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OBJECTIVE

Polygenic prediction of type 2 diabetes (T2D) in continental Africans is adversely
affected by the limited number of genome-wide association studies (GWAS) of
T2D from Africa and the poor transferability of European-derived polygenic risk
scores (PRSs) in diverse ethnicities. We set out to evaluate if African American,
European, or multiethnic-derived PRSs would improve polygenic prediction in
continental Africans.

RESEARCH DESIGN AND METHODS

Using the PRSice software, ethnic-specific PRSs were computed with weights
from the T2D GWAS multiancestry meta-analysis of 228,499 case and 1,178,783
control subjects. The South African Zulu study (n 5 1,602 case and 981 control
subjects) was used as the target data set. Validation and assessment of the best
predictive PRS association with age at diagnosis were conducted in the Africa
America Diabetes Mellitus (AADM) study (n 5 2,148 case and 2,161 control
subjects).

RESULTS

The discriminatory ability of the African American and multiethnic PRSs was simi-
lar. However, the African American–derived PRS was more transferable in all the
countries represented in the AADM cohort and predictive of T2D in the country
combined analysis compared with the European and multiethnic-derived scores.
Notably, participants in the 10th decile of this PRS had a 3.63-fold greater risk
(odds ratio 3.63; 95% CI 2.19–4.03; P5 2.79 × 10217) per risk allele of developing
diabetes and were diagnosed 2.6 years earlier than those in the first decile.

CONCLUSIONS

African American–derived PRS enhances polygenic prediction of T2D in continen-
tal Africans. Improved representation of non-European populations (including
Africans) in GWAS promises to provide better tools for precision medicine inter-
ventions in T2D.

The global prevalence of diabetes mellitus in 2019 was estimated to be 463 million
individuals (1), of whom 19.4 million were from Africa. Type 2 diabetes (T2D) is the
most common form of diabetes in Africa, accounting for 90% of cases. African
countries are adversely affected by limited resources to manage this burden. None-
theless, it is projected that by 2045 Africa will experience the largest increase in
diabetes prevalence in the world, at 143% (1,2). In addition, the highest proportion
(59.7%) of undiagnosed people living with diabetes in the world reside in Africa
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(1). Therefore, urgent strategies and
resources for improving screening and
early identification interventions are
required to help curb this pandemic in
Africa.

T2D is a multifactorial disease that is
hypothesized to be increasing in preva-
lence due to the interaction of genetic
and environmental factors (3). Although
the genetic factors are stable over
time, the surge in diabetes prevalence
over the past decades is thought to
have been caused by urbanization and
the adoption of westernized lifestyles
characterized by consumption of energy-
dense foods and physical inactivity (3,4).
However, diabetes has been noted to be
preventable, and its onset was delayed
for 15 years by diet and exercise inter-
ventions in the Diabetes Prevention Pro-
gram (5). Because diet and exercise
strategies are readily accessible and rela-
tively low cost, coupling these lifestyle
interventions with approaches that iden-
tify people earlier who are more suscep-
tible to developing diabetes might
effectively lower the diabetes burden.
The use of polygenic risk scores (PRSs)
for early identification of people who are
more genetically susceptible to develop-
ing T2D is such an approach (6). Recent
studies conducted in Europeans have
indicated that individuals in the 10th
decile have a 5.21-fold higher risk (odds
ratio [OR] 5.21; 95% CI 4.94–5.49) of
developing diabetes compared with
those in the first decile (7). However, evi-
dence exists of the poor transferability
of European-derived polygenic scores in
diverse populations. For example, Martin
et al. (8) reported that European PRSs
had a 4.9-fold reduced predictive value
in African Americans across 17 traits.
There is now a concern that African
ancestry and other similarly under-
studied population groups may not ben-
efit from the clinical translation efforts
of these PRSs, thereby exacerbating
existing health disparities (8,9).

Large multiethnic cohorts such as the
Million Veteran Program improve the
representation of African Americans in
genome-wide association studies (GWAS)
and offer a promise of enhanced poly-
genic prediction in this group (10). How-
ever, the representation of continental
Africans in GWAS is still very low, both in
the number of studies and the total num-
ber of study participants. For example,
T2D GWAS with >1 million European

participants are being reported, while the
sample sizes of continental Africans
remain under 10,000 (7,11). Therefore,
continental Africans face a much worse
threat than do African Americans of
under-representation in precision medi-
cine efforts for T2D (9). It has been
reported that multiethnic PRSs (compared
with European-only PRSs) might enhance
prediction in diverse populations (12,13).
However, the predictive ability of the mul-
tiethnic-derived PRSs and that of African
Americans who originated mainly from
the Western part of Africa and have
approximately an 80% Africa admixture is
yet to be evaluated in continental
Africans (12,13). We set up this study
to assess the predictive ability of
European-, African American–, and
multiethnic-derived PRSs for T2D in
continental Africans.

