Skip to main content
. 2022 Feb 28;9:811028. doi: 10.3389/fbioe.2021.811028

TABLE 2.

Performance of binary classification on the DFU ischaemia dataset.

Network Accuracy Sensitivity Precision Specificity F-measure AUC score
ResNet-18 88.30 ± 1.36 82.40 ± 3.48 93.23 ± 1.73 94.16 ± 1.03 87.43 ± 2.03 95.48 ± 0.89
ResNet-50 88.13 ± 1.77 81.46 ± 3.49 93.80 ± 1.42 94.76 ± 0.59 87.16 ± 2.26 95.09 ± 1.24
ResNet-101 89.95 ± 1.29 85.17 ± 2.50 94.10 ± 1.25 94.78 ± 0.55 89.38 ± 1.37 96.29 ± 1.17
ResNet-152 88.62 ± 2.18 82.45 ± 3.16 93.92 ± 2.22 94.84 ± 1.55 87.79 ± 2.42 95.58 ± 1.15
RegNetY-4GF 89.55 ± 0.89 83.64 ± 1.53 94.66 ± 1.53 95.41 ± 1.05 88.80 ± 1.34 95.92 ± 1.33
RegNetY-8GF 89.36 ± 1.23 83.64 ± 1.61 94.45 ± 0.60 95.13 ± 0.45 88.70 ± 0.80 95.59 ± 1.07
RegNetY-16GF 90.48 ± 1.01 85.54 ± 2.00 94.79 ± 1.54 95.40 ± 1.19 89.91 ± 1.25 96.43 ± 1.03
EfficientNet-B0 87.26 ± 1.74 79.07 ± 3.89 94.38 ± 1.11 95.38 ± 0.68 85.99 ± 2.29 94.81 ± 0.90
EfficientNet-B2 88.23 ± 0.71 81.17 ± 2.42 94.37 ± 1.46 95.20 ± 1.23 87.24 ± 1.21 95.67 ± 0.92
EfficientNet-B4 87.24 ± 1.77 79.11 ± 3.75 94.27 ± 1.30 95.31 ± 0.67 85.98 ± 2.33 94.46 ± 1.22
EfficientNet-B6 87.40 ± 2.38 80.57 ± 4.96 93.41 ± 0.95 94.34 ± 0.95 86.41 ± 2.50 94.53 ± 1.21
EfficientNet-B7 86.41 ± 2.40 78.57 ± 4.95 93.06 ± 0.90 94.21 ± 0.58 85.11 ± 2.94 94.64 ± 1.62
MoCo 89.74 ± 1.29 86.01 ± 3.24 92.92 ± 1.86 93.56 ± 1.53 89.28 ± 1.41 95.70 ± 1.01
DeiT-S 88.89 ± 2.13 82.35 ± 4.19 94.58 ± 1.08 95.38 ± 0.64 87.99 ± 2.54 96.45 ± 0.95
DeiT-B 89.10 ± 2.32 81.76 ± 5.02 95.84 ± 1.13 96.50 ± 0.80 88.13 ± 2.68 96.19 ± 1.49
DeiT-S-D 89.96 ± 1.88 83.44 ± 3.65 95.96 ± 1.06 96.58 ± 0.63 89.21 ± 1.96 97.06 ± 1.07
DeiT-B-D 89.69 ± 1.93 82.51 ± 3.48 96.29 ± 0.63 96.88 ± 0.17 88.83 ± 2.12 96.61 ± 1.01
CKB-DeiT-S-D 90.27 ± 1.90 84.09 ± 4.00 95.97 ± 1.41 96.59 ± 0.86 89.57 ± 2.04 97.28 ± 0.91
CKB-DeiT-B-D 90.90 ± 1.74 86.09 ± 2.98 95.00 ± 1.29 95.59 ± 0.71 90.30 ± 1.83 96.80 ± 1.16