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Time-series transcriptomics and proteomics reveal
alternative modes to decode p53 oscillations
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Abstract

The cell stress-responsive transcription factor p53 influences the
expression of its target genes and subsequent cellular responses
based in part on its dynamics (changes in level over time). The
mechanisms decoding p53 dynamics into subsequent target mRNA
and protein dynamics remain unclear. We systematically quanti-
fied p53 target mRNA and protein expression over time under two
p53 dynamical regimes, oscillatory and rising, using RNA-
sequencing and TMT mass spectrometry. Oscillatory dynamics
allowed for a greater variety of dynamical patterns for both mRNAs
and proteins. Mathematical modeling of empirical data revealed
three distinct mechanisms that decode p53 dynamics. Specific
combinations of these mechanisms at the transcriptional and
post-transcriptional levels enabled exclusive induction of proteins
under particular dynamics. In addition, rising induction of p53 led
to higher induction of proteins regardless of their functional class,
including proteins promoting arrest of proliferation, the primary
cellular outcome under rising p53. Our results highlight the diverse
mechanisms cells employ to distinguish complex transcription
factor dynamics to regulate gene expression.
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Introduction

Cells sense changes in their internal and external environments and

relay this information to the nucleus through changes in the levels

or activity of proteins over time (dynamics) (Selimkhanov et al,

2014; Ryu et al, 2016; Arkun & Yasemi, 2018; Blum et al, 2019;

Maity & Wollman, 2020). Transcription factors (TFs) are crucial for

orchestrating cellular responses to stimuli. A single TF can respond

to different stimuli via stimulus-specific dynamics that help coordi-

nate gene expression programs appropriate to the input signal. The

cellular response ultimately depends on the proteins that are

expressed, but in most cases, little is known about how the dynam-

ics of the responding TF are transmitted into production of the

appropriate protein effectors.

The p53 network provides a system for studying protein-level

decoding of TF dynamics. p53 is a TF that responds to a multitude

of cellular stress signals including DNA damage, ribosomal dysfunc-

tion, and nutrient deprivation (Vousden & Lane, 2007; Bieging &

Attardi, 2012; Boutelle & Attardi, 2021). The resulting response

depends in part on the subsequent dynamical changes in p53 levels.

Double-strand DNA breaks lead to oscillatory p53 dynamics and cell

cycle arrest; pharmacologically sustaining p53 expression under

these conditions results in irreversible senescence or apoptosis

(Purvis et al, 2012; Purvis & Lahav, 2013). It is not fully understood

how p53 dynamics are decoded into protein-level target gene

expression, as a comprehensive analysis of the transcription and

translation of p53 target genes under different dynamics has thus far

not been described.

Several studies have analyzed the relationships between p53

dynamics and target gene transcription using either candidate

reporters (Hanson et al, 2019) or global mRNA profiling (Porter et

al, 2016; Hafner et al, 2017), and found that p53 target genes

exhibit varied mRNA expression dynamics (Porter et al, 2016;

Hafner et al, 2017; Harton et al, 2019). However, while transcrip-

tional readouts are often used as a measurement of transcription

factor activity, mRNA levels do not always correlate with their

respective protein levels due to complex post-transcriptional gene

regulation, as well as due to dynamic changes in abundance of

other regulatory proteins and cellular states (Nagaraj et al, 2011;

Vogel & Marcotte, 2012; Koussounadis et al, 2015; Liu et al, 2016).

Given that mRNA and corresponding protein levels often correlate

only modestly (Schwanh€ausser et al, 2011; Hafner et al, 2017;

Buccitelli & Selbach, 2020), it is unclear how mRNA dynamics

correspond to protein expression. One study (Hanson et al, 2019)
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analyzed select p53 targets at the protein level only under oscilla-

tory p53 dynamics, yet a systematic view of how different p53

dynamics influence the expression profiles of its protein targets

globally, as well as the underlying regulatory mechanisms, remain

unknown.

In order to comprehensively investigate decoding mechanisms

at both transcriptional and post-transcriptional levels, we

compared global mRNA and protein expression of p53 target genes

under oscillatory or rising p53 dynamics following DNA damage.

DNA damage induced by irradiation results in p53 oscillations

driven by MDM2 (Lahav et al, 2004; Geva-Zatorsky et al, 2006;

Batchelor et al, 2011), a p53 target gene that encodes an E3 ubiq-

uitin ligase responsible for p53 degradation (Barak & Oren, 1992;

Momand et al, 1992; Chen et al, 1993). Addition of Nutlin-3a, a

small molecule inhibitor of MDM2, results in sustained p53 expres-

sion in single cells, which is manifest as rising levels when

analyzed in bulk populations (Purvis et al, 2012). Under these

conditions, we quantified global mRNA and protein levels by bulk

RNA-sequencing and tandem mass tag (TMT)-based mass spec-

trometry, respectively, and analyzed the dynamic expression of

p53 target genes that we have previously defined (Hafner et al,

2017). Analyzing the relationships between p53 dynamics and

those of its target genes’ transcripts and proteins revealed that

oscillating p53 supported a wider diversity of target gene mRNA

and protein dynamics as compared to rising p53 expression. Math-

ematical modeling showed that mRNA and protein degradation

rates played a key role in shaping the expression profiles of a large

subset of target genes. We next systemically categorized all combi-

nations of mRNA and protein dynamics observed. We identified

examples of proteins induced exclusively under rising p53 dynam-

ics and found a variety of underlying mechanisms such as adjust-

ment of degradation rates, adjustment of activation thresholds, or

regulation by feed-forward loops. Finally, to investigate how p53

dynamics might influence cellular outcomes, we analyzed expres-

sion of different functional classes of p53 targets. We found that

expression of most classes, including those coding for proteins

involved in terminal cell fates, was enhanced under rising p53

dynamics compared to oscillatory dynamics, providing a possible

explanation for the increased likelihood of terminal cell fates

reported under this condition (Purvis et al, 2012). Our results

demonstrate the importance of proteomic analysis in identifying

novel regulatory network motifs, as well as the significance of

temporal regulation of protein expression in cellular information

processing, concepts which may be extended to other proteins

showing complex dynamics.

Results

RNA-sequencing and TMT mass spectrometry enable quantitative
analyses of p53 target genes over time

To determine global RNA and protein expression profiles under dif-

ferent p53 dynamics, we established a system in which p53 levels

oscillated or displayed non-oscillatory expression. Oscillations with a

period of 5.5 h were achieved by treating human cells with irradiation

to induce the DNA damage response and activate the feedback loop

between p53 and MDM2, the primary E3 ubiquitin ligase responsible

for p53 degradation (Fig 1A) (Lahav et al, 2004). The oscillations

persisted over the duration of the experiment (Fig 1B). p53 expression

without oscillations was achieved using a previously described proto-

col combining radiation with incremental addition of the MDM2 inhi-

bitor Nutlin-3a (Purvis et al, 2012). This inhibitor is highly specific to

MDM2 and does not induce any transcriptional changes in the

absence of p53 (Tovar et al, 2006; Allen et al, 2014). Under both

dynamical conditions, cells remained under cell cycle arrest and did

not undergo death (Purvis et al, 2012; Reyes et al, 2018). Cells were

sampled at 1-h intervals for the first 9 h, and again at 24 h, and

subjected to RNA-seq and quantitative mass spectrometry (MS) analy-

sis by tandem mass tag mass spectrometry (McAlister et al, 2014)

(TMT-MS) to obtain global transcriptional and protein expression pro-

files (Fig 1A). TMT-MS allowed precise relative quantification of

proteins across the two time courses of p53 dynamics. In total, 10,000

transcripts and approximately 8,000 proteins were quantified in each

condition (see Materials and Methods and Data Availability section).

Global RNA and protein expression profiles determined by RNA-

seq and quantitative MS were validated for select genes using

candidate-based assays. p53 and MDM2 proteins showed the

expected oscillatory dynamics in response to radiation, with the

peak of MDM2 expression lagging behind the peak of p53 by

approximately 1 h (Fig 1B) as described (Lahav et al, 2004; Geva-

Zatorsky et al, 2006). The second peak of p53 (at 7 h post-radiation)

was reduced in amplitude compared to its first peak (at 2 h) due to

a loss of synchrony within the population of cells (Fig 1B) (Batche-

lor et al, 2008, 2011). Nutlin-3a treatment led to continuously

increasing p53 (“rising”) and MDM2 levels as well as altered

dynamics of additional p53 target genes (Fig 1C). Most impor-

tantly, quantification of the mRNA and protein expression profiles

of a select panel of canonical p53 targets under both dynamical

conditions by real-time quantitative PCR (Fig 1D–F) and Western

blot (Fig 1E–G), respectively, showed equivalent fold changes for

p53 and the examined target genes at both RNA and protein levels.

▸Figure 1. Quantification of mRNA and protein dynamics under oscillatory and rising p53 levels.

A Schematic showing the negative feedback loop between p53 and MDM2 and the induction of p53 oscillatory or rising dynamics using irradiation with or
without the MDM2 inhibitor Nutlin-3a, respectively. Samples for mRNA-seq and mass spectrometry were collected at the indicated time points following
radiation.