RESEARCH DESIGN AND METHODS

Study Participants
Black South African participants from
the Durban Case-Control Study (n 5
1,602 case subjects) who were attend-
ing a diabetes clinic in the same location
in Durban as the 981 control subjects
from the cross-sectional Durban Diabe-
tes Study were aggregated and collec-
tively regarded as the South African Zulu
study, as indicated elsewhere (11,14).
These individuals were older than 18
years, not pregnant, and from urban
black African communities in Durban,
South Africa (14). The World Health
Organization criteria were used to define
T2D status. The validation-study partici-
pants were from the Africa America
Diabetes Mellitus (AADM) study, which
has been described in detail elsewhere
(15–17). The 2,148 case subjects and
2,161 control subjects from this study
were enrolled at university medical cen-
ters in Nigeria (n 5 1,325 case subjects
and 1,363 control subjects), Ghana (449
cases and 435 controls) and Kenya (374
cases and 363controls) (17). In this study,
diabetes was defined based on an oral
glucose tolerance test or pharmacologi-
cal treatment of diabetes (17). Written
informed consent was completed by the
study participants. The respective studies
were approved by relevant ethics com-
mittees under the following references:
Durban Case-Control Study, BF078/08;
Durban Diabetes Study, BF030/12; and
AADM, 14/WM/1061).

Genotyping and Imputation
Participants in the South African Zulu
study (Supplementary Table 1) were gen-
otyped using the Illumina Multi-Ethnic
Genotyping Array (Illumina, San Diego,
CA). The Affymetrix Axiom PanAFR single
nucleotide polymorphism (SNP) array
(Thermo Fisher Scientific, Waltham, MA)
or Illumina Multi-Ethnic Genotyping Array
was used to genotype participants in the
AADM study. Detailed quality control and
imputation for these studies were per-
formed using African whole genomes
from the Uganda 2000 Genomes and the
1000 Genomes as reference panels, as
has been described elsewhere (11,18). A
minimum minor allele frequency thresh-
old of 0.5% and imputation information
score >0.4 was applied (11).

Statistical Analysis
PRSice 2 software was used to imple-
ment the clumping and threshold app-
roach for developing PRSs. After sensitivity
analysis, a clumping distance of 500 kb
and an r2 of 0.5 were parameters used
for computing PRSs. GWAS summary sta-
tistics from the multiancestry GWAS of
T2D by Vujkovic et al. (7), comprising par-
ticipants representative of Europeans,
African Americans, Hispanics, and Asians,
were used as the base (discovery), and
genotype data from the South African
Zulu study and AADM were used as the
target data and validation data sets,
respectively, as listed in Table 1.

In the discovery analysis, multiple
PRSs were computed at P value thresh-
olds from 1 to 5 × 10�8 of the base data
set and linkage disequilibrium clumping
was done using the target data set as the
reference. The predictivity of these PRSs
was then evaluated through linear mod-
els that adjusted for age, sex, and
population stratification (five principal
components). The P values of these PRSs
and the Nagelkerke R2 were evaluated to
assess transferability and predictability,
respectively (Supplementary Figs. 2–4).
The best predictive multiethnic, African
American, and European PRSs were
then validated in the AADM study, as
shown in Table 1 and Supplementary
Table 2.

During the validation stage, the best
predictive PRSs were assessed for trans-
ferability and predictivity through the P
values and Nagelkerke R2 in linear models
implemented in PRSice, which correc-
ted for age, sex, BMI, and population
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stratification (five principal components),
as shown in Table 1. This was first done for
the whole of the AADM study and then at
the country level, as shown in Fig. 1B.
The best predictive PRS from the

three discovery data sets was then used
to assess its risk stratification and diag-
nostic utility. Logistic regression models
for the PRS deciles as a predictor vari-
able were computed while correcting for
age, sex, BMI, and residual population,
structure using principal components
(five principal components). A shape plot
was computed to show the differences
in risk of the PRS deciles from the first
decile, as shown in Fig. 1A. Finally, a lin-
ear regression model was used to evalu-
ate whether the age at which patients
are diagnosed with diabetes (n 5 1,031)
is affected by PRS in the AADM study.

RESULTS

Polygenic Score Development and
Validation
From the linear models of the multiple
PRSs generated using the PRSice soft-
ware (Supplementary Figs. 2–4), the
best predictive PRS from the data on
Europeans, the multiethnic group, and
African Americans was significant and
had the highest variance as indicated by

Nagelkerke R2 values of 0.69% (P 5
5.09 × 10�6), 0.69% (P 5 3.90 × 10�9),
and 1.11% (P 5 4.62 × 10�6), respec-
tively (Table 1). The best PRSs were vali-
dated in the AADM study and were
noted to be all significant in a similar
trend. The African American PRS had
the highest predictability, indicated by a
Nagelkerke R2 of 2.92% (9.38 × 10�24)
in the combined analysis of the coun-
tries, as reported in Table 1.

