0-3vr'e

10T-32€9

1€ST00°0

9/¢000

709600

10T-39%'S

¥8YET'0

68¢€0°0

1€T-390°¢

123907

L6T°0

¢1eo

L12°0

1.20

v.¢'0

¢ce0

¥2e0

CEE0

16€°0

00v'0

SEV'0

08¥°0

1050

(4741}

9680

uoisn.joud 2sip
ainjoeuy
sisojApuods
uwnjod

JoLg)ue a1Aydoalso
SIS01]09S
uonyelauabap asip

T apesb sisayisi|
a1Aydoayso Aue
£SISOUB]S [esjusd
%SISOUB)S [eUIWRIO)
abjng asip
£SISOUals Aue

sso] ybray asip
uorjelauafap 1898}
uonelauabap Aue
sBuipui4 Jueniodwy

Alrearun|d Ajjenusiod

sBulpuid |1V

Auo »y14

ATe|nqedop pajjo4iuod

Are|nqedso pajo41uod

Author Manuscript

DI TN Juswndogd

Ny

DNV [9A3] Buipuly pue dnoub uo paseq suoneiuasaidai [enpiaipul Buiwiopiad 1s8g

3¥ 17 Wwewnoog

‘€31avl

Author Manuscript

swe 19-N

aneA-d

Author Manuscript

doud

Buipui4

Author Manuscript

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



Page 21

‘uoiiodoud = doid ‘anInD ayl Jepun ealy = DNV ‘sbuipuly uenodwi Ajeaiun)o Ajjenualod

a1 sa1edIpul x Ajfeuld “(sbuipuiy 92/50°0 = 6T00°0 :sBulpuly ayy 1oy asueayiubis anfea-d ‘sdnoib g/50°0 = Gz0'0 :sdnoub ays oy souedisiubis anjea-d) Uo1I2a1109 1UOLIBJUOG YIM suosLedwod Juediyiubis
SayedIpul | "uonejuasaidal 153g-puoaas ay} 03 sieadal Gz sy} Joj SanfeA DNV JO UOINGLISIP S, uoneuasaidal 1saq ayl Burredwod 1s8)-) e pawopad am ‘dnolb pue Buipuly yoes 1oy ‘Ajjeul "sasayjuated ay}
Ul [eAIBIUI 9OUSPILUOI 94G6E 8YI MOUS AN "UOITRIUSSaIdal 1S90-pu0das ay) sayealpul 4 PUE DNV abeiane ayy uo paseq uoneiussaidal [enpiAipul Bulwiopiad 1s8q sayealpul 4+ ‘MoJ Yyoes 10 “uolodoud e se

pajuasaldal 1S 1581 8y} Ul 3ouajeAald Sa1edIpul uWN|od puodas ay ‘sbuipuly ayy 104 "dnolb/Buipuly ayy Sayedlpul uwnjod 1si1y ay L “(mod st MOJ SBUIpUIA J/v 341 Uo pased 1ybLl 0} 148] palaplo uolneiuasaldal

Buiwoyiad 1580 8Y) SMOYS 8]qRL "S[EAIBIUI B0USPIILOD 04GE 81BINDJED 0) BIep aU JO sH|ds JUaJaIp YlM sawi Gz sseooid siy) pareadas s\ “uoiiejuasaidal yoes 1oy sBuipuiy Juenodwi Ajjeatun)d Ajjenusiod
[e ssooe pue sBuipuly |[e ssoloe DNV dy pafesane am ‘[ans] dnoib 104 Ajaanoadsal 1aserep syl 40 %02 PUB %08 U0 (BUIpuly Yora 10y 8UO) S[POW 9z PaIsa) pue paures) aMm ‘uolelussaldal yoes 1o

Jujjavarapu et al.

Author Manuscript

Author Manuscript

Author Manuscript

+0201

(206°0 ‘0TS°0) 902°0 (160 '655°0) G€L°0 (88°0'98%°0) €89'0  (SS6°0'085°0) 2920  +(V66°0 ‘#09°0) 66L°0 ‘T.°0) G06'0  8T0000 8200 xC 9peIb sisayisi|
(080T +0zo0T

(0TO'T 'T95°0) §82°0 (000°T ‘205°0) #¥S52°0  (986°0 ‘L¥72°0) 998°0 'G6.°0)9¢6'0  (0TO'T '¥59°0) 2€8°0 ‘076°0) T86°0 195000  2€0°0 sisAjojApuods
+0z0T +(e00T

(050°'T ‘025°0) 982°0 (v66°0 '925°0) 0920 (080T ‘0v2'0) 2T6°0 ‘226'0)626'0  (090°T ‘STZ'0) 068°0 '8/8°0) 9560 629v0'0 8€00 uoneluay asip
+(000°T +(0e0'T

