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Improving the Prediction of Type 1

Diabetes Across Ancestries
Diabetes Care 2022;45:e48—e50 | https://doi.org/10.2337/dc21-1254

Prediction of type 1 diabetes (T1D) is
essential for disease prevention and
early interventional therapies. Genetic
risk score (GRS) models developed to
predict TID have largely been deter-
mined using Eurocentric populations
and applied to all individuals, regard-
less of race, ethnicity, or ancestry (1).
Recent T1D incidence data suggest
significant increases of new cases in
Black, Hispanic, and Asian/Pacific Islander
populations, emphasizing the need for
personalized assessment strategies (2).
Here, we demonstrate that a frequently
used GRS model fails to recognize T1D in
individuals of African descent (AFR); how-
ever, these same individuals can be iden-
tified using an AFR-derived model. We
further illustrate the feasibility of deter-
mining genetic ancestry and show that it
conflicts with self-reported ethnicity.

To demonstrate the application of
ancestry-inclusive GRS models, we exa-
mined a cohort (n = 377) of unrelated
individuals from the Network for Pancre-
atic Organ Donors with Diabetes (nPOD)
program; this is a widely studied biorepo-
sitory established to further our under-
standing of the pathological features of
T1D. Our strategy consisted of three pha-
ses. First, we determined the genetic
admixture of each individual, using the
1000 Genomes phase 3 data set to
train our model, and compared it to
self-reported ethnicity; here, race and
ethnicity are defined as social

constructs of human variability,
whereas ancestry is based on genetic
DNA data. Second, single-nucleotide
polymorphism (SNP)-based GRSs were
calculated using European (EUR) (30
SNPs) and AFR (7 SNPs) cohort-derived
models, as described in their original
articles, and termed EUR GRS and AFR
GRS, respectively (1,3). Of the 377
examined, those with a single ancestry
proportion of =0.88 that clustered
together were considered, with only
ancestry groups having both control
individuals without diabetes and case
individuals with T1D included in the
GRS analysis. This resulted in 207 indi-
viduals with AFR (11 control, 6 case),
admixed American (AMR) (13 control, 6
case), and EUR (84 control, 87 case)
ancestry. Finally, we investigated the dif-
ferences in GRS models. Both of these
models attempt to estimate the contribu-
tion of genetic factors in discriminating
and/or predicting T1D. Detailed methods,
including statistical analysis, data files,
and code, for all three phases of this
approach are available on Github thro-
ugh Zenodo (https://doi.org/10.5281/
zen0do.4944879).

Disease risk models that do not
account for the diversity in populations
hinder the comparability between stud-
ies and may even increase health dis-
parities (4). However, determining the
genetic ancestry of individuals is feasible
irrespective of unreliable, incomplete, or
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missing self-reported race or ethnicity
data. To illustrate this, the proportions of
AFR, EUR, AMR, East Asian (EAS), and
South Asian (SAS) were determined in
the nPOD cohort, grouped based on the
five major categories of the 1000 Geno-
mes project. Each person was repre-
sented by a single ancestry (proportion
=0.88), as an admixture, or had approxi-
mately equal contributions from two or
more (denoted MIX) ancestries (Fig. 1A
and B). Overall, genetic ancestries were
80% concordant with self-stated eth-
nicities, whereas 14% were partially
concordant and 6% discordant (Fig.
1C). Concordance between genetic ance-
stry and self-reported ethnicity was high-
est in EAS (n = 5/5, 100%) and EUR
(n = 234/261, 90%), low in AFR (n = 30/
59, 51%), and absent from MIX (n = 0/6,
0%) groups. These results point to the
characterization of genetic ancestry as a
more reliable measure than self-reported
ethnicity when examining potential
genetic contributions to disease, particu-
larly in heterogeneous populations.

This analysis revealed that only the
AFR GRS was able to distinguish bet-
ween individuals without diabetes and
individuals with T1D in all three popula-
tions examined (Fig. 1D and E). Specifi-
cally, there was a statistically significant
difference in the AFR GRS individuals
without diabetes and individuals with
T1D within the EUR (A = 3.177; 95%
confidence limits [CL] 2.525, 3.402; P <
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0.0001), AFR (A = 2.537; 95% CL 0.264,
4,961; P = 0.03), and AMR (A = 2.928;
95% CL —0.141, 7.057; P = 0.05) popu-
lations. However, there also was a sta-
tistically significant difference in the
EUR GRS between individuals without
diabetes and individuals with T1D
within EUR (A = 0.054; 95% CL 0.044,
0.065; P < 0.0001) and AMR (A =
0.040; 95% CL 0.001, 0.084; P = 0.04)
but not AFR (A = 0.015; 95% CL
—0.005, 0.028; P = 0.15) populations.
Interestingly, the GRS was significantly
different in individuals with T1D of AFR
versus EUR ancestry using only the EUR
(A = 0.046; 95% CL 0.027, 0.063; P* =
0.0002 [P* values are significant only if
less than a multiple-comparison-corrected
nominal o of 0.025]) but not the AFR
(A = 1.688; 95% CL —0.247, 3.580; P* =
0.08) GRS model. The clinical utility of the
AFR GRS to distinguish case and control
individuals across ancestries will need to
be evaluated in future studies. While the
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Figure 1-Analysis of T1D GRSs by ancestry. Colors denote individuals of EUR (blue), AFR (brown), AMR (red), EAS (green), and SAS (purple) genetic ances-
try. A: Individuals (n = 377) are plotted as light (no T1D) and dark (T1D) gray circles according to their proportions of EUR, AFR, AMR, EAS, and SAS ances-
try. Each non-gray-colored circle represents the center of a cluster of individuals; the size of the circle is proportional to the number of people in a cluster.
Each cluster contains individuals of a single ancestry with a proportion of =0.88 (4 circles; blue circle at the top, red and yellow circles at the bottom, and
the green circle), multiple ancestries in equal proportions (3 circles; termed MIX, black), or a single ancestry with contributions from others (8 remaining
circles). B: Ancestry composition of all 377 individuals. A plus sign (+) denotes individuals within a group with increasing proportions from other ances-
tries. C: The percentage of agreement between the calculated genetic ancestry (B) and self-reported ethnicity taken from hospital medical charts (Cauca-
sian, African American, Hispanic/Latino, Asian, American Indian/Alaska Native, and >1 group). Racial and ethnic categories are based on the United
Network for Organ Sharing definitions. Transparent purple represents concordance (e.g., an individual determined to be of AMR ancestry and self-
reported as Hispanic/Latino), light purple is partial agreement (e.g., AMR+ ancestry and Hispanic/Latino), and dark purple denotes discordance (e.g.,
AMR or AMR+ and Caucasian). D and E: GRS values were compared within each ancestry for those with (box with no color fill) and without (solid color)
T1D using EUR (D) and AFR (E) models. Data points with no fill color represent individuals with admixture ranging from a proportion of >0.01 to 0.11.

sample size is small, limiting the genetic
diversity seen, these results suggest that
the development and application of
GRS models tailored to all ancestries
are warranted.

Very few studies have examined the
issue of race, ethnicity, or ancestry in
T1D risk prediction (3,5). We conclude
that genetic contributions to T1D should
be examined using ancestry-inclusive GRS
models to more broadly determine whe-
ther certain features or disease endotypes
are unique within or shared across popu-
lations. To avoid bias and potential false
expectations, the biomedical research
community needs to specify to which
ancestries their study applies and take
into account any admixture that may
exist. Indeed, the progress we make will
be measured by the value it brings to
the lives of the patients we serve.
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