PRS Stratification and Transferability
in African Countries
The participants in the 10th decile of
the African American–derived PRS had
a more than threefold higher risk for
developing T2D per risk allele, com-
pared with those in the first decile in
the AADM study (OR 3.63; 95% CI
2.19–4.03; P 5 2.79 × 10�17) (Fig. 1A).
On average, participants in the 10th
decile of the African American PRS in
the AADM study were diagnosed with
T2D 2.6 years earlier (b 5 �2.61; P 5
0.046) than participants in the first dec-
ile (Fig. 2B). The African American PRS
was transferable in all countries com-
pared with the multiethnic PRS that
was not in Kenya. The PRS predictability
(indicated by Nagelkerke R2) varied greatly

between the East Africa country of Kenya
and two West Africa countries, Ghana
and Nigeria, where predictability was
much higher for both the African
American and the multiethnic PRSs.

Discriminatory Ability of the PRS
The model with the conventional risk
factors of age, BMI, five principal com-
ponents, and sex had an area under the
curve (AUC) C-statistic of 67.9%, whereas
that of the African American PRS, five
PCs, age, BMI, and sex was 69.8% (Fig.
2), which was almost similar to the mul-
tiethnic PRS of multiethnic of 69.9%.
Therefore, there was improved discrimi-
natory ability by 1.9%, with the addition
of the African American PRS to the con-
ventional risk factors.

CONCLUSIONS

We set out to assess the predictive value
of T2D PRS in continental Africans. We
compared the polygenic prediction of
African American, European, and multi-
ethnic PRSs for T2D in continental Afri-
cans. The PRS with the best prediction
was derived from an African American
restricted GWAS (7). Participants in the
10th decile of this PRS had a more than
threefold increased risk of developing

Table 1—Comparisons of the predictive ability of ethnically derived PRSs on T2D in continental Africans

Multiethnic African American European

Discovery data set (multiancestry meta-analysis)
Case subjects 228,499 24,646 148,726
Control subjects 1,178,783 31,446 965,732

PRS development

Target data set (South African Zulu)
Case subjects 1,602 1,602 1,602
Control subjects 981 981 981

PRS parameters
P for threshold 3 × 10�4 5 × 10�8 0.0608
No. of SNPs 41,815 65 405,572
Nagelkerke R2, % 0.69 1.11 0.69
P value 4.62 × 10�6 3.90 × 10�9 5.09 × 10�6

OR (95% CI)* 1.29 (1.16–1.43) 1.58 (1.36–1.84) 1.01 (1.00–1.01)
P value* 3.52 × 10�6 4.80 × 10�9 9.54 × 10�6

Validation of PRS

Validation data set (AADM)
Case subjects 2,148 2,148 2,148
Control subjects 2,161 2,161 2,161

PRS parameters
P for threshold 3 × 10�4 5 × 10�8 0.0608
No. of SNPs 41,553 65 1,408,065
Nagelkerke R2 % 2.62 2.92 0.13
P value 1.06 × 10�21 9.38 × 10�24 2.99 × 10�2

OR (95% CI)* 1.04 (1.03–1.05) 1.57 (1.47–1.67) 1.004 (1.03–1.05)
P value* 1.41 × 10�21 5.91 × 10�23 3.16 × 10�2

*Models adjusted for ancestry indicated by 5 principal components, age, sex, and BMI.
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T2D and were diagnosed 2.6 years ear-
lier, on average, than those in the first
decile.

Limited studies of candidate SNP PRS
have been performed on data from con-
tinental Africans. Previously, we reported
a genetic risk score with weights from
Europeans that was associated with an
OR of 1.21 (95% CI 1.02–1.43) for T2D in
Black South Africans (19). This genetic
risk score had an AUC of 0.665, together
with conventional risk factors for T2D
(19). However, this study was limited
due to the small sample size (n 5 356),

the availability of only genotyped SNPs,
and the use of weights that were
derived from European-only studies. In
the present study, we have substantially
expanded the sample size (n 5 2,383),
enhanced genome coverage by imputing
to 1000 Genomes and local African
Ancestry whole genomes (18), and used
a multiethnic discovery data set GWAS
that included 1.4 million individuals,
including people of African American
ancestry. We performed a country-level
analysis that showed less variable pre-
dictability within regional countries in

West Africa (Ghana and Nigeria) and
greater variability when comparing with
other countries from other regions, such
as Kenya in East Africa. This phenome-
non is suggestive of the usefulness of
regional PRSs in Africa. However, this
will need to be validated by additional
studies.

