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Abstract

Deep learning (DL) has emerged as a powerful tool for improving the reconstruction quality of 

accelerated MRI. These methods usually show enhanced performance compared to conventional 

methods, such as compressed sensing (CS) and parallel imaging. However, in most scenarios, 

CS is implemented with two or three empirically-tuned hyperparameters, while a plethora of 

advanced data science tools are used in DL. In this work, we revisit ℓ1-wavelet CS for accelerated 

MRI using modern data science tools. By using tools like algorithm unrolling and end-to-end 

training with stochastic gradient descent over large databases that DL algorithms utilize, and 

combining these with conventional concepts like wavelet subband processing and reweighted ℓ1 

minimization, we show that ℓ1-wavelet CS can be fine-tuned to a level comparable to DL methods. 

While DL uses hundreds of thousands of parameters, the proposed optimized ℓ1-wavelet CS with 

sub-band training and reweighting uses only 128 parameters, and employs a fully-explainable 

convex reconstruction model.

I. INTRODUCTION

Slow data acquisition remains a challenge for MRI, requiring accelerated imaging strategies. 

Conventional methods, such as parallel imaging [1], [2] and compressed sensing (CS) [3] are 

used clinically, but typically their acceleration rates are limited by noise amplification and 

residual aliasing artifacts in reconstructed images. Recently, deep learning (DL) methods 

for accelerated MRI [4]–[8] have emerged as a powerful tool for MRI reconstruction, with 

improved performance over conventional methods in many studies. Among DL methods, 

physics-guided DL (PG-DL) methods that unroll conventional optimization algorithms that 

incorporate the encoding operator have received attention [6]–[9]. While CS uses a linear 

transform-based representation of images for regularization, PG-DL methods utilize a non-

linear representation for regularization, which is implicitly learned through neural networks.

DL reconstruction methods are trained using large databases, include a large number 

(usually more than hundreds of thousands or millions [6], [10], [11]) of parameters, 

incorporate sophisticated optimization algorithms for training [12], and utilize state-of-
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the-art loss functions [13], [14]. On the other hand, when CS reconstruction methods 

are implemented for comparison, they typically use two or three parameters, which are 

frequently hand-tuned using a simple grid search. Although some automatic tuning methods 

have been proposed [15], [16], these have not leveraged the widely-available and popular 

modern data science tools from the DL era.

In this work, we use these data science tools to revisit ℓ1-wavelet CS for accelerated MRI. 

Similar to PG-DL methods, we unroll an ADMM algorithm and train it end-to-end, while 

using only 4 orthogonal wavelet bases for the regularizing transforms for a total of 12 

tunable parameters. Building on this naive model, we further incorporate processing of each 

individual wavelet subband [17], and reweighted ℓ1 minimization [18], leading to 64 and 

128 tunable parameters respectively. Results show that even the naive model closes the 

gap in reconstruction performance to advanced PG-DL methods, while the incorporation 

of subband and reweighting further improves the quality of reconstruction to a level 

comparable to PG-DL methods. All the models proposed here enable a linear representation 

for interpretable and convex sparse image reconstruction at inference time.

II. MATERIALS AND METHODS

A. Inverse Problem for Accelerated MRI

The forward model for accelerated MRI is given as

y = Ex + n (1)

where x ∈ ℂN is the image to be reconstructed, y ∈ ℂM is the undersampled k-space 

data from all coils, E:ℂN ℂM is the linear forward encoding operator containing coil 

sensitivity maps and partial Fourier matrix for undersampling in k-space [19], and n is the 

measurement noise. The inverse problem involves solving the objective function:

x = arg min
x

1
2 y − Ex 2

2 + ℛ(x) (2)

where y − Ex 2
2 enforces data consistency (DC) and ℛ(x) is a regularizer.

In conventional CS MRI reconstruction, the form of ℛ(x) is often a weighted ℓ1-norm of 

transform coefficients, i.e. ℛ(x) = ∑l = 1
L λl Wlx 1, where Wl is a pre-specified linear (often 

orthogonal) transform, such as a discrete wavelet transform (DWT) [3], and L is the number 

of linear transforms used for regularization. The resulting convex objective function is 

solved via an iterative optimization algorithm [20]. These algorithms are conventionally run 

until a stopping criterion is met, making hyperparameter tuning difficult.