(090°T ‘5¥78°0) TS6°0 (090°T ‘298°0) €96'0  (0SO'T ‘S0L°0) G/8°0 '566'0) 666'0  (T66°0 ‘L08°0) 668°0 ‘056°0) T66°0 9€/0'0 6V0°0 ewoibuewsay
+(000T

(0£6°0 '929°0) 8220 (968'0'€89'0) 6820 (£96'0 ‘€T.'0)868'0  (926'0 ‘2€2°0) ¥58'0  +(026°0 'G92°0) 898°0 ‘7€8°0) 9T6'0 4880000 6500 «BLIBPA 8je|dpus
+(0z01

(0£0°T *268°0) 296°0 (020'T '¥16'0) 6960 (S66'0 ‘T06'0) 876'0  (266'0 'GL2'0) 9880  +(000°T '¥S6°0) 6.6°0 ‘€96°0) ¥66'0 4680000  6.0°0 £U0ISNIIX3 0SIP
+(966°0

(¥68°0 ‘T¥2°0) 818°0 (228'0'9T2°0) 160 (£26'0'958°0) ¥16'0  (€66'0'£28°0) 0T6'0  +(286°0 '658°0) 1260 ‘6¥6'0) 2260 80-3ET'T /600 10BJU0J 1004 BAJBU
+(0107T »ot0T

(0980 ‘059°0) §5.°0 (098°0°299°0) €90 (966°0 ‘8v8°0) 2260 '506°0) 266'0  (000°T ‘988°0) ¥76°0 ‘888'0) 056'0  8SEBE'0 6600 ainssy fejnuue
+otoT

(ST6°0 '€LL°0) ¥¥8°0 (16'0 'T22°0) 780 +(826'0'8T6'0) 8Y6'0  (T€£2'0°2950) 6v90 (€260 ‘606°0) Tv6°0 ‘126°0) 996°0 GEZOO'0  E9T'0  ~SISOUSIS SSa0al [eJale

+(966°0 «passaldwios

(TT6°0 ‘218°0) ¥98°0 (126'0'678'0) 0,80 (996'0'8¥8°0) L06'0  (228'0'869'0) 6820  +(226'0 ‘¥S8°0) 160 ‘€16°'0) GG6'0  490-380°T  69T'0 /PaJe|dsip 1001 8AJBU
+(¥66°0 +ot10T

(868'0 'L¥71°0) 2280 (888'0 'sv2°0) L18°0  (296°0 ‘¥88°0) £26'0 ‘1¢6'0) 856'0  (066°0 ‘€26°0) L56°0 '€66'0) T86°0  4S0-36E'T  68T°0 uoNEeIIISsp ISIp

Ajuo w4
Are|nqedop pa|jo4uo)  Arejngedop pajjo4uod DIWIIA uswnoog o|Ny 3|7 Wwewnoog swe l9-N aneA-d  doud Buipuiq

Author Manuscript

available in PMC 2023 March 01.

i

Acad Radjol. Author manuscript



Page 22

Jujjavarapu et al.

000 §¢lL0 86.°0 +9¢8°0 0¢8°0 8€0°0 uoneluisy osip
+€96°0 +€96°0 8060 698°0 LT6°0 6700 ewolbuewsy
29.°0 G¢lL0 T80 +598°0 780 650°0 «BWaPa dre|dpud
6560 896°0 G260 +¢L6°0 L¥6°0 6L0°0 *xUOISNIIXd JSIp
L0 9.0 580 G880 +L16°0 1600 10BIU0D 1001 BAIBU
€920 99/°0 9880 +1¢6°0 8060 6600 ainssyy Jejnuue
80 T€8°0 +7€6°0 2€6°0 S16°0 €97°0 *SISOUB]S SS3031 [eldle|
G680 S¥8°0 ¥68°0 906°0 +816°0 69T°0 «Passaidwod/pade|dsip 1001 sAIBU
161.°0 96.°0 0580 6060 +6¢6°0 681°0 UoneIdISap Isip
+816°0 1160 7060 GE6'0 8760 L6T0 uorsnijoud osIp
906°0 076°0 688°0 +9¢6°0 0T6'0 ¢1eo ainyoel}
18L°0 €¢8°0 ¥9.°0 T08°0 +586°0 L1¢°0 siso|Apuods
G280 +Gv8°0 8180 G280 2e8'0 1,20 uwiInjoo Jowisiue 81Aydoalso
0,80 §98'0 1680 2680 +116°0 ¥.20 SIs01j09s
+806°0 1980 9T.'0 0TL'0 €180 [4440] uonesausbop osip
+9€6°0 0€6°0 1680 6680 S06°0 €0 T apelB sisausi|
€280 €80 0980 +7180 +7280 zZee0 a1Aydoaiso Aue
8.8°0 1680 1680 188°0 +976°0 15€°0 ¥SISOUR)S [esjuad
8880 ¥06°0 €160 +¢¢60 G880 00t°0 #SISOUB)S [eulwelo)
6260 0€6°0 €360 +€96°0 756°0 SEV'0 ab|nqg os1p
€¥6°0 9¥6°0 §G56°0 +.56°0 L06°0 08¥°'0 xSIS0UB)S Aue
L€8°0 +5v8°0 87,0 ¥5.°0 +Gv8°0 L0S°0 $s0| Jybiray osIp
868°0 ¥16°0 1260 +¢56°0 6T6°0 29.°0 uonelauabap 1908y
¥.8°0 +L¢60 8780 1880 S06°0 9680 uonessuabap Aue
€€8°0 €80 1880 0680 +868°0 - sBuipui4 yuenodw| Ajjesiund Ajjenusiod
€380 1580 8980 6.8°0 +¢06°0 - sbutputd |1v
AuO 1|14 A1reINQeIoA PB[1011U0D  AfeINgedoA PRJ|0AU0D  DINIIA JUBWNoOd  3Y |7 uewndog  swei9-N  uoliiodold Buipui4