Nonetheless, polygenic predictions of
European-derived PRSs in Europeans
are still higher than that of the African
Americans in continental Africans (7).
Notably, participants in the top decile of
a European-derived PRS have recently
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Figure 1—A: Shape plot for the difference in odds ratio for T2D (adjusted for age, sex, BMI, and five principal components) in reference to the first
decile for the African American PRS in the AADM study. B: Bar plots showing the transferability of the PRS in African countries represented in the
AADM study.
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been reported to have a greater than
fivefold risk for developing T2D than
those in the first decile in Europeans
(7). In our study, failure to reach predic-
tions denoted in Europeans might be
because the African American–derived
PRSs are from an admixed population
group that is not representative of the
genetic diversity and linkage disequilib-
rium patterns of continental Africans
(13,20). In addition, vast improvements
in sizes of the European cohorts that
are now >1 million individuals is indica-
tive of substantial power compared
with African diabetes cohorts that are
still below the 10,000 mark (21). More
investments are required to increase the
representation of continental Africans in
GWAS of T2D.

Recently, it was reported that the
multiancestry PRS outperforms the pop-
ulation-specific ones from Europeans and
East Asians (22). However, this phenome-
non is yet to be validated in continental
Africans. Considering that 80% of GWAS
have been done in Europeans, most mul-
tiancestry GWAS meta-analyses are bia-
sed toward this population group (8).
Marquez-Luna et al. (12) combined the
training and the target data set summary
statistics to compute the PRS and then
showed that the multiethnic PRSs imp-
rove prediction in diverse populations.
However, this approach is not widely
accepted, and more research is still
required to validate if the multiethnic PRS
outperforms the population-specific PRS
for all the ancestries (23,24). In our study,
the African American and multiethnic
PRSs had similar discriminatory abilities.
However, the African American PRS was
slightly more predictive than the multian-
cestry PRS for the combined AADM study
and, with improved representations of
Africans, these predictions might increase
in the future. In addition, the country-
stratified analyses also indicated that the
multiancestry PRS was not transferable to
participants from Kenya. The failure to
tag the causal variant due to differences
in allele frequencies, linkage disequilib-
rium patterns, and heterogeneity of effect
sizes is a potential reason for the limited
predictivity of multiancestry meta-analysis
of continental Africans, who have greater
genetic diversity (25–27).

The utility of PRSs is an issue of para-
mount importance for clinical translation

Figure 2—A: Receiver operating curves for the African American–derived PRS and conven-
tional risk factors for the prediction of T2D in the AADM study. Full model refers to age,
sex, BMI, African American PRS, and 5PCs. B: Shape plot for the difference of age at diagno-
sis for T2D in the AADM study for the African American–derived PRS. 5PCs, five principal
components.
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(6). The African American PRS, though it
was predictive for T2D in continental
Africans, only improved the AUC of con-
ventional risk factors by 1.9%, and when
combined with principal components, its
AUC was 69.8%, and that of the conven-
tional risk factors was 67.9%. Similarly, in
a Swedish T2D study, the European-
derived PRS increased the AUC by 1%,
compared with conventional risk factors
(28). However, the use of AUC as a mea-
sure to evaluate the clinical utility of
polygenic prediction is being debated,
because AUC is regarded a less-sensitive
metric (29). There are ongoing efforts to
develop better metrics (30). Nonethe-
less, findings from this study that people
with T2D and a high PRS are typically
diagnosed with diabetes at an earlier
age and have a 3.6-fold risk of develop-
ing diabetes are of clinical importance.
They may be useful in the prevention
and treatment of diabetes.

Our study was limited by the sparse
number of T2D GWAS in continental
Africans. Nonetheless, the African Ameri-
can–derived PRS improved disease classi-
fication in this population. The clumping
and thresholding approach used to com-
pute the genome-wide PRS did not
account for environmental factors such
as diet and exercise that might confound
the predictive accuracy of these meas-
ures. The strengths of our study include
validation of the African American PRS in
the AADM study and that we used
GWAS summary statistics of varied eth-
nicities from the same study, which mini-
mized bias due to genotyping and GWAS
designs.

In summary, an African American–-
derived PRS seems to be the best pre-
dictor of T2D in continental Africans
compared with European and multieth-
nic PRSs. More studies are required to
determine whether using continental
African GWAS might further enhance
these predictions and reach a similar
accuracy as in Europeans. Although the
PRS prediction of diabetes had low spe-
cificity and sensitivity, patient stratifica-
tion by PRS may prove clinically useful.
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