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Despite extensive efforts, COVID-19 pandemic caused by the SARS-CoV-2 virus is still at large. Vaccination is an effective
approach to curb virus spread, but several variants (e.g., delta, delta plus, omicron, and IHU) appear to weaken or possibly
escape immune protection. Thus, novel and quickly scalable approaches to restrain SARS-CoV-2 are urgently needed. Multiple
evidences showed thermal sensitivity of SARS-CoV-2 and negative correlation between environmental temperature and
COVID-19 transmission with unknown mechanism. Here, we reveal a potential mechanism by which mild heat treatment
destabilizes the wild-type RNA-dependent RNA polymerase (also known as nonstructural protein 12 (NSP12)) of SARS-CoV-2
as well as the P323L mutant commonly found in SARS-CoV-2 variants, including omicron and IHU. Mechanistically, heat
treatment promotes E3 ubiquitin ligase ZNF598-dependent NSP12 ubiquitination leading to proteasomal degradation and
significantly decreases SARS-CoV-2 RNA copy number and viral titer. A mild daily heat treatment maintains low levels of
both wild-type and P323L mutant of NSP12, suggesting clinical potential. Collectively, this novel mechanism, heat-induced
NSP12 degradation, suggests a prospective heat-based intervention against SARS-CoV-2.

1. Main Text ble among humans [1]. The virus invades cells through
interaction of its spike protein with the cell membrane
Severe acute respiratory syndrome coronavirus 2 (SARS- protein angiotensin-converting enzyme 2 (ACE2) [1].

CoV-2), the culprit of the coronavirus disease 2019  Although prophylactic/therapeutic vaccines were rapidly
(COVID-19) pandemig, is highly contagious and transmissi-  developed and widely applied to curb the virus spread,
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several SARS-CoV-2 variants (e.g., delta, delta plus, omicron
(B.1.1.529), and IHU) have been suggested or reported to
lead to partial or even complete escape from immune pro-
tection provided by vaccination [1-3]. These variants typi-
cally carry multiple mutations, especially in the receptor
binding domain (RBD) of the spike protein, requiring con-
stant updates for vaccine design [1-3]. In addition, vaccina-
tion rates in lower-income areas remain low [4]. Thus, other
efficient and accessible strategies are urgently needed.

Fever is a highly conserved defense mechanism of
humans and other vertebrates against various infections.
Interestingly, bats are rarely affected by the SARS-CoV-2
with mechanisms not yet fully understood [5]. It remains
possible that the bat body temperature, which is elevated up
to 40°C during flight, might mimic recurrent fever [6]. In
addition, accumulating evidence has indicated that increas-
ing environmental temperatures restrain SARS-CoV-2 trans-
mission and decrease the incidence of COVID-19, suggesting
temperature sensitivity of SARS-CoV-2 [7-9]. Notably, sev-
eral studies including ours have revealed remarkable effects
of hyperthermia (elevating body temperature beyond nor-
mal) or fever in selectively affecting the properties (e.g., sta-
bility, posttranslational modification, and ability to interact
with other molecules) of oncogenic proteins [10-12]. Taken
together, these findings imply that heat treatment might
inhibit SARS-CoV-2 virulence through targeting key viral
proteins, which merits particular investigation.