Author Manuscript

SWISAS $50198 DNV JO Ueaw [an3] Bulpuly pue dnoib uo paseq suoneluasaidal [enpiaipul Buiwiopiad 1s8g

v 31avl

Author Manuscript

Author Manuscript

Author Manuscript

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



Page 23

Jujjavarapu et al.

"aAIND 3y} Japun ealy = DNV uenodwi

Aleaunjd Ajfenusiod alam Jeyl sbulpuly ay sajedipul « Ajjeutd “dnolb pue Buipuiy 1eys Joy uoieiuasaidal Buiwioyiad 1saq ayy seredipul 4 ‘uoniodoid e se pajuasaldal 19s 1581 8y Ul ddusjeAald saedlpul
uwnjod puoaas ayy ‘sbulpuly ayy 104 ‘dnolB/Buipuly ay) se1ealpul UWN|0d 1S11y 8y 1 "(MOJ IS T) MOJ SBLIpUIH [/ 89U} uo paseq Bl 0} 14| palaplo uoneluasaidal Bulwlopiad 1s8g syl SMoYS d|qel "SWalsAS
31 SS0JOB Ueall 8y} paje|nded uayl pue walsAs yoea Joy sbuipuly Juepodwi Ajjeaiun|d Ajfenuslod [Je ssoioe pue ‘sbuipuly ||e sso1oe DN a8yl Buibeiane Aq souewloylad [aAs]-dnolb pajenafed apn “SwalsAs
1IN0y 8y} SSOIIB DNV Y} JO Ueal 8y} paje|ndfed am ‘Buipuly yoes o -Buipuly yoes Joj ‘AjgAirels)l ‘Ynoy sy} U pajen|ens pue SWalsAs 9.y} Woiy SHodal uo [8pow Ino paurel) am ‘uorjejuasaidal yoes Jo4

¥19°0 1590 189°0 orL0 +8€8°0 8200 xC 9peib sisayisi|
¥08°0 6.0 6780 ¥18°0 +8€6°0 2€0°0 sisAjoApuods
KO 114 Are|ngedoA pafjouoD  ARe|NgeaoA Pe|ioluoD  OINTIN IUBWNd0g  FY17Wewnoog  Swelo-N  uoliodoid Buipui4

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



Page 24

Jujjavarapu et al.

