Table 2.
Descriptive data about COVID-19 disease (cases, deaths, fatality, and mortality rates) during 2020, pollutants mean concentrations between 2015 and 2019, population, and GDP of the 36 analyzed municipalities in the São Paulo state
| Municipality | Population | COVID-19 | Pollutant concentration (Mean of the years 2015–2019) |
GDPa in 2020 | |||||
|---|---|---|---|---|---|---|---|---|---|
| Cases | Deaths | Mortality (per 105 inhabitants) | Fatality (%) | PM10 | PM2.5 | NO2 | |||
| (µg/m3) | (µg/m3) | (µg/m3) | (Billion US$) | ||||||
| 1. Araraquara | 228,792 | 7811 | 90 | 39.34 | 1.15 | 26.8 | 17.8 | 1.80 | |
| 2. Paulínia | 106,781 | 6487 | 91 | 85.22 | 1.40 | 31.1 | 15.0 | 20.0 | 6.28 |
| 3. Marília | 232,599 | 6922 | 105 | 45.14 | 1.52 | 20.0 | 11.6 | 1.55 | |
| 4. Bauru | 365,523 | 18,289 | 301 | 82.35 | 1.65 | 26.2 | 16.2 | 2.81 | |
| 5. Araçatuba | 190,921 | 10,366 | 205 | 107.37 | 1.98 | 27.0 | 1.41 | ||
| 6. Santa Gertrudes | 26,572 | 1137 | 23 | 86.56 | 2.02 | 53.0 | 17.0 | 33.0 | 0.34 |
| 7. São José dos Campos | 716,688 | 25,853 | 545 | 76.04 | 2.11 | 22.1 | 11.8 | 19.0 | 7.63 |
| 8. Piracicaba | 391,464 | 19,508 | 416 | 106.27 | 2.13 | 34.7 | 13.0 | 15.6 | 5.08 |
| 9. Presidente Prudente | 221,938 | 8834 | 197 | 88.76 | 2.23 | 21.0 | 11.6 | 1.53 | |
| 10. Jaú | 148,613 | 4344 | 98 | 65.94 | 2.26 | 24.4 | 15.4 | 0.91 | |
| 11. Sorocaba | 663,739 | 23,03 | 563 | 84.82 | 2.44 | 24.8 | 18.8 | 6.73 | |
| 12. Taubaté | 309,483 | 8264 | 203 | 65.59 | 2.46 | 20.6 | 12.5 | 15.6 | 3.32 |
| 13. São José do Rio Preto | 450,361 | 36,185 | 917 | 203.61 | 2.53 | 33.0 | 15.0 | 20.0 | 3.37 |
| 14. Tatuí | 121,202 | 3793 | 99 | 81.68 | 2.61 | 19.8 | 9.0 | 0.76 | |
| 15. Americana | 235,075 | 8016 | 212 | 90.18 | 2.64 | 33.2 | 2.17 | ||
| 16. Limeira | 297,662 | 10,899 | 289 | 97.09 | 2.65 | 31.5 | 16.0 | 19.7 | 2.53 |
| 17. Guaratinguetá | 118,741 | 2379 | 64 | 53.90 | 2.69 | 19.6 | 10.0 | 12.3 | 1.09 |
| 18. Jundiaí | 409,439 | 17,53 | 485 | 118.45 | 2.77 | 24.6 | 14.0 | 25.8 | 8.39 |
| 19. Santos | 428,703 | 32,311 | 903 | 210.63 | 2.79 | 23.5 | 15.0 | 27.6 | 4.32 |
| 20. Cubatão | 130,025 | 8122 | 229 | 176.12 | 2.82 | 48.0 | 38.2 | 2.53 | |
| 21. Jacareí | 229,163 | 6112 | 175 | 76.36 | 2.86 | 23.2 | 13.4 | 2.44 | |
| 22. Santo André | 694,681 | 27,983 | 855 | 123.08 | 3.06 | 28.6 | 27.0 | 5.57 | |
| 23. Ribeirão Preto | 688,894 | 30,865 | 953 | 138.34 | 3.09 | 29.5 | 13.3 | 10.0 | 6.60 |
| 24. Rio Claro | 202,289 | 4923 | 164 | 81.07 | 3.33 | 39.0 | 19.0 | 1.88 | |
| 25. Campinas | 1,181,555 | 43,41 | 1474 | 124.75 | 3.40 | 24.1 | 17.6 | 19.4 | 11.80 |
| 26. Taboão da Serra | 287,155 | 10,059 | 352 | 122.58 | 3.50 | 28.8 | 37.2 | 1.61 | |
| 27. São Bernardo do Campo | 815,109 | 33,828 | 1200 | 147.22 | 3.55 | 26.4 | 16.2 | 27.8 | 9.72 |
| 28. Carapicuíba | 396,447 | 12,224 | 442 | 111.49 | 3.62 | 28.0 | 33.2 | 1.10 | |
| 29. Catanduva | 117,414 | 4957 | 180 | 153.30 | 3.63 | 33.4 | 15.6 | 0.80 | |
| 30. São Paulo | 11,914,851 | 401,718 | 15,679 | 131.59 | 3.90 | 28.6 | 16.8 | 34.6 | 137.43 |
| 31. Diadema | 405,596 | 11,589 | 480 | 118.34 | 4.14 | 27.0 | 2.82 | ||
| 32. São Caetano do Sul | 151,111 | 7608 | 316 | 209.12 | 4.15 | 32.2 | 17.0 | 36.6 | 2.58 |
| 33. Mauá | 463,338 | 11,189 | 465 | 100.36 | 4.16 | 29.8 | 17.0 | 23.7 | 2.93 |
| 34. Mogi das Cruzes | 436,883 | 11,571 | 547 | 125.20 | 4.73 | 21.0 | 16.5 | 2.95 | |
| 35. Osasco | 682,876 | 18,975 | 971 | 142.19 | 5.12 | 39.8 | 22.0 | 46.4 | 14.73 |
| 36. Guarulhos | 1,361,862 | 27,979 | 1708 | 125.42 | 6.10 | 29.7 | 18.2 | 26.9 | 11.79 |
aGDP was collected in the official governmental platform and converted to US$ considering US$1 = R$5.20 (the exchange rate on December 31st, 2020)