B, C Western blot for p53 and select p53 targets post-radiation in (B) oscillatory and (C) rising conditions. Actin is shown as a loading control.
D, E Average levels of (D) mRNA quantified by RNA-seq (red) or qRT–PCR (grey) or (E) protein quantified by mass spectrometry (light green) or western blot (grey) for

select p53 target genes under oscillatory p53.
F, G Average levels of (F) mRNA quantified by RNA-seq (blue) or qRT–PCR (grey) or (G) protein quantified by mass spectrometry (dark green) or western blot (grey) for

select p53 target genes under rising p53.

Data information: In (D–G), n = 2 biological replicates, error bars represent SD.
Source data are available online for this figure.
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Note that the mRNA of p53 itself does not change in response to

radiation (Fig 1D) and the oscillations at the protein level result

from regulating the stability of the p53 protein itself (Fig 1E) (Kas-

tan et al, 1991; Kubbutat et al, 1997; Lakin & Jackson, 1999; Zhang

& Chen, 2008; Shin et al, 2013). Overall, the high concordance

between expression profiles as determined by global mRNA and

protein profiles and candidate-based assays suggests the validity of

the high-throughput measurements.

Oscillatory p53 dynamics diversify the expression profiles of its
target genes

To understand how mRNA dynamics influenced protein expression,

we investigated the relationships between mRNA and protein

expression of p53 target genes under oscillatory and rising p53

dynamics. We focused on p53 target genes defined by the direct

binding of p53 to its target promoters based on ChIP-seq data

following radiation (Hafner et al, 2017) (see list of target genes in

Dataset EV1). From a pool of 4,141 ChIP-seq bound p53 targets, we

selected those showing robust differential mRNA expression defined

as (i) false discovery rate (FDR) < 0.2 (t-test, Benjamini–Hochberg
corrected), (ii) fold change > 1.5 in expression relative to the basal

condition at time 0 at one or more subsequent time points, and (iii)

Pearson correlation between biological replicates > 0.5 (see Materi-

als and Methods, Appendix Fig S1). Differentially expressed mRNAs

yielded 297 mRNAs under oscillatory and 603 under rising condi-

tions. We used fuzzy c-means to cluster these transcripts into five

dynamical groups based on their normalized expression (z score)

during the first 9 h post-irradiation under either oscillatory or rising

conditions. For each condition, three clusters showed induced

expression and two were repressed (Fig EV1). Because p53 is not

considered to be a direct repressor of transcription (Fischer et al,

2014; Verfaillie et al, 2016; Hafner et al, 2017), it is likely that

proteins in the repressed clusters are co-regulated by other factors

that drive repression. Thus, only induced genes, which amounted to

175 under oscillatory dynamics (Fig 2A) and 330 under rising (Fig 2

C; Appendix Fig S1), were considered going forwards. These

numbers align well with the number of p53 target genes identified

by overlapping ChIP-seq and expression data in other studies (Ken-

zelmann Broz et al, 2013; Moyer et al, 2020). Under oscillatory p53

dynamics (Fig 2A), Cluster 1 represented an oscillatory pattern, and

included targets such as MDM2, CDKN1A (encoding the p21

protein), and WIP1 that were previously shown to oscillate with

p53 levels (Hafner et al, 2017; Hanson et al, 2019; Harton et al,

2019). The damped second oscillation of mRNAs in this cluster, as

seen in Fig 1E, likely resulted from loss of synchrony of the cell

population. Cluster 2 represented targets whose expression rose and

then decreased, and Cluster 3 represented targets that were acti-

vated during the first 5 h and retained high expression subse-

quently. Under rising p53 expression (Fig 2C), Cluster 1 showed

gradually rising mRNA expression, Cluster 2 showed a delayed

induction followed by a continuous increase, and Cluster 3 showed

rapid induction and a plateau at 4–5 h. No mRNAs showed oscilla-

tory dynamics under Nutlin treatment, as previously noted (Hafner

et al, 2017).

We next analyzed the expression of proteins corresponding to each

mRNA cluster. Compared to mRNA expression levels, the correspond-

ing fold changes in protein levels were lower, as shown by a

distribution of maximum fold change in expression which was shifted

to the left compared to mRNA measurements (Fig EV2). This phenom-

enon is not uncommon, as mRNA levels often show greater induction

than their cognate proteins (Mertins et al, 2018; Myers et al, 2019).

Robust differentially expressed proteins were defined as those exhibit-

ing at least a 1.15-fold change relative to the basal condition at one or

more time points (FDR < 0.2, t-test, Benjamini–Hochberg corrected,

and PCC > 0.5 between biological replicates). Two house-keeping

genes that are not p53 targets, GAPDH and TUBB, were appropriately

not captured by this cut-off, and two canonical p53 targets, E2F7 and

XPC, showed expression above 1.15-fold change (Appendix Fig S2),

validating our experimental approach and analysis. We noted that

under both dynamical behaviors, a high percentage of induced

mRNAs (65%) did not lead to induced proteins. Of the remaining

mRNAs (35%) that led to induced proteins, we discovered a greater

variety of protein dynamical patterns under oscillatory p53 expression

compared to rising (Fig 2B–D). Protein expression under rising p53

showed uniformly induced protein dynamics independent of their

mRNA dynamics, with a comparable mean slope of protein induction

across all mRNA clusters (Fig 2D). Most notably, oscillatory mRNA

dynamics arising from oscillatory p53 expression gave rise to a greater

diversity of protein expression patterns, termed “oscillatory”, “rise”,

and “rise and decrease” here (Fig 2A and B). Overall, while rising p53

expression led to a larger number of target genes being induced at

both mRNA and protein levels, it limited the diversity of expression

patterns. Oscillatory p53 expression induced fewer target mRNAs and

proteins, but exhibited greater diversity in expression patterns of each.

We therefore concluded that oscillatory p53 expression provides a

greater range of possible signal relay mechanisms to expand the diver-

sity of gene expression patterns (Fig 2E). To compare mRNA or

protein trajectories under different p53 dynamics going forward, we

define “detected” as those species whose expression can be measured

throughout the time course under both p53 dynamical conditions.

Those that rise above the threshold criteria (in relation to our

untreated condition) are defined as “induced.”

Degradation rates dominate the control of protein dynamics
induced under oscillatory p53

To identify the mechanisms that regulate gene expression downstream

of p53 activation, we first investigated whether a minimal model of

simple regulation based on mRNA and protein synthesis and degrada-

tion rates could explain the various dynamical patterns observed

above. We built a five-parameter model that consists of two equations

describing (1) mRNA dynamics and (2) protein dynamics. In order to

fit mRNA expression, we used empirical measurements of p53 levels

from MS data, using the values at t-1 h as the input for p53 (Fig 1E).

The production and degradation rate constants, kpmRNA and kdmRNA,

respectively, were fit to the RNA-seq data. To fit protein expression,

we used mRNA levels from RNA-seq data as inputs and fit the

constants for production (kpprot), degradation (kdprot), and time delay

(tdel; which represents the time required for translation) to the

measured mass spectrometry data of induced proteins.

dmRNAðtÞ
dt

¼ kpmRNA:p53 t � 1ð Þ � kdmRNA:mRNA tð Þ: (1)

dprotðtÞ
dt

¼ kpprot :mRNA t � tdelð Þ � kdprot:prot tð Þ: (2)
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We first fit the expression of targets that were induced both at

the mRNA and protein level under oscillatory p53 dynamics. We

obtained a fit with R2 = 0.91 for mRNA expression and R2 = 0.93

for protein expression of MDM2 (Fig 3A) and median values of

R2 = 0.83 and R2 = 0.95 for all tested mRNAs (Fig 3B) and proteins

(Fig 3C), respectively. As previously shown (Hafner et al, 2017),

targets with oscillatory mRNA had higher kdmRNA values compared

to targets in non-oscillatory mRNA clusters (Fig 3D).
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Figure 2. Oscillatory p53 leads to greater diversity of both mRNA and protein dynamic profiles compared to rising p53.

A–D Induced p53 targets were subjected to fuzzy c-means clustering according to their mRNA expression profiles under (A) oscillatory or (C) rising p53 expression.
Differential mRNA expression was defined as fold change > 1.5 and FDR < 0.2 (t test, Benjamini–Hochberg corrected) based on two independent experiments.
mRNAs were clustered based on their normalized time traces (z score) into five expression clusters under oscillatory or rising p53. Only upregulated clusters are
shown. (B, D) The proteins corresponding to the mRNAs in each group were clustered according to their expression profiles. Differential protein expression was
defined as fold change > 1.15 and FDR < 0.2 (t-test, Benjamini–Hochberg corrected) based on two independent experiments. The mean expression of each cluster
is shown in black.

E Schematic showing all observed mRNA and protein dynamics under each p53 dynamical condition.
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We next tested the contribution of both the protein production

and degradation rates toward shaping the protein dynamical trajec-

tories. Because TMT-MS data provide relative quantifications, we

could not directly assess the effects of kpprot or kdprot on the

absolute levels of protein, but we were able to analyze their effects

on expression patterns. kpprot had minimal effects on the pattern of

relative protein expression across a range of values (Fig EV3). Simi-

lar results were reported for mRNA production rates, which did not
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affect dynamical patterns but did influence the magnitude of gene

expression (Hafner et al, 2017). In contrast, kdprot made a major

contribution to protein expression dynamics. Oscillatory proteins

showed higher degradation rates compared to rising proteins (Fig 3D),

as seen for mRNAs. In general, modeling with higher kdprot allowed

protein expression to follow its mRNA input. By solely varying the

kdprot values while maintaining kpprot and tdel constant in our model,

we found that protein expression closely mimicked its mRNA input at

high kpprot (Fig 3E, cyan boxes). For example, our model predicted

that as kdprot rises, the naturally oscillatory protein AEN (Fig 3E top,

pink box) will transition to a sharper oscillatory pattern that closely

mimics the dynamics of its mRNA input (Fig 3E top, cyan box, and

category a Appendix Fig S3). The same is true for the naturally slow

rising XPC, which transitions to oscillatory dynamics that mimic the

dynamics of its mRNA input (Fig 3E bottom and category c Appendix

Fig S3). In agreement, previous experimental studies of tuning mRNA

or protein stability suggested that increasing degradation rates could

induce oscillations in targets that were naturally not oscillatory, as

observed for MDM2 and PUMA (Hanson et al, 2019). In agreement

with Hanson et al, we conclude that distinct targets’ protein expres-

sion dynamics are generated depending on the relationship between

target mRNA and protein stability.

To test the predictive power of the model, we next used the

protein production and degradation parameters derived from the

oscillatory condition to predict protein dynamics under rising p53

using RNA-seq data as input values (Fig 3F). The predicted protein

dynamics were in strong agreement with the levels measured by

mass spectrometry for MDM2 (R2 = 0.96; Fig 3F), and for the entire

group of genes tested (median R2 = 0.87; Fig 3G). Thus, the param-

eters (kpprot, kdprot, and tdel) that were derived from the oscillatory

condition apply to expression under rising p53 dynamics. These

results suggest that genes that are induced under oscillatory condi-

tions and are further increased under rising p53 dynamics achieve

this difference in expression primarily because of the differences in

p53 dynamics rather than because of changes in the production or

degradation rates of their mRNA or proteins.

Identification of the simplest regulatory network motifs that
decode p53 dynamics

The analyses above focused on fitting production and degradation

parameters to mRNAs and proteins that were induced under

oscillatory p53 dynamics. We noted, however, that some proteins

(e.g., SESN1) that were not induced under oscillatory dynamics

became induced when p53 was rising. We first investigated whether

the expression trajectories of these proteins under rising p53 expres-

sion could be predicted by fitting production and degradation

parameters to their trajectories under oscillatory conditions. Under

oscillatory p53, SESN1 mRNA was induced and could accurately be

fitted (R2 = 0.95 for mRNA expression); however, SESN1 protein

was not induced and therefore could not be fitted (R2 = 0.18; Fig 4

A). Therefore, it was not possible to derive kp and kd parameters

that could be used to predict SESN1 protein levels under rising p53

expression (Fig 4B). Similar results were obtained when fitting p53

target mRNAs whose proteins were not induced under oscillatory

p53 (median R2 = 0.29; Fig EV4), suggesting that for these genes,

p53 dynamics were decoded by additional mechanisms beyond

intrinsic protein degradation rates.

The observation that not all p53 target genes decoded p53

dynamics based on a minimal model of mRNA and protein degrada-

tion rates prompted us to analyze whether more complex models of

regulation could explain the dynamics of this class of targets (Fig 4

C). To accomplish this goal, we first categorized targets according to

their mRNA and protein expression patterns using empirical values

derived from RNA-seq and mass spectrometry measurements.

Focusing only on mRNAs and proteins that were detected under

both dynamical regimens and induced under at least one condition

(Appendix Fig S1), we observed four distinct responses at the

mRNA level and six at the protein level leading to 11 distinct

dynamical categories (a–k; Fig 4C, full classification Appendix Fig

S3). Across the four classes of mRNA dynamics, a lack of protein

induction was commonly observed (Fig 4C, category k). As noted in

Fig 2C, oscillating mRNA dynamics gave rise to a greater diversity

of protein dynamics (Fig EV5A and B) and was the only dynamical

regime that could generate oscillating protein levels. Several protein

dynamical patterns—such as lack of induction or rapid induction

under both oscillatory and rising p53 activation—were achieved

under multiple mRNA dynamical regimes. Several combinations of

mRNA and protein dynamics were not observed in our dataset.

These combinations cannot be achieved without invoking additional

complex feedback mechanisms independent of p53 dynamics; these

are denoted by an asterisk in the table.

We used our classification to investigate the mechanisms respon-

sible for each category of expression dynamics (a–k). Categories a,

◀ Figure 3. Protein degradation rates govern dynamics of p53 targets induced under oscillatory dynamics.

A p53 protein levels from mass spectrometry under oscillatory dynamics were used to fit the production and degradation rates (kpmRNA and kdmRNA, respectively) for
MDM2 mRNA. The MDM2 mRNA levels (from RNA-seq data in Fig 1) were used to fit the production and degradation rates (kpprot and kdprot, respectively) for
MDM2 protein. The experimentally observed and fitted measurements are shown, along with the R2 value of the correlation between the two.

B, C The method described in (A) was used to fit parameters for all (B) mRNAs and (C) proteins induced under oscillatory dynamics. The distribution of R2 for the fits is
shown.

D mRNA and protein degradation rates were calculated for each gene in Fig 2A and B, as shown in (A). The distribution of mRNA and protein degradation rates for
each cluster (Fig 2A and B) under oscillatory p53 dynamics is shown. White lines indicate the median, and box edges and whiskers extend to the 25–75 and 5–95%
quantiles, respectively. Individual dots represent outliers.

E The protein expression trajectories of two representative p53 target genes showing the mRNA and protein dynamics indicated at the left were modeled for the
indicated values of kdprot. Pink box shows the value of kdprot that best fits the experimentally measured protein dynamics. Cyan box shows protein expression at
high kpprot.

F The production and degradation rates in (A) were used to predict the MDM2 mRNA and protein expression trajectories under rising p53 dynamics. R2 values
compare the observed to expected expression patterns.

G The kpprot and kdprot parameters calculated for each gene in (C) under oscillatory p53 dynamics were used to predict the protein expression trajectories of the
corresponding genes under rising p53 expression. The distribution of R2 values comparing the predicted to observed expression patterns is shown.
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b, and e could be explained by a production–degradation minimal

model in which distinct degradation rates lead to distinct dynamics.

As described in Fig 3, high degradation rates for both mRNA and

protein resulted in protein dynamics that mimicked p53 dynamics

(Fig 4D), leading to oscillatory protein production being accessible

only under oscillatory p53. The dynamics of category i could be

explained by a more complex model involving an activation thresh-

old. The concept of activation threshold (or affinity) has been previ-

ously proposed to arise through response element sequence and

DNA structure (Farkas et al, 2021) and has been further described

at the transcription level as a parameter that represents the interac-

tion of the transcription factor with its target gene (Alon, 2007;

Heltberg et al, 2019). A low activation threshold at the transcrip-

tional level coupled with simple regulation via protein production/

degradation rates could explain the expression of CTSL and two

other proteins (category i). By analogy to the transcriptional activa-

tion threshold, a translational activation threshold could represent

binding of mRNA to the translation machinery, with weakly binding

mRNAs requiring higher levels to achieve protein production. The

dynamics of categories c, f, g, and k could not be accurately

predicted by protein production/degradation models, and instead

could be explained by a post-transcriptional activation threshold.

Three targets—FDXR, HOXC13, and BAX—showed similar mRNA

dynamics to each other under oscillatory and rising p53 dynamics

(Fig 4E). However, their protein responses were quite different.

FDXR protein levels were similarly induced under both oscillatory

and rising p53 dynamics; HOXC13 was induced only under rising

p53 input; and BAX was lowly expressed under either condition.

These differences in protein levels could be explained by differences

in activation threshold, with FDXR requiring minimal mRNA for

protein expression, and BAX, at the other extreme, requiring high

levels of mRNA. A medium activation threshold, as seen for

HOXC13, provides a mechanism for exclusive expression under

rising p53 dynamics (Fig 4E).

Some categories (d, h, and j) could not be explained by models

of production and degradation rates or activation threshold. We

therefore investigated whether simple regulatory motifs can explain

the dynamics observed. Indeed, cellular dynamic information

processing described in prokaryotes reveals a range of transcrip-

tional network motifs that perform distinct decoding functions

(Mangan & Alon, 2003; Mangan et al, 2003; Alon, 2007). We

proposed the use of feed-forward motifs to explain the categories

mentioned above. A coherent feed-forward loop (cFFL) (Mangan &

Alon, 2003; Mangan et al, 2003; Alon, 2007) consists of a single

regulator (X) that activates both the target gene in question (Z)

directly, and a second activator (Y) of the target gene (Fig 5A); both

processes must occur simultaneously for the target gene to be

induced. Since the activation of Y occurs with a time delay (often

representing its transcription and translation), the target gene Z is

activated only when the initial signal (X) persists for sufficient dura-

tion to produce Y (Fig 5A), resulting in a behavior termed “persis-

tence detection.” In a transcriptional cFFL, Y is often a second

transcription factor required for expression of the target gene Z. In a

post-transcriptional cFFL, Y could be any factor that increases the

translation or the stability of the target protein. An incoherent feed-

forward loop (iFFL) consists of a single regulator (X) that directly

activates the target gene (Z) and also activates a repressor (Y) of the

target. When both X and Y are present, Y is epistatic and the target

is not expressed (Fig 5A). Here, Y could reduce the translation or

stability of the target.