On the other hand, in PG-DL reconstruction, the inverse problem is usually solved by 

unrolling an iterative optimization algorithm for a fixed number of iterations [21], [22]. 

Typically, the solutions are decoupled to a series of regularizer and DC units. The regularizer 

in PG-DL is implemented implicitly via convolutional neural networks (CNNs), while the 
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DC unit is solved by linear methods, such as gradient descent or conjugate gradient [7]. The 

network is trained end-to-end as:

min
θ

1
N ∑

n = 1

N
ℒ yref

n , Efull 
n f yn, En; θ , (3)

where yref
n  denotes the fully-sampled reference k-space of the nth subject, f(yn, En; θ) 

denotes network output of the unrolled network with parameters θ of the nth subject, Efull 
n

is the fully sampled multi-coil encoding operator of the nth subject, N is the number of 

datasets in the training database, and ℒ( ⋅ , ⋅ ) is a loss function between the network output 

and the reference. Common choices for ℒ( ⋅ , ⋅ ) include ℓ2 norm, ℓ1 norm, mixed norms and 

perception-based loss [8], [14].

B. Proposed Learning of ℓ1-Wavelet CS Reconstruction

We optimize conventional ℓ1-Wavelet CS reconstruction by using the data science tools 

utilized in PG-DL techniques. First, we utilize ADMM to set

x(t + 1) = EHE + ∑
l = 1

L
ρlI

−1
EHy + ∑

l = 1

L
ρlWl

H zl
(t) − βl

(t) (4a)

zl
(t + 1) = soft Wlx(t + 1) + βl

(t); λl/ρl (4b)

βl
(t + 1) = βl

(t) + ηl
(t + 1) Wlx(t + 1) − zl

(t + 1) (4c)

where zl are auxiliary variables in wavelet domain, βl are dual variables, soft(·; λl/ρl) is the 

ℓ1 soft-thresholding operator parameterized by λl/ρl, and t denotes the iteration count. The 

algorithm is unrolled for T iterations, as depicted in Figure 1.

The learnable parameters in this algorithm are ρl, λl/ρl and ηl, which correspond to 

parameters for augmented Lagrangian relaxation, ℓ1 soft-thresholding and the dual update 

per each wavelet transform. We note that these are shared across all the unrolled iterations 

to ensure that the objective function in (2) remains unchanged throughout the iterations, 

and interpretability of the algorithm can be maintained. Thus, there are 3 · L learnable 

parameters for the whole algorithm when using L orthogonal DWTs.

This approach serves as the foundation for all our proposed models, and is subsequently 

referred to as the learned naive ℓ1-Wavelet reconstruction. In all our models, the input 

to the network is the zerofilled image, x(0) = EHy. Furthermore, since the regularizer in 

(2) scales with ∥x∥∞, while the DC term in (2) scales with x ∞
2 , λl/ρl is parametrized 

as γl Wlx(0) ∞, and the scaling-invariant parameter γl is learned. Overall, the learned 

parameters are ρl, γl, ηl l = 1
L .
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C. Further Enhancements for Optimized ℓ1-Wavelet CS Reconstruction

The naive optimized ℓ1-Wavelet approach can further be enhanced using our understanding 

of wavelet representations [17] and of ℓ1 minimization problems [18]. In particular, we use 

the fact that signal scaling changes severely between different wavelet subbands for the 

former, and that reweighted ℓ1 minimization helps recover finer details for the latter.

Learning ℓ1-wavelet reconstruction with subband processing: For different 

subbands of a wavelet transform, the soft-thresholding parameters may be different. To this 

end, let Dl
s be an operator that select the sth subband of the lth wavelet transform. We propose 

to use the regularizer

ℛ(x) = ∑
l = 1

L
∑

s = 1

S
λl, s Dl

sWlx 1, (5)

which also lead to the following modified update in (4b).

Dl
szl

(t + 1) = soft Dl
s Wlx(t + 1) + βl

(t) ; λl, s
ρl

(6)

for all s ∈ {1, … , S}. Thus, the learnable soft-thresholding parameters are λl,s/ρl for 

the sth subband of the lth wavelet transform. During end-to-end training, this parameter is 

again implemented in a scaling-invariant manner by defining γl, s = λl, s/ρl / Dl
sWlx(0) ∞

and learning {γl,s} for l ∈ {1, … , L} and s ∈ {1, … , S}. Thus this approach leads to a total 

of L · (S + 2) learnable parameters when using S subbands and L orthogonal DWTs.