In this work, we sought to clarify whether viral proteins
in SARS-CoV-2-infected cells are vulnerable to mildly ele-
vated temperatures. SARS-CoV-2 nonstructural proteins
(NSPs) are the main effectors produced immediately follow-
ing virus infection as cleavage products of the replicase poly-
proteins, which are encoded directly from open reading
frame la and lab of the viral genome [13]. NSP12 is also
known as RNA-dependent RNA polymerase (RdRp), which
forms complex with NSP7 and NSP8 to regulate viral RNA
replication and transcription [13, 14]. Nucleocapsid (N)
protein is a SARS-CoV-2 structural protein, which is also
implicated in the viral RNA replication [15]. Among these
effectors, only NSP12 displayed a clear thermal instability
via a temperature- and time-dependent manner in multi-
ple human cell lines (Figure 1(a); Figures S1 and S2).
Immunofluorescence  analysis  revealed  remarkable
reduction of NSP12 levels by heat treatment as well
(Figure 1(b)). Notably, NSP12 transcript levels and cell
viability were not affected upon these mildly elevated
temperatures (Figure S3), suggesting that heat-mediated
downregulation of NSP12 resulted from decreased protein
stability. As a control, heat treatment increased HSP70
protein or/and mRNA expression (Figure 1(a); Figures S1-
S3). In comparison to the spike protein, NSP12 is much less
mutation-prone, although one mutation, P323L, has been
concurrently identified on NSP12 in several SARS-CoV-2
variants including delta, delta plus, omicron (B.1.1.529),
and IHU [1-3]. Notably, we found that P323L mutant and
wild-type (WT) NSP12 display similar heat sensitivity
(Figure 1(c)), suggesting that heat treatment could be a
potential intervention against SARS-CoV-2 variants
regardless of their RNA polymerase mutation status.
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Next, we investigated the mechanisms involved in heat-
mediated downregulation of NSP12. Both WT and P323L
mutants of NSP12 were robustly ubiquitinated upon heat
treatment within 0.5 h, implying ubiquitin-dependent degra-
dation of NSP12 by the mild heat stress (Figure 1(d)). Grad-
ual reduction of heat-mediated ubiquitination and total
NSP12 supported this notion (Figure 1(e)). The proteasome
inhibitor MG132 but not the lysosome inhibitor chloroquine
(CQ) suppressed heat-induced NSP12 downregulation
(Figure 1(f)), further suggesting that heat stress promotes
NSP12 degradation through the ubiquitin-proteasome path-
way. Additionally, pretreatment with TAK243, a small mole-
cule inhibitor of ubiquitin-activating enzyme, completely
inhibited NSP12 ubiquitination (Figure 1(g)) and subsequent
degradation (Figure 1(h)) upon heat treatment, supporting
the hypothesis that induction of NSP12 ubiquitination is the
crucial event for heat-mediated NSP12 degradation.

We next investigated which E3 ubiquitin ligase is
involved in heat-mediated degradation of NSP12. Mass
spectrometry analysis identified four ubiquitin E3 ligases,
ZNF598, STUB1, UBR5, and UHRF1, among 864 potential
NSP12 interacting proteins (Table S1; Figure S4a). Of
these, knockdown of ZNF598 largely suppressed heat-
induced NSP12 ubiquitination (Figure S4b; Figures 1(i)
and 1(j)), and interaction of ZNF598 with NSP12 was
rapidly increased and subsequently reduced upon heat
treatment (Figure 1(k)). These data therefore suggest that
ZNF598 is the potential E3 ligase for heat-stimulated
ubiquitination of NSP12.

We next validated the effect of heat treatment on SARS-
CoV-2 virulence. SARS-CoV-2-infected VERO E6 cells were
incubated at 40°C for 24h and then subjected to qPCR as
well as viral titer analysis. Compared to the control group,
a more than 20-fold reduction of nucleocapsid gene level
was observed in the heat treatment group (Figure 1(1)). Con-
sistently, viral titer in the heat treatment group was also sig-
nificantly decreased (reduction more than 99.5%)
(Figure 1(m)). These results suggest that heat treatment-
induced degradation of NSP12 leads to reduction of viral
RNA load and downregulation of viral titer. Notably, daily
mild heat treatment (40°C, 0.5h/day) is sufficient to main-
tain low levels of both WT and P323L mutant of NSP12
(Figures 1(n) and 1(o), compare lanes 3, 4 to 1), suggesting
clinical potential of heat treatment against both WT and
P323L mutation harboring SARS-CoV-2 variants. In addi-
tion, it is demonstrated that mild heat treatment upregulates
the immune function [16, 17], which might contribute to
inhibition of SARS-CoV-2 fitness as well. Comorbidities
such as chronic diseases and acute organ injuries are
strongly correlated with disease severity and mortality
among COVID-19 patients [18]. Since SARS-CoV-2 mainly
infects the lower respiratory tract [1], local daily heat treat-
ment of the airways and lung by available approaches such
as radiofrequency hyperthermia [19] may have feasibility
in restraining SARS-CoV-2 virulence and controlling sever-
ity of the disease.