Feed-forward loops can explain the exclusive induction observed

in categories d, h, and j. For example, a cFFL at the transcriptional

level coupled to simple regulation of translation can result in exclu-

sive induction of RAD51 and three other proteins under rising p53

expression (Figs 4C category j and, 5A and B). cFFL at the post-

transcriptional level coupled with high mRNA degradation rates can

also result in exclusive induction under rising p53, as exemplified

by SESN1 (category d, Fig 5A and B). We also found two proteins

exclusively induced under oscillating p53 (Fig 4C category h,

Appendix Fig S3). In both cases, their mRNAs were induced more

highly under rising than oscillating p53 dynamics, leading to a

counter-intuitive inverse relationship between mRNA and protein

levels (see HSPG2 panel, Fig 5B). This pattern could be explained

by incoherent feed-forward loops (Mangan & Alon, 2003; Mangan et

al, 2003; Alon, 2007) that affect either the translation or stability of

the target protein (Fig 5A).

We thus propose distinct mechanisms of increasing complexity

for decoding differences in p53 dynamics at the protein level: (i)

adjustment of protein production and degradation rates (Figs 3 and

4D), (ii) adjustment of activation threshold in response to an mRNA

input (Fig 4E), (iii) persistence detection through the coherent feed-

forward loop (cFFL) motif at the transcriptional or translation level

(Fig 5A), and (iv) inversion of mRNA to protein correlation through

the incoherent feed-forward loop (iFFL) motif (Fig 5A). Combina-

tions of these mechanisms at transcriptional and translational levels

can achieve exclusive induction under a given p53 dynamic. As

noted above, coupling a transcriptional cFFL to simple regulation of

translation (category j), or coupling a high mRNA degradation rate

to a post-transcriptional cFFL (category d), led to exclusive induc-

tion under rising p53 dynamics. Exclusivity in behavior could also

be achieved through a precise combination of degradation rates and

activation threshold (Fig 5C). The different strategies to achieve

◀ Figure 4. Classification of mRNA and protein dynamics suggests distinct mechanisms to decode p53 dynamics.

A mRNA and protein production and degradation rates for SESN1 under oscillatory p53 dynamics were fit as described in Fig 3A.
B mRNA and protein production and degradation rates for SESN1 fitted under oscillatory dynamics were used to predict SESN1 protein expression under rising

dynamics.
C Table showing all combinations of mRNA and protein responses of 191 genes with complete mRNA and protein measurements under both oscillatory and rising p53

dynamics. Combinations are classified into 11 different categories (a–k). An asterisk represents categories which cannot be achieved without additional complex
feedback mechanisms independent of p53 dynamics. Target examples are given. Pink background represents transcriptional mechanisms while green background
represents post-transcriptional mechanisms for observed dynamics.

D Two targets with similar mRNA expression profiles but high (SESN2, category a) or low (BBC3, category b) protein degradation rates are shown.
E Examples of targets showing similar mRNA profiles but distinct protein responses resulting from distinct activation thresholds (dotted pink lines represent

hypothetical threshold): low (FDXR), medium (HOXC13), and high (BAX).
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exclusive induction are portrayed in Fig 5C. Exclusive induction is a

common phenomenon, with 15% of mRNAs and 20% of proteins

showing exclusive induction under only one of the two dynamical

regimes and remaining at constant levels under the other regime

(Fig EV5C and D), highlighting the extensive dynamical decoding in

p53 networks.
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A Schematic of transcriptional and post-transcriptional cFFLs and iFFL.
B Examples of genes showing exclusive protein expression under rising p53 expression due to cFFL motifs at the transcriptional (RAD51C) or translational (SESN1) levels,

and exclusive protein expression under oscillatory p53 expression due to iFFL motifs at the transcriptional level (HSPG2).
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Rising p53 globally enhances gene expression including
anti-proliferative programs

Finally, we investigated whether any differences in regulation of

p53 targets could explain the different cellular outcomes under oscil-

lating and rising dynamics (cell cycle arrest vs senescence and apop-

tosis, respectively). Focusing on proteins that were detected under

both dynamical conditions, we investigated whether genes that

promote cell cycle arrest, senescence, or cell death (categorized

based on Gene Ontology and literature reviews (see Materials and

Methods) and collectively termed “anti-proliferative genes”) showed

any common trends. In the heatmap of Fig 6A, we ordered p53

targets according to their differences in protein expression between

oscillatory and rising conditions (as defined by the diffprot measure-

ment, see Materials and Methods and Fig 6A, right). We found that

anti-proliferative genes (colored pink) were spread across the

heatmap (Fig 6A) and their inductions on the whole were not dif-

ferent from those of other functional categories of p53 target genes

(Fig 6B). We also investigated whether targets involved in terminal

outcomes showed common regulatory motifs, and we found that

they fell into multiple classes of regulatory motifs. These results

suggest that the cellular outcomes orchestrated by p53 do not rely

on using similar network motifs to regulate functionally related

genes, and that other mechanisms likely ensure that p53 activity

does not induce conflicting cellular pathways (e.g., apoptosis and

DNA repair pathways; Fig 6C). We propose that the differences in

cellular outcomes between oscillatory and rising p53 dynamics arise

from global enhancement of gene expression under rising condi-

tions, allowing anti-proliferative genes to achieve higher levels that

promote terminal outcomes (Fig 6D).

Discussion

Biological systems can encode information in the dynamical

patterns of protein and mRNA expression. However, it is unclear

how cells decode the information that is encoded by transcription

factor dynamics into expression of appropriate target genes. In this

study, we compared time-series analyses of global p53 target mRNA

and protein expression, using RNA-sequencing and quantitative,

multiplexed TMT mass spectrometry, respectively, under two dif-

ferent p53 dynamic regimes. These high-throughput measurements

represent the first dynamic view of the proteome downstream of

p53 and provided a unique opportunity to identify decoding mecha-

nisms both at the transcriptional and translational level. Most

studies that investigate mRNA to protein correlation did so at a

single time point and thus do not hold a dynamic component

(Schwanh€ausser et al, 2011; Liu et al, 2016; Fortelny et al, 2017). A

few studies that monitored both mRNA and protein globally over

time (Zheng et al, 2005; Peshkin et al, 2015) did so under only a

single dynamical regime and did not investigate the network motifs

governing mRNA and protein expression. Our integrative approach

categorized all possible means by which target mRNA and protein

output dynamics could be established by oscillatory and rising p53

inputs, uncovering a diverse repertoire of transcriptional and non-

transcriptional gene regulatory network motifs. While this study

addressed the effects of p53 dynamics in a single cell line, we expect

that strategies of p53 target regulation may be broadly applicable. A

separate study also reported a diversity of p53 target gene dynamics

under oscillatory conditions in RPE cell (Hanson et al, 2019), and

the dynamics of almost all selected p53 target genes showed good

concordance with our study results. Future studies across multiple

cell types will be required to determine the degree of conservation

of p53 target regulation on a gene-by-gene basis.

A multitude of cellular stresses activate p53, and one overarching

question has been whether p53 can relay information on the nature

of the stress by choosing which of its many effector pathways to

upregulate (Zhao et al, 2000, 2019; Jackson & Bartek, 2009; Carvajal

& Manfredi, 2013; Maier et al, 2016). Our results suggest that in the

context of DNA damage, p53 induces many classes of its target

genes— including metabolic genes, DNA repair genes, as well as cell

cycle arrest and cell death effectors— indiscriminately and without

enrichment for specific pathways based on its dynamics. These

results are consistent with global run-on sequencing assays showing

that p53 activated target genes from multiple functional pathways

(Allen et al, 2014). Although specific functional categories of genes

were not preferentially expressed under either p53 dynamical

regime, the general enhancement of gene expression under rising

dynamics could explain the differences in cellular outcomes: oscilla-

tory p53 expression leads to reversible cell cycle arrest, whereas

rising p53 dynamics lead to irreversible cell senescence or cell death

(Purvis et al, 2012). Under oscillatory dynamics, the lower levels of

anti-proliferative gene expression may not be sufficient to drive cells

to terminal outcomes, allowing cells to arrest and repair DNA

damage. Under rising p53 dynamics, however, the enhanced gene

expression may generate sufficient anti-proliferative activity

allowing this pathway to "win" despite others also being induced

(Fig 6D). A less likely alternative is that a small number of genes

that are exclusively induced under one dynamical condition control

cellular outcomes against a background of activation of multiple

pathways. For example, PRKAB1 and SESN1 proteins, which

promote autophagy by inhibiting mTOR, are induced only under

rising p53 expression (Appendix Fig S3 category d, Fig 5C) and may

exert anti-proliferative effects in this condition. Conversely, CUEDC1

▸Figure 6. Rising p53 globally enhances the expression of genes in multiple classes.

A Heatmap of genes ordered based on their differences in protein expression diffprot between oscillatory and rising p53 (see Materials and Methods and diagram at
right). Anti-proliferative targets (those involved in apoptosis, cell cycle arrest, or senescence) are shown in pink.

B Boxplots showing fold changes in protein expression of anti-proliferative proteins or all other proteins under oscillatory or rising p53 dynamics at 24 h. Central box
shows median with box edges and whiskers extending to the 25–75 and 5–95% quantiles, respectively. Individual dots represent outliers. P-values were calculated
using a two-sided t-test. N.s., not significant.

C Examples of apoptotic proteins whose expression profiles fall into five distinct dynamical categories (Fig 4C, categories a, b, d, e, f). Yellow area represents differences
in protein expression diffprot between p53 dynamical conditions (see Materials and Methods).

D Enhanced expression of anti-proliferative genes can lead to irreversible outcomes.
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(Appendix Fig S3 category h), which promotes MCF7 proliferation

(Lopes et al, 2018), is exclusively induced under oscillating p53

expression and may facilitate proliferation following DNA damage.

Further studies are required to determine the potential role of these

and other exclusively induced genes on cell fate. Because canonical

anti-proliferative genes do not appear to be exclusively induced, we

believe it is unlikely that cell death is driven primarily by mecha-

nisms involving exclusive gene induction under rising p53 expres-

sion. It is more likely that p53 dynamics influence cellular outcomes

both by modulating levels of proteins and by regulating whether

they are induced. Given that p53 oscillations are conserved across

cell types and species (Stewart-Ornstein et al, 2017), such dynamic

information encoding may be a conserved mechanism for guiding

cellular outcomes. This mechanism may allow cells extended time

for completing DNA repair by prolonged maintenance of a reversible

cell cycle arrest state, while simultaneously avoiding irreparable

tissue damage by cell death that would arise from accumulation of

apoptosis or senescence driver proteins. Future work focused on

understanding events downstream of p53 activation, such as modu-

lation of degradation rates or of expression thresholds for genes that

drive different phenotypic outcomes, could elucidate how p53

dynamics coordinate with other regulatory processes to govern

cellular responses.

While we and others (Hafner et al, 2017; Hanson et al, 2019)

found that the dynamics of many p53 targets that were induced

under oscillatory conditions were primarily controlled by degrada-

tion rates, our global analysis of gene expression under two different

p53 dynamics revealed additional decoding mechanisms that,

together with degradation rates, explain the entire landscape of

mRNA and protein profiles. The decoding mechanisms that we

observed include changes in activation threshold and use of feed-

forward network motifs. We showed that feed-forward motifs can

generate exclusive induction under oscillating (iFFLs) or rising

(cFFLs) p53 expression by acting at the transcriptional and/ or trans-

lational levels. Previous studies showed that cFFLs can discriminate

between a single, transient pulse versus a prolonged signal (Schleif,

2000; Shen-Orr et al, 2002; Mangan & Alon, 2003; Kalir et al, 2005;

Alon, 2007; Litvak et al, 2009; Gillies et al, 2017; Bulcha et al, 2019).

Our study provides the first example of cFFLs decoding oscillatory

dynamics. This mechanism was previously proposed to control

induction of senescence under rising p53 expression (Purvis et al,

2012; Purvis & Lahav, 2013); however, we did not observe a particu-

lar enrichment of those motifs in the class of anti-proliferative genes,

which indicates that this regulation does not distinguish cell fates.

Although the network motifs that we identified depict the regula-

tory relationships between components, they do not specify the

underlying molecular species. Analyses of individual genes within

our dataset suggest molecular species that might achieve the

observed expression patterns. The Sestrin genes (SESN1 and SESN2)

(Shin et al, 2012; Kim et al, 2015) provide an example of closely

related pair that shows differential regulation: SESN1 is regulated by

a post-transcriptional cFFL, while SESN2 shows simple regulation

(case 1, Fig 5A). SESN1, but not SESN2, was identified as a target of

the DNA damage-responsive kinase ATM (Matsuoka et al, 2007),

raising the possibility that ATM may participate in a translational

cFFL as a factor that promotes protein stability (“Y” in the transla-

tional cFFL, Fig 5A) leading to the distinct regulation of SESN1 at

the protein level.

The two targets exclusively induced under oscillatory dynamics,

HSPG2 and CUEDC1, likely represent regulation by iFFLs. A

common molecular mechanism for achieving such regulation in the

p53 pathway involves micro-RNAs, a family of small non-coding

RNAs that represses translation of their mRNA targets (Fig 5A). p53

induces a number of miRNAs, which were shown to act as transla-

tion inhibitory factors “Y” (Fig 5A) in iFFL networks (Hermeking,

2012). Although miRNAs targeting HSPG2 and CUEDC1 have not

been described, exclusive induction of a different p53 target, LRP1,

under sub-lethal (low doxorubicin) but not lethal (high doxorubicin)

conditions has been attributed to an miR103 (Fig 5A, “Y”) partici-

pating in a feed-forward loop (Leslie et al, 2018). It is possible that a

similar mechanism may hold for HSPG2 and/or CUEDC1.

Multiple motifs of high and low complexity can accomplish a

given biological function (Ma et al, 2009; Cotterell & Sharpe, 2010;

Lim et al, 2013; Gerardin et al, 2019). Minimal motifs are defined as

those with the fewest interactions, and in many systems multiple

minimal motifs have been identified for a given function (Ma et al,

2009; Cotterell & Sharpe, 2010). For example, five minimal

networks, including coherent feed-forward loop, were identified as

being able to perform persistence detection (Gerardin et al, 2019).

Of these motifs, FFLs are commonly found in organisms from bacte-

ria (Eichenberger et al, 2004) and yeast (Lee et al, 2002) to plants

and animals (Odom et al, 2004; Boyer et al, 2005). They were found

to occur in E. coli much more often than would be expected at

random (Milo et al, 2002; Shen-Orr et al, 2002), leading us to

propose these networks for explaining p53 target gene dynamics.

Therefore, while we believe that the proposed minimal motifs likely

operate in the p53 pathway based on their enrichment in other tran-

scriptional networks, combinations of minimal motifs and more

complex forms (with a higher number of regulatory interactions)

are also candidates to explain p53 target gene dynamics.

In conclusion, our analyses revealed general principles of cellular

temporal and dynamic information processing. Through unveiling

diversities of network motifs, we provide empirical explanations for

why mRNA and protein levels often show poor correlations in cells,

thus addressing the importance of analyzing proteomics as well as

surrogate transcriptomic read-outs to map gene expression over

time.

Materials and Methods

Cell culture

MCF7 were grown in RPMI supplemented with 10% FBS. The iden-

tity of MCF7 was confirmed by DNA fingerprinting with small

tandem repeat profiling and tested negatively for mycoplasma

contamination. MCF7 were irradiated with 10 Gy using a RS-2000 X-

Ray irradiator. Nutlin-3A was used at concentrations and times as

stated (Fig 1A) following a defined protocol (Purvis et al, 2012).

RNA extraction

2.5 × 105 MCF7 cells per condition were subjected to cell lysis and

RNA extraction including DNase I treatment according to manufac-

turer’s protocol (Qiagen RNeasy). RNA concentrations were deter-

mined using a Nanodrop (Thermo Scientific).
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Quantitative (q)RT–PCR

One microgram of extracted RNA was used to generate complemen-

tary DNA (cDNA) using the high-capacity cDNA reverse transcrip-

tion protocol (Applied Biosystems). q-PCRs were then performed

using 1/40 of the total of cDNA, 100 nM primer, and SYBR Green

reagent following the manufacturer’s protocol (Applied Biosystems).

Reactions were normalized to ACTA1 as a loading control.

qRT–PCR primers used:

ACTA1 (F: TGCAGAAAGAGATCACCGC, R: CCGATCCACACCG

AGTATTTG)

BAX (F: CTGACGGCAACTTCAACTGG, R: GATCAGTTCCGGCA

CCTTGG)

CDKN1A (F: TGTCACTGTCTTGTACCCTTG, R: GGCGTTTGGAG

TGGTAGAA)

DDB2 (F: TCATTGTTGTGGGCCGATAC, R: TGGCTCCAGATGA-

GAATGT

KDM4A (F: CGGCCAAGTCTATGGAGCC, R: TCATTGAAGCGCA

TGTCTGAG)

MDM2 (F: TGCCAAGCTTCTCTGTGAAAG, R: TCCTTTTGATCAC

TCCCACC)

PPDM1D (F: ATAAGCCAGAACTTCCCAAGG, R: TGGTCAATAAC

TGTGCTCCTTC).

RNA sequencing

Libraries were prepared using a SciClone G3 NGSx workstation

(Perkin Elmer) using the Kapa mRNA HyperPrep kit (Roche

Sequencing). Polyadenylated mRNAs were captured using oligo-

dT-conjugated magnetic beads (Kapa mRNA HyperPrep kit, Roche

Sequencing) from 300 ng of total RNA on a Perkin Elmer SciClone

G3 NGSx automated workstation. Polyadenylated mRNA samples

were immediately fragmented to 200–300 bp using heat and

magnesium. First-strand synthesis was completed using random

priming followed by second-strand synthesis and A tailing. dUTP

was incorporated into the second strand to allow strand-specific

sequencing of the library. Libraries were enriched and indexed

using 12 cycles of amplification (Kapa mRNA HyperPrep kit, Roche

Sequencing) with PCR primers, which included dual 8bp index

sequences to allow for multiplexing (IDT for Illumina unique dual

8bp indexes). Excess PCR reagents were removed through

magnetic bead-based cleanup using Kapa Pure magnetic beads on

a SciClone G3 NGSx workstation (Perkin Elmer). Resulting

libraries were assessed using a 4200 TapeStation (Agilent Tech-

nologies) and quantified by QPCR (Roche Sequencing). Libraries

were pooled and sequenced on one Illumina NovaSeq SP flow cell

using paired-end, 75 bp reads.

Western blot

Cells were lysed using RIPA buffer (Cold Springs Harbor proto-

cols). Protein concentrations were quantified using BCA™ Protein

Assay kit (ThermoFisher) following the manufacturer’s protocol.

Fifty microgram of total proteins were loaded into each lane of a

4–12% Bis–Tris gradient gel (NuPAGE), and transferred to

0.45 µm PVDF membranes (GE Healthcare). Membranes were

blocked with 5% BSA, incubated with primary antibody over-

night, washed and incubated with secondary HRP conjugate

antibodies, followed by a last wash. Membranes were exposed

using Bio-rad Chemidoc™.

Primary antibodies used (all 1:1,000 unless otherwise stated): β-
ACT (Sigma-Aldrich #A5316, 1:10,000 dilutions), BAX (CST #5023),

DDB2 (CST #5416), KDM4A (CST #5328), MDM2 (Calbiochem

#op46), p21 (CST #2947), p53 (Santa Cruz Biotechnology #sc-126,

1:5,000 dilutions), and PPDM1D (Santa Cruz Biotechnology #sc-

20712). Secondary antibodies used: anti-mouse IgG HRP linked

(Invitrogen #62-6520, 1:10,000 dilutions) and anti-rabbit IgG HRP

linked (CST #7074, 1:10,000 dilutions).

Protein extraction, tandem mass tag (TMT) peptide labeling, and
SPS MS3 analysis

Cells were lysed by addition of SDS lysis buffer (2% SDS, 150 mM

NaCl, 50 mM Tris, pH 8.7) containing protease and phosphatase

inhibitors (Halt™ Protease and Phosphatase Inhibitor Single-Use

Cocktail, EDTA Free, ThermoFisher, Catalog Number 78441).

Lysate was then homogenized using Qiashredder columns (Qiagen,

ref. 79656) and disulfide reduction was performed by adding

dithiothreitol to a final concentration of 5 mM and heating to 37°C
for 1 h, followed by alkylation with iodoacetamide at a final

concentration of 15 mM followed by quenching with 50 mM DTT.

Protein concentrations were determined using BCA™ Protein Assay

kit (ThermoFisher, Catalog Number 23235). For each sample, an

aliquot corresponding to 150 µg of total protein was withdrawn.

Detergent was removed by methanol/chloroform protein precipita-

tion as described previously (Wessel & Fl€ugge, 1984). Precipitates

were solubilized in 8 M urea, 20 mM EPPS, pH 8.5, and 60 µg of

solubilized total protein from each sample was then used for TMT

labeling. Two percent acetonitrile (v/v) was added and digestion

was performed by overnight incubation in the presence of Lys-C

protease (Wako, Catalog Number 129-02541) at an enzyme-to-

substrate ratio of 1:75. Following further dilution of the sample

with 20 mM EPPS to a final urea concentration of 0.8 M in the

presence of 2% acetonitrile (v/v), digestion was performed by

incubation at 37°C for 6 h with trypsin (Promega, Catalog Number

V5113) at an enzyme to substrate ratio of 1:75. Equal amounts of

protein were removed from each sample and labeled using a

TMT11plex Mass Tag Labelling kit (ThermoFisher, Catalog

Number A34808). TMT labeling efficiency and ratio checks were

measured by LC–MS (Ting et al, 2011) analysis of a combined 11-

plex sample after combining. Equal amounts of labeled peptide

from each sample were then combined for subsequent analysis.

Quenching of TMT labeling reactions was performed by adding

hydroxylamine to a final concentration of 0.5% (v/v) and incubat-

ing samples for 15 min at room temperature. Formic acid (FA) was

added to a final volume of 2% (v/v) to lower the pH below 3.0

and samples were combined and de-salted using a SepPak tC18

Vac RC Cartridges (50 mg, Waters, Catalog Number WAT054960).

HPLC fractionation was performed using an Agilent 1200 Series

instrument with a flow rate of 600 µl/min over a period of 75 min.

Peptides were collected in a 96-well plate over a 65 min gradient

of 13–44%B with Buffer A comprising 5% acetonitrile, 10 mM

ammonium bicarbonate, and pH 8; and Buffer B comprising 90%

acetonitrile, 10 mM ammonium bicarbonate, and pH 8. Fractions

were then pooled into 24 samples, followed by sample cleanup

using C18 Empore™ Extraction Disks (Fisher Scientific, Catalog
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Number 14-386-2). The matrix was primed with methanol and

equilibrated with 70% acetonitrile. For LC–MS, peptides were

injected onto a 30 cm, 100 µm (inner diameter) column, and sepa-

rated using an EASY-nLC 1200 HPLC system (ThermoFisher, Cata-

log Number LC120). The flow rate was 450 nl/min with a

gradient of 6–28%B over 240 min with first 3% acetonitrile, 0.4%

FA, and then 100% acetonitrile, 0.4% FA. The column was

packed with 1.8 µm C18 beads with a pore size of 12 nm (Sepax

Technologies Inc.) heated to 60°C using a column heater. Samples

from the HPLC were injected into an Orbitrap Fusion Lumos Trib-

rid MS (ThermoFisher, Catalog Number FSN02-10000) using a

multinotch MS3 method (Ting et al, 2011; McAlister et al, 2014).

MS scans were performed in the Orbitrap over a scan range 400–
1,400 m/z with dynamic exclusion. The top 10 ions with charge

states from 2 to 6 were selected for MS/MS. Turbo rate scans

were performed in the Ion Trap with a collision energy of 35%

and a maximum injection time of 120 ms. TMT quantification

was performed using synchronous precursor selection (SPS-MS3)

in the Orbitrap with a scan range 100–1,000 m/z and an HCD

collision energy of 55% as described (Paulo et al, 2016). Assign-

ment of MS/MS spectra was performed using the Sequest (Eng

et al, 1994) and a Human UniProt database. Linear discriminant

analysis was used to distinguish forward and reverse hits (Elias &

Gygi, 2007). Peptides were identified using an MS2 spectrum and

a FDR < 1% and was achieved by applying a target–decoy data-

base search strategy. For protein identification and quantification,

shared peptides were collapsed into the minimally sufficient

number of proteins using rules of parsimony. Peptides with a total

TMT value of > 200 and an isolation specificity of > 0.7 were

included for quantification.

RNA-Seq and mass spectrometry data analysis

RNA-seq data analysis and RNA-seq reads were mapped and

analyzed by TopHat and Cufflinks RNA-seq analysis pipeline38,

using Tophat version 2.1.0 and Cufflinks version 2.1.1. Alignment

was done against the hg19 genome, and hg19 RefSeq.gtf transcript

annotations were used. Selection of differentially expressed mRNAs

was done by calculating the fold change and significance relative to

basal expression on the two biological replicates and selecting the

genes that show a (i) fold change above 1.5 with (ii) FDR (Ben-

jamini–Hochberg) below 0.2 at any time point and (iii) Pearson’s

correlation between biological replicates > 0.5. Clustering on mRNA

was done on z scores using fuzzy c-means clustering with an expo-

nent for the fuzzy partition matrix of 1.3 and five clusters. Selection

of differentially expressed proteins was done by calculating the fold

change and significance relative to basal expression on the two

biological replicates and selecting the genes that show (i) a fold

change above 1.15 with FDR (Benjamini–Hochberg), (ii) below 0.05

at any time point, and (iii) Pearson’s correlation between biological

replicates > 0.7. An additional filter was used in order to compare

early differences in protein expression, with the area between

pulsed and rising expression diffearly below 1. Clustering on cognate

differentially expressed proteins was done on z scores using Fuzzy

c-means clustering with an exponent for the fuzzy partition matrix

of 1.3 and three clusters.

Difference in protein expression between oscillatory and rising

conditions during early responses (3–9 h) is defined as:

diff ¼ ∑
9h

t¼3h

1�
protðtÞ

protðt¼0hÞ
p53 puls

protðtÞ
protðt¼0hÞ

p53 sust
:

diffearly ¼ ∑
3h

t¼0h

1�
prot tð Þ

prot t¼0hð Þ
p53 puls

prot tð Þ
prot t¼0hð Þ

p53 sust
:

Gene ontology

Gene ontology classifications were performed using AmiGO 2

(http://amigo.geneontology.org/) based on biological functions.

Genes classified as “Antiproliferative” are ones which are included

in any of the following three GO categories: GO:0010942—Positive

regulation of cell death, GO:0045786—Negative regulation of cell

cycle, and GO:2000774—Positive regulation of senescence.

Model

Because of the discrete time points of our data, we implemented the

model in Equations 1 and 2 by calculating the mRNA and protein

levels at each step for a given set of (kp
mRNA, kd

mRNA) and (kp
prot,

kd
prot), respectively, parameters at each time point.

mRNAðtÞ ¼ ð1� kmRNA
d Þ :mRNAðt � 1Þ þ kmRNA

p :p53ðt � 1Þ:

prot tð Þ ¼ 1� kprotd

� �
:prot t � 1ð Þ þ kprotp :mRNA t � tdelð Þ:

We fit the model under oscillatory p53 condition as to minimize

the square of the Pearson’s correlation between the predicted and

the measured mRNA levels for each gene.

Data availability

• Proteomics raw data and search results were deposited in the

PRIDE archive (Perez-Riverol et al, 2019) and can be accessed

under ProteomeXchange accession numbers: PXD027030 and

project webpage http://www.ebi.ac.uk/pride/archive/projects/

PXD027030.

• A list of p53 targets defined by ChIP-seq data (Hafner et al, 2017)

is available in Dataset EV1.

• RNA-seq data containing TPM and fold change values per time

point following x-irradiation for 297 and 603 differentially

expressed mRNAs under oscillatory and rising conditions, respec-

tively, as well as their cluster assignments—numbering follows

order of clusters in Fig EV1—are available in Dataset EV2. Mass

spectrometry data containing TMT value and fold change values

per time point for the cognate proteins of upregulated mRNA clus-

ters under oscillatory and rising conditions as well as their protein

cluster assignments (1 = oscillatory cluster, 2 = rise and decrease,

3 = rise, and 0 = not induced) are available in Dataset EV3.

• Fitting parameters for the cognate proteins of upregulated mRNA

clusters under oscillatory condition in Fig 3 are provided in

Dataset EV4.

• Source code for the mathematical model and RNA-seq data

are available at https://github.com/albajimenezasins/Proteomics_

MSB_2022.
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Expanded View for this article is available online.

Acknowledgements
We would like to thank Kristina Holton and Sam Myers for advice on data

analysis. We would like to thank AS Division of Science’s Bauer Sequencing

Core for RNA-sequencing experiments, Joshua Francois for RNA-sequencing

data retrieval, and Antonina Hafner for helping, sharing, and explaining code

for RNA-sequencing analysis. We thank members of the Lahav lab for discus-

sion and critical comments on the manuscript. Research in the Lahav Lab is

supported by National Institutes of Health grants NIH R01 GM083303, R01

GM105375, and R35 GM139572, and by the Ludwig Center at Harvard. M.K.’s

research is partly funded by National Cancer Institute NCI grant U54-

CA225088.

Author contributions
Alba Jiménez: Conceptualization; Formal analysis; Visualization; Writing—
original draft; Writing—review and editing. Dan Lu: Conceptualization; Data

curation; Formal analysis; Validation; Writing—original draft; Writing—review

and editing. Marian Kalocsay: Data curation. Matthew J Berberich: Data

curation. Petra Balbi: Formal analysis. Ashwini Jambhekar: Conceptualiza-

tion; Investigation; Methodology; Writing—original draft; Writing—review and

editing. Galit Lahav: Conceptualization; Funding acquisition; Writing—origi-

nal draft; Project administration; Writing—review and editing.

In addition to the CRediT author contributions listed above, the contribu-

tions in detail are:

DL and GL conceived experiments. DL, AJi, AJa, and GL conceived analysis. DL

and MJB performed experiments; MJB and MK performed MS measurements

and raw MS data analysis; AJi performed analyses with advice from DL, PB,

and MK; and DL, AJi, Aja, and GL wrote the study.

Disclosure and competing interests statement
The authors declare that they have no conflict of interest. Galit Lahav is an

editorial advisory board member. This has no bearing on the editorial consid-

eration of this article for publication.

References

Allen MA, Andrysik Z, Dengler VL, Mellert HS, Guarnieri A, Freeman JA,

Sullivan KD, Galbraith MD, Luo X, Kraus WL et al (2014) Global analysis of

p53-regulated transcription identifies its direct targets and unexpected

regulatory mechanisms. Elife 3: e02200

Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev

Genet 8: 450–461
Arkun Y, Yasemi M (2018) Dynamics and control of the ERK signaling

pathway: sensitivity, bistability, and oscillations. PLoS One 13: e0195513

Barak Y, Oren M (1992) Enhanced binding of a 95 kDa protein to p53 in cells

undergoing p53-mediated growth arrest. EMBO J 11: 2115–2121
Batchelor E, Mock CS, Bhan I, Loewer A, Lahav G (2008) Recurrent initiation:

a mechanism for triggering p53 pulses in response to DNA damage. Mol

Cell 30: 277–289
Batchelor E, Loewer A, Mock C, Lahav G (2011) Stimulus-dependent dynamics

of p53 in single cells. Mol Syst Biol 7: 488

Bieging KT, Attardi LD (2012) Deconstructing p53 transcriptional networks in

tumor suppression. Trends Cell Biol 22: 97–106
Blum Y, Mikelson J, Dobrzyński M, Ryu H, Jacques M-A, Jeon NL, Khammash

M, Pertz O (2019) Temporal perturbation of ERK dynamics reveals network

architecture of FGF2/MAPK signaling. Mol Syst Biol 15: e8947

Boutelle AM, Attardi LD (2021) p53 and tumor suppression: it takes a

network. Trends Cell Biol 31: 298–310
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther

MG, Kumar RM, Murray HL, Jenner RG et al (2005) Core transcriptional

regulatory circuitry in human embryonic stem cells. Cell 122: 947–956
Buccitelli C, Selbach M (2020) mRNAs, proteins and the emerging principles

of gene expression control. Nat Rev Genet 21: 630–644
Bulcha JT, Giese GE, Ali MZ, Lee YU, Walker MD, Holdorf AD, Yilmaz LS,

Brewster RC, Walhout AJM (2019) A persistence detector for metabolic

network rewiring in an animal. Cell Rep 26: 460–468.e4
Carvajal LA, Manfredi JJ (2013) Another fork in the road - Life or death

decisions by the tumour suppressor p53. EMBO Rep 14: 414–421
Chen J, Marechal V, Levine AJ (1993) Mapping of the p53 and mdm-2

interaction domains. Mol Cell Biol 13: 4107–4114
Cotterell J, Sharpe J (2010) An atlas of gene regulatory networks reveals

multiple three-gene mechanisms for interpreting morphogen gradients.

Mol Syst Biol 6: 425

Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST,

Ferguson C, Haga K, Sato T, Liu JS et al (2004) The program of gene

transcription for a single differentiating cell type during sporulation in

Bacillus subtilis. PLoS Biol 2: e328

Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence

in large-scale protein identifications by mass spectrometry. Nat Methods

4: 207–214
Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem

mass spectral data of peptides with amino acid sequences in a protein

database. J Am Soc Mass Spectrom 5: 976–989
Farkas M, Hashimoto H, Bi Y, Davuluri RV, Resnick-Silverman L, Manfredi JJ,

Debler EW, McMahon SB (2021) Distinct mechanisms control genome

recognition by p53 at its target genes linked to different cell fates. Nat

Commun 12: 484–511
Fischer M, Steiner L, Engeland K (2014) The transcription factor p53: not a

repressor, solely an activator. Cell Cycle 13: 3037–3058
Fortelny N, Overall CM, Pavlidis P, Freue GVC (2017) Can we predict protein

from mRNA levels? Nature 547: E19–E20
Gerardin J, Reddy NR, Lim WA (2019) The design principles of biochemical

timers: circuits that discriminate between transient and sustained

stimulation. Cell Syst 9: 297–308.e2
Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky

T, Liron Y, Polak P, Lahav G et al (2006) Oscillations and variability in the

p53 system. Mol Syst Biol 2: 2006.0033

Gillies TE, Pargett M, Minguet M, Davies AE, Albeck JG (2017) Linear

integration of ERK activity predominates over persistence detection in

Fra-1 regulation. Cell Syst 5: 549–563.e5
Hafner A, Stewart-Ornstein J, Purvis JE, Forrester WC, Bulyk ML, Lahav G

(2017) p53 pulses lead to distinct patterns of gene expression albeit

similar DNA-binding dynamics. Nat Struct Mol Biol 24: 840–847
Hanson RL, Porter JR, Batchelor E (2019) Protein stability of p53 targets

determines their temporal expression dynamics in response to p53

pulsing. J Cell Biol 218: 1282–1297
Harton MD, Koh WS, Bunker AD, Singh A, Batchelor E (2019) p53 pulse

modulation differentially regulates target gene promoters to regulate cell

fate decisions. Mol Syst Biol 15: e8685

Heltberg ML, Chen S-H, Jim�enez A, Jambhekar A, Jensen MH, Lahav G (2019)

Inferring leading interactions in the p53/Mdm2/Mdmx circuit through live-

cell imaging and modeling. Cell Syst 9: 548–558.e5
Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of

tumour suppression. Nat Rev Cancer 12: 613–626

16 of 18 Molecular Systems Biology 18: e10588 | 2022 ª 2022 The Authors

Molecular Systems Biology Alba Jiménez et al

https://doi.org/10.15252/msb.202110588
https://casrai.org/credit/


Jackson SP, Bartek J (2009) The DNA-damage response in human biology and

disease. Nature 461: 1071–1078
Kalir S, Mangan S, Alon U (2005) A coherent feed-forward loop with a SUM

input function prolongs flagella expression in Escherichia coli. Mol Syst Biol

1: 2005.0006

Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991)

Participation of p53 protein in the cellular response to DNA damage.

Cancer Res 51: 6304–6311
Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA,

Sidow A, Attardi LD (2013) Global genomic profiling reveals an extensive

p53-regulated autophagy program contributing to key p53 responses.

Genes Dev 27: 1016–1031
Kim MG, Yang JH, Kim KM, Jang CH, Jung JY, Cho IJ, Shin SM, Ki SH (2015)

Regulation of Toll-like receptor-mediated Sestrin2 induction by AP-1, Nrf2, and

the ubiquitin-proteasome system in macrophages. Toxicol Sci 144: 425–435
Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA (2015)

Relationship between differentially expressed mRNA and mRNA-protein

correlations in a xenograft model system. Sci Rep 5: 10775–10779
Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by

Mdm2. Nature 387: 299–303
Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U

(2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat

Genet 36: 147–150
Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage.

Oncogene 18: 7644–7655
Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM,

Harbison CT, Thompson CM, Simon I et al (2002) Transcriptional

regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804
Leslie PL, Franklin DA, Liu Y, Zhang Y (2018) p53 Regulates the expression of

LRP1 and apoptosis through a stress intensity-dependent microRNA

feedback loop. Cell Rep 24: 1484–1495
Lim WA, Lee CM, Tang C (2013) Design principles of regulatory networks:

searching for the molecular algorithms of the cell. Mol Cell 49: 202–212
Litvak V, Ramsey SA, Rust AG, Zak DE, Kennedy KA, Lampano AE, Nykter M,

Shmulevich I, Aderem A (2009) Function of C/EBPδ in a regulatory circuit

that discriminates between transient and persistent TLR4-induced signals.

Nat Immunol 10: 437–443
Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein

levels on mRNA abundance. Cell 165: 535–550
Lopes R, Korkmaz G, Revilla SA, van Vliet R, Nagel R, Custers L, Kim Y, van

Breugel PC, Zwart W, Moumbeini B et al (2018) CUEDC1 is a primary target

of ERα essential for the growth of breast cancer cells. Cancer Lett 436: 87–95
Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network

topologies that can achieve biochemical adaptation. Cell 138: 760–773
Maier P, Hartmann L, Wenz F, Herskind C (2016) Cellular pathways in

response to ionizing radiation and their targetability for tumor

radiosensitization. Int J Mol Sci 17: 102

Maity A, Wollman R (2020) Information transmission from NFkB signaling

dynamics to gene expression. PLoS Comput Biol 16: e1008011

Mangan S, Alon U (2003) Structure and function of the feed-forward loop

network motif. Proc Natl Acad Sci USA 100: 11980–11985
Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as

a sign-sensitive delay element in transcription networks. J Mol Biol 334:

197–204
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo JI,

Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y et al (2007) ATM and ATR

substrate analysis reveals extensive protein networks responsive to DNA

damage. Science 316: 1160–1166

McAlister GC, Nusinow DP, Jedrychowski MP, W€uhr M, Huttlin EL, Erickson

BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate,

sensitive, and multiplexed detection of differential expression across

cancer cell line proteomes. Anal Chem 86: 7150–7158
Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA, Chen L, Clauser KR, Clauss

TR, Shah P, Gillette MA et al (2018) Reproducible workflow for multiplexed

deep-scale proteome and phosphoproteome analysis of tumor tissues by

liquid chromatography-mass spectrometry. Nat Protoc 13: 1632–1661
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002)

Network motifs: simple building blocks of complex networks. Science 298:

824–827
Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2

oncogene product forms a complex with the p53 protein and inhibits p53-

mediated transactivation. Cell 69: 1237–1245
Moyer SM, Wasylishen AR, Qi Y, Fowlkes N, Su X, Lozano G (2020) p53 drives

a transcriptional program that elicits a non-cell-autonomous response

and alters cell state in vivo. Proc Natl Acad Sci USA 117: 23663–23673
Myers SA, Rhoads A, Cocco AR, Peckner R, Haber AL, Schweitzer LD, Krug K,

Mani DR, Clauser KR, Rozenblatt-Rosen O et al (2019) Streamlined

protocol for deep proteomic profiling of FAC-sorted cells and its

application to freshly isolated murine immune cells. Mol Cell Proteomics

18: 995–1009
Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, P€a€abo S, Mann

M (2011) Deep proteome and transcriptome mapping of a human cancer

cell line. Mol Syst Biol 7: 548

Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL,

Schreiber Jörg, Rolfe PA, Gifford DK et al (2004) Control of pancreas and liver

gene expression by HNF transcription factors. Science 303: 1378–1381
Paulo JA, O’Connell JD, Everley RA, O’Brien J, Gygi MA, Gygi SP (2016)

Quantitative mass spectrometry-based multiplexing compares the

abundance of 5000 S. cerevisiae proteins across 10 carbon sources. J

Proteomics 148: 85–93
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu

DJ, Inuganti A, Griss J, Mayer G, Eisenacher M et al (2019) The PRIDE

database and related tools and resources in 2019: improving support for

quantification data. Nucleic Acids Res 47: D442–D450
Peshkin L, W€uhr M, Pearl E, Haas W, Freeman RM, Gerhart JC, Klein AM, Horb

M, Gygi SP, Kirschner MW (2015) On the Relationship of protein and

mRNA dynamics in vertebrate embryonic development. Dev Cell 35: 383–
394

Porter JR, Fisher BE, Batchelor E (2016) p53 pulses diversify target gene

expression dynamics in an mRNA half-life-dependent manner and

delineate co-regulated target gene subnetworks. Cell Syst 2: 272–282
Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G (2012) p53

dynamics control cell fate. Science 336: 1440–1444
Purvis JE, Lahav G (2013) Encoding and decoding cellular information

through signaling dynamics. Cell 152: 945–956
Reyes J, Chen J-Y, Stewart-Ornstein J, Karhohs KW, Mock CS, Lahav G (2018)

Fluctuations in p53 signaling allow escape from cell-cycle arrest. Mol Cell

71: 581–591.e5
Ryu H, Chung M, Dobrzyński M, Fey D, Blum Y, Sik Lee S, Peter M,

Kholodenko BN, Li Jeon N, Pertz O (2016) Frequency modulation of ERK

activation dynamics rewires cell fate. Mol Syst Biol 12: 866

Schleif R (2000) Regulation of the L-arabinose operon of Escherichia coli.

Trends Genet 16: 559–565
Schwanh€ausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W,

Selbach M (2011) Global quantification of mammalian gene expression

control. Nature 473: 337–342

ª 2022 The Authors Molecular Systems Biology 18: e10588 | 2022 17 of 18

Alba Jiménez et al Molecular Systems Biology



Selimkhanov J, Taylor B, Yao J, Pilko A, Albeck J, Hoffmann A, Tsimring L,

Wollman R (2014) Systems biology. Accurate information transmission

through dynamic biochemical signaling networks. Science 346: 1370–1373
Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the

transcriptional regulation network of Escherichia coli. Nat Genet 31: 64–68
Shin BY, Jin SH, Cho IJ, Ki SH (2012) Nrf2-ARE pathway regulates induction of

Sestrin-2 expression. Free Radic Biol Med 53: 834–841
Shin Y-J, Chen K-Y, Sayed AH, Hencey B, Shen X (2013) Post-translational

regulation enables robust p53 regulation. BMC Syst Biol 7: 83

Stewart-Ornstein J, Cheng HWJ, Lahav G (2017) Conservation and divergence

of p53 oscillation dynamics across species. Cell Syst 5: 410–417.e4
Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in

isobaric multiplexed quantitative proteomics. Nat Methods 8: 937–940
Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Zhao X, Vu BT,

Qing W, Packman K et al (2006) Small-molecule MDM2 antagonists reveal

aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad

Sci USA 103: 1888–1893
Verfaillie A, Svetlichnyy D, Imrichova H, Davie K, Fiers M, Kalender Atak Z,

Hulselmans G, Christiaens V, Aerts S (2016) Multiplex enhancer-reporter

assays uncover unsophisticated TP53 enhancer logic. Genome Res 26: 882–
895

Vogel C, Marcotte EM (2012) Insights into the regulation of protein

abundance from proteomic and transcriptomic analyses. Nat Rev Genet

13: 227–232

Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol

8: 275–283
Wessel D, Fl€ugge UI (1984) A method for the quantitative recovery of protein

in dilute solution in the presence of detergents and lipids. Anal Biochem

138: 141–143
Zhang J, Chen X (2008) Posttranscriptional regulation of p53 and its targets

by RNA-binding proteins. Curr Mol Med 8: 845–849
Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack

DH, Levine AJ (2000) Analysis of p53-regulated gene expression patterns

using oligonucleotide arrays. Genes Dev 14: 981–993
Zhao H, Zhuang Y, Li R, Liu Y, Mei Z, He Z, Zhou F, Zhou Y (2019) Effects of

different doses of X-ray irradiation on cell apoptosis, cell cycle, DNA

damage repair and glycolysis in HeLa cells. Oncol Lett 17: 42–54
Zheng P-Z, Wang K-K, Zhang Q-Y, Huang Q-H, Du Y-Z, Zhang Q-H, Xiao D-K,

Shen S-H, Imbeaud S, Eveno E et al (2005) Systems analysis of

transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell

differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA

102: 7653–7658

License: This is an open access article under the

terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in

any medium, provided the original work is properly

cited.

18 of 18 Molecular Systems Biology 18: e10588 | 2022 ª 2022 The Authors

Molecular Systems Biology Alba Jiménez et al