Learning reweighted ℓ1-wavelet reconstruction with subband processing: A 

further improvement in performance, especially in the lower SNR regimes, may be achieved 

using reweighted ℓ1 minimization, which has been shown to improve recovery of small 

coefficients [18]. To this end, let xsb denote the output of the learned subband ℓ1-wavelet 

reconstruction. We define a diagonal weight matrix Ul whose (k, k)th entry is given as

Ul (k, k) = 1
Wlxsb k + ϵ, (7)

where (·)k denotes the kth coefficient of the vector (·), and ϵ is a small constant to avoid 

numerical issues when dividing by zero. This weight matrix is used to define the reweighted 

ℓ1 regularizer with subband processing as:

ℛ(x) = ∑
l = 1

L
∑

s = 1

S
λl, s Dl

sUlWlx 1 . (8)

This leads to the following modified update in (4b).

Dl
szl

(t + 1) = soft Dl
s Wlx(t + 1) + βl

(t) ; λl, s
ρl

Dl
s diag Ul . (9)
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for all s ∈ {1, … , S}. We note that the regularizer in (8) does not change if x is scaled 

by a constant α, while the DC term in (2) still scales with x ∞
2 . Thus, we define a scaling-

invariant thresholding factor γl, s
r = λl, s/ρl / Dl

sWlx(0) ∞
2

. During end-to-end training, γl, s
r

is learned for l ∈ {1, …, L} and s ∈ {1, …, S} in addition to ρl, ηl l = 1
L .

This approach still has L · (S + 2) learnable parameters during the reweighting stage, even 

though signal-dependent weights are incorporated via (7). Including the learned subband 

reconstruction, which is used to determine the weights in (7) leads to a total of 2L · (S + 

2) learnable parameters for the whole reconstruction pipeline. We also note that once these 

parameters are learned, they can be applied for multiple reweightings, krew, during testing, 

since the scaling of γl, s
r  remains on the same order.

D. Imaging Data

Fully-sampled coronal proton density (PD), and PD with fat-suppression (PD-FS) knee 

data obtained from the NYU-fastMRI database [23] were used throughout the experiments. 

Relevant imaging parameters were: matrix size = 320×368, in-plane resolution = 0.49 × 

0.44 mm2, slice thickness = 3 mm. The datasets were retrospectively under-sampled with 

a random mask (R = 4 with 24 ACS lines). Training was performed on 300 slices from 

10 different subjects. Testing was performed on all slices from 10 different subjects. Coil 

sensitivity maps were generated using ESPIRiT [24].

E. Implementation Details

For all models, L = 4 wavelets were used, corresponding to Daubechies1–4 orthogonal 

wavelets with 14 subbands for each. Thus, the total number of learnable parameters were 

12, 64 and 128 for the learned naive ℓ1-wavelet, ℓ1-wavelet with subbands, and reweighted 

ℓ1-wavelet with subbands reconstructions, respectively. For the last method, krew = 2 was 

used in testing, similar to [18].

ADMM algorithm was unrolled for T = 10 for all models. ϵ was set to 10−9 in (7). DC 

subproblem was solved using conjugate gradient [7] with 5 iterations and warm-start. All 

tunable parameters were randomly initialized. Adam optimizer with learning rate 5 × 10−3 

was used for training over 100 epochs, with a batch size of 1. Supervised training was 

performed with a normalized ℓ1−ℓ2 loss in k-space [8], [10], using TensorFlow in Python.

For comparison, a PG-DL approach was implemented using the same ADMM unrolling 

except for using a ResNet-based regularizer unit. The ResNet was originally adapted from 

the winner of a super-resolution challenge [25], and has been used in multiple recent 

MRI studies successfully [9], [10]. The PG-DL approach has a total of 592,130 learnable 

parameters. Note this constitutes a head-to-head comparison, with the only difference 

being in the ℛ(x) term, where our approaches employ ℓ1-norm of wavelets for solving a 

convex problem, while PG-DL uses a CNN for implicit regularization. All results were 

quantitatively compared using SSIM and NMSE.