Heat treatment in the form of sauna or hot bath is a fac-
ile, widely accessible, and inexpensive approach practiced
widely for therapeutic and recreational purposes, making it
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FIGURE 1: Heat treatment promotes ubiquitin-dependent proteolysis of SARS-CoV-2 RNA polymerase. (a) Time-course study of heat
treatment-mediated destabilization of SARS-CoV-2 RNA polymerase (NSP12) in A549, HeLa, and 293T cells. (b) Confocal microscopy
analysis of NSP12 protein levels upon heat treatment in NSP12 stably expressing 293T cells. Scale bar is 10 um. The relative fluorescence
intensity of each cell was determined by Image] and normalized to control; data shown is mean + standard deviation (SD) (n = 15). (c)
Western blot analysis of control and heat-treated (HT) wild-type (WT) and P323L mutant of NSP12 in 293T cells. (d) Heat-induced
ubiquitination of WT and P323L mutant of NSP12. NSP12-expressing 293T cells were heat treated as indicated and subjected to
immunoprecipitation (IP) analysis. (e) Time-dependent ubiquitination of stably expressed NSP12 in 293T cells, as determined by IP
analysis with anti-Flag antibody. (f) Determination of NSP12 degradation pathway by heat treatment. Flag-NSP12 stably expressing
293T cells were pretreated with 10 yg/ml cycloheximide (CHX) with or without 10 uM MG132/20 uM chloroquine (CQ) for 1h and
subjected to heat treatment as indicated. NSP12 protein levels were determined by western blot. Inhibition of NSP12 ubiquitination and
degradation by TAK243. 293T cells stably expressing Flag-NSP12 were pretreated with 1 uM TAK243 for 1h. Ubiquitination of NSP12
was determined by immunoprecipitation (g); NSP12 protein levels were determined by western blot (h). Inhibition of heat induced
NSP12 ubiquitination by depletion of ZNF598, as analyzed by IP assay (i); knockdown efficiency of ZNF598 was determined by western
blot (j). (k) Changes of NSP12 interaction with ZNF598 upon heat treatment. 293T cells stably expressing Flag-NSP12 were heat treated
and subjected to IP analysis. Effect of heat treatment on SARS-CoV-2 viral RNA load and virus titer. SARS-CoV-2-infected VERO E6
cells were heat treated at 40°C for 24 h and subjected to (1) RT-qPCR analysis as well as (m) viral titer analysis. Statistical analysis was
carried out using unpaired t-test, # represents p <0.001. Compared to the control group, averagely 25.9-fold downregulation of
nucleocapsid gene and 218.8-fold reduction of viral titer were observed in the HT group. Data shown is mean + SD (n = 3). (n, o) Effect
of daily heat treatment on WT and P323L mutant NSP12 stably expressed in 293T cells. (p) A schematic representation of the
mechanism by which mild heat treatment destabilizes the RNA polymerase of SARS-CoV-2 and decreases viral titer.



a quickly scalable measure for emerging new variants. In
fact, mild heat treatment has already been applied in the
management of other diseases like cancer, wound, and
microbial infection [20, 21]. Our recent work also demon-
strated heat treatment as an efficient approach to destabilize
thermal-sensitive oncogenic proteins in acute promyelocytic
leukemia patients with clinical benefits [12]. In this work, we
have identified heat vulnerability of SARS-CoV-2 RNA-
dependent RNA polymerase (NSP12) and explained its
molecular mechanism. Our results potentially provide a
mechanistic insight into recent observations that COVID-
19 patients with higher body temperature at the initial pre-
sentation show lower mortality rate [22, 23], that bats are
rarely affected by SARS-CoV-2 infection [5], and that
increasing environmental temperature restrains COVID-19
transmission rate [7-9].

Several potential challenges exist for clinical application
of mild heat treatment. First, the number of hyperthermia
equipment is limited in the hospitals. Second, proper heating
instrument should be selected to achieve efficient and spe-
cific heating of the infected region. Third, patients might
present unexpected adverse events including fatigue, dizzi-
ness, and vomiting, and in such circumstances, the treat-
ment should be ceased. Thus, heat-based treatment of
the patients should be conducted under professional
supervision. Although our study lacks adequate evidence
obtained from in vivo animal model showing the inhibi-
tory effect of mild heat treatment on the SARS-CoV-2 vir-
ulence, we do provide clear evidence that mild daily
treatment is sufficient to maintain low levels of both WT
and P323L mutant of NSP12. Hence, fever-range and clin-
ically relevant hyperthermia-based approaches could be
rapidly developed for currently prevalent and emerging
SARS-CoV-2 variants harboring P323L mutation, includ-
ing delta, delta plus, omicron, and THU.

Data Availability
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