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Abstract

We report a method to activate α−3° amines for deaminative arylation via condensation with 

an electron-rich aldehyde and merge this reactivity with nickel metallaphotoredox to generate 

benzylic quaternary centers, a common motif in pharmaceuticals and natural products. The 

reaction is accelerated by added ammonium salts. Evidence is provided in support of two roles 

for the additive - inhibition of nickel black formation and acceleration of the overall reaction rate. 

We demonstrate a robust scope of amine and haloarene coupling partners and show an expedited 

synthesis of ALK2 inhibitors.

Graphical Abstract

Primary amines are present in a variety of building blocks, easily prepared and purified, 

and are amenable to late-stage functionalization. The ubiquity of primary alkyl amines as 

advanced intermediates and drugs1,2 makes them attractive reagents for alkyl precursors. 

Thus, discovery chemists can take advantage of the plethora of primary amines that they 

obtain in their inventories to utilize them as coupling partners. In 2017, the Watson group 

published a nickel-catalyzed Suzuki-Miyaura coupling demonstrating the use of unactivated 

primary amines as alkyl precursors via formation of Katritzky pyridinium salts (Scheme 

1A).3 Since this seminal publication, the use of Katritzky salts as a functional handle has 

Corresponding Author: Tomislav Rovis − Department of Chemistry, Columbia University, New York, New York 10027, United 
States; tr2504@columbia.edu. 

Supporting Information. This material is available free of charge via the ACS publications website at DOI: https://doi.org/10.1021/
jacs.1c10150
Experimental procedures, spectral characterization, and additional data

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2022 November 24.

Published in final edited form as:
J Am Chem Soc. 2021 November 24; 143(46): 19294–19299. doi:10.1021/jacs.1c10150.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been widely popularized due to their ease of synthesis and accessible reduction potential 

(~ −0.9 V vs SCE).4 The corresponding pyridinium salts are amenable to many transition 

metal-catalyzed5–12 and photoredox-catalyzed13–19 deaminative transformations,20,21 but 

are limited to α-1° and α-2° amines, as sterically encumbered α-3° amines are unable 

to condense onto triphenyl-pyrylium salts (Scheme 1B).10,21 In an effort to address this 

shortcoming, we developed a complementary method to activate the C-N bond of α-3° 

amines via condensation onto an electron rich aldehyde activating group (Scheme 1C, 

top).22 This allows for generation of a nucleophilic carbon radical via single-electron 

oxidation that can be coupled to electron-deficient olefins to generate Giese products. This 

deaminative method complements the Katritzky salts in two ways: (1) tertiary alkyl amines 

are used as viable alkyl precursors, and (2) the radical reactivity is revealed through an 

oxidative rather than reductive pathway.

Expanding the coupling partner from electron deficient olefins to aryl halides through 

dual photoredox/nickel catalysis (Scheme 1C, bottom) would allow for the use of primary 

α-3° amines as radical precursors in C(sp3)-C(sp2) cross coupling, a bond construction 

recently identified as a missing link in crosscoupling technology,23 and of increasing 

interest to medicinal chemistry as a way to expand and diversify the chemical landscape 

of pharmaceuticals.23–27 While similar C(sp3)-C(sp2) cross couplings can be achieved with 

other alkyl precursors, namely halides,28,29 alkyl trifluoroborates,30 Grignard reagents,31,32 

olefins,33,34 and redox-active esters,35 our strategy adds a valuable building block to the 

synthetic toolbox for generating quaternary centers from ubiquitous primary amines.

We began our initial screen by using tetramethylheptanedionato (TMHD) nickel(II),28,