Gu et al. Page 5

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



III. RESULTS

Figure 2 shows a representative slice from coronal PD knee MRI, reconstructed using 

PG-DL and the three ℓl-wavelet CS approaches optimized with modern data science tools, 

respectively. For this high SNR acquisition, even the learned naive ℓ1-wavelet results in a 

high-quality reconstruction, while the learned ℓ1-wavelet with subbands leads to a slightly 

sharper reconstruction. Learned reweighted ℓ1-wavelet with subbands performs the best 

among the three optimized ℓl-wavelet CS approaches, resulting in a sharp reconstruction, 

showing comparable visual quality and quantitative metrics to PG-DL.

Figure 3 depicts a representative coronal PD-FS knee MRI slice, reconstructed using PG-DL 

and the three optimized ℓl-wavelet CS approaches. The PD-FS dataset has an inherently 

lower SNR compared to PD. As such, the learned naive ℓ1-wavelet results in a blurry 

image due to the difficulty of fine-tuning a single thresholding parameter. This is improved 

with subband processing, but sharpness is fully recovered only with the learned reweighted 

ℓ1-wavelet with subbands approach, which results in a visibly similar reconstruction to the 

PG-DL method.

Table I summarizes quantitative results from knee MRI. While PG-DL has the best metrics, 

the gap between proposed optimized ℓl-wavelet CS and PG-DL is small, with < 0.01 for 

SSIM and < 0.0008 for NMSE.

IV. DISCUSSION AND CONCLUSION

In this study, we revisited ℓl-wavelet CS for accelerated MRI using modern data science 

tools for fine tuning. As expected, PG-DL outperformed our three optimized ℓl-wavelet 

CS approaches, but the performance gap was smaller than previously published literature. 

This is interesting for a number of reasons. First, PG-DL used a sophisticated non-linear 

representation for the underlying images during regularization with a large number of 

learnable parameters. On the other hand, the wavelet-based representations we used were 

linear, involved only a small number of parameters, and allowed for convex optimization. 

Interestingly, there was <0.01 difference in SSIM between our proposed learned reweighted 

ℓ1-wavelet with subbands that used 128 parameters and the PG-DL approach that used 

>500,000 parameters. Second, while PG-DL can be further improved with more advanced 

neural networks and training strategies [26], our CS approach used one of the simplest 

linear models described by fixed orthogonal wavelets, and did not involve learning of the 

representation. Our results also showed that the performance gap decreased as we proceeded 

from learned naive ℓ1-wavelet to learned reweighted ℓ1-wavelet with subbands, demonstrating 

subband training and reweighting help improve reconstruction sharpness and quantitative 

metrics to a level comparable to PG-DL. Further gains for CS may be possible via learning 

linear representations/frames [27], [28], which warrants investigation.
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Fig. 1: 
Schematic of the unrolled ADMM for ℓ1-wavelet compressed sensing (CS). One unrolled 

iteration of ADMM with ℓ1-wavelet regularizers consists of regularizer (R), data consistency 

(DC) and dual update (DWT: Discrete wavelet transform). In accordance with the ADMM 

framework, learnable parameters are shared across different unrolled iterations. In its 

simplest form, this leads to 3 trainable parameters per wavelet. Further enhancements, such 

as separate thresholds for wavelet subbands and reweighted ℓ1 minimization increase this 

number to 16 trainable parameters per wavelet.
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Fig. 2: 
A representative slice from coronal PD knee MRI, reconstructed using PG-DL, learned 

naive ℓ1-wavelet, learned ℓ1-wavelet with subbands, and learned reweighted ℓ1-wavelet with 

subbands. The proposed optimized ℓ1-wavelet reconstructions perform closely to PG-DL. 

Learned reweighted ℓ1-wavelet with subbands performs the best among these ℓ1-wavelet CS 

variants, resulting in sharp images with similar quantitative metrics to PG-DL.
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Fig. 3: 
A representative slice from coronal PD–FS knee MRI, reconstructed using PG-DL, learned 

naive ℓ1-wavelet, learned ℓ1-wavelet with subbands, and learned reweighted ℓ1-wavelet with 

subbands. For this lower SNR acquisition, the learned naive ℓ1-wavelet suffers from visible 

blurring artifacts. These are improved using subband processing, while the sharpness is only 

fully recovered using the learned reweighted ℓ1-wavelet with subbands method, which leads 

to a visibly similar reconstruction to PG-DL.
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