¥60°0 §90°0 2600 600 +9¥0°0 8€0°0 uoneluIay asIp
S0T°0 8700 +L00°0 8700 €.00 6700 ewolbuewsy
9CT0 1600 +6G0°0 910 +650°0 650°0 «BWaPa dre|dpud
9100 €200 ST0°0 200 +,00°0 6L0°0 »UOISNIIXs JsIp
0600 +v10°0 %00 GEO'0 1200 1600 19BJU0D 1004 BAIRU
€900 G900 1500 ¥90°0 +ST00 6600 ainssyy Jejnuue
€900 €00 6T00 8€0°0 +L10°0 €97°0 *SISOUB]S SS3031 [eldle|
120°0 +1700 ST0°0 8700 0200 69T°0 «Passaidwoa/pade|dsip 1001 aAIBU
0600 1500 +020°0 ¢S0°0 200 681°0 UoneIdISap Isip
€500 9100 8100 +1700 1200 L6T0 uorsnijoud osIp
6200 6€0°0 6200 8¢0°0 +6T0°0 cTeo ainjoely
+ST0°0 Y910 9€0°0 9970 0v0°0 L1¢°0 siso|Apuods
8800 €800 +0200 800 G200 T.20 uwnjo3 Joraiue 81Aydoalso
8900 €V0'0 G200 1500 +L10°0 v.20 SIS01]02S
+9¢00 6¥0°0 ¢60°0 2S00 €€0°0 [4440] uonesausbop osip
9100 Y100 +600°0 7100 ¢€00 €0 T apelB sisausi|
8010 7600 +1€00 6600 €00 zZee0 a1Aydoaiso Aue
€v0°0 9500 8€0°0 9700 +0€00 15€°0 ¥SISOUR)S [esjuad
v0°0 1100 SE0°0 8500 +970°0 00%7'0 »SISOUB]S [euILLIRIOY
0v0°0 ST0°0 +6000 ¢c00 6700 SEV'0 ab|nqg os1p
1500 GE00 +€10°0 ¢€00 €200 08¥°'0 xSIS0UB)S Aue
€070 1500 +010°0 0500 €e00 L0S°0 sso| yBiay os1p
¥90°0 8200 2200 6€0°0 +8T0°0 29.°0 uonelauabap 1908y
+0200 00 ¥20°0 T€0°0 1200 9680 uonresausbop Aue
9.00 T€00 ¥20'0 GE0'0 +200°0 - sBuipui4 Juepodw Ajjeatunjd Ajrenusiod
1500 700 €100 ¢100 +0100 - sbutpul4 11V
swelo-N  AluQ .14 Are|nqesoA pe|jouod  DINIIA JuBwWnoog  AReINCeIoA pojjo4iuo) 3y |7 uswnoog  uoilodo.d Buipui4

SWaISAS $50198 DNV JO UOIRIASP pJepuels [aAd] Bulpul) pue dnoib uo paseq suoleluasaidal [enpIAIpul JUB]SISUOD I1SOIN

Author Manuscript

‘S 319Vl

Author Manuscript

Author Manuscript

Author Manuscript

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



Page 25

Jujjavarapu et al.

"aAIND 8y} Japun ealy = DN Juenodwi Ajfeatul}d Ajfenusiod aiam yeys sbuipuly sayedlpul
« A[eut4 dnoib pue Buipuiy yeyy Joj uolreIuasaIdal JUBISISUOD ISOW By} S8YedIpUl 4 "uoiiodoud e se pajuasaldal 185 158} 8y} Ul 8ouafenald Saredlpul uwnjod puodss ayl ‘sbuipuly ayy 104 “dnolb/Buipuly
3U3 SaJRIIPUI UWN|0D ISI1} 8Y L *(MOJ 15T) MOI SBUIPUIS ] U} UO Paseq 1yBLI 0} Ya| PaIapIo LOIeIUSSaIda) JUBISISUOD ISOW U} SMOUS B|qeL "SWRISAS aU} SS0JO UOIIBIASD PIePUEIS 8} Pale|noed ual)

pue 13s 159} e Se WwalsAs yoes oy sbuipuiy uenodwi Ajjeaiun)d Ajfenusiod [Je ssoloe pue ‘sBuipuly [Je ssoioe DN ay1 Buibesane Ag Aouslsisuod [ans]-dnolf parenajed apn “SWwalsAs oy ayl Ssoloe DNV
3y} JO UOIIBINGD PJepUElS 8y} Pale|nded am ‘Buipuly yoes Jo4 "Buipuly yoes 1oy ‘AjaAiresall ‘ylnoy syl Uo paten|ens pue SWialsAs a8y} wolj spodal uo [apow Jno paures) am ‘uofiejuasaidal yoes Jo4

¥8T°0 6600 ¥81°0 8210 +L¥0°0 8200 xC 9peib sisayisi|
+770°0 80T°0 1800 €TT0 L0T°0 2€0°0 sisAjojApuods

swelo-N  AuQ B4 A/ejngedsoA pa|joauod  DIWIIA uBWNood  AQengeooA pajjoiuo)d  3¥|7uewnooq  uoiliodold Buipuiq

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Acad Radiol. Author manuscript; available in PMC 2023 March 01.



	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Annotated Dataset
	Classification Pipeline Overview
	Preprocessing and Featurization
	Rule- and Machine Learning-Based Model
	Performance and Generalizability Assessment

	RESULTS
	Data Summary
	Comparing the Group and Finding Level Predictive Performance of Individual
Representations
	Comparing the Group and Finding Level Generalizability Performance of
Individual Representation Across Healthcare Systems
	Assessing Performance and Generalizability of Potentially Clinically
Important Findings

	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	TABLE 1.
	TABLE 2.
	TABLE 3.
	TABLE 4.
	TABLE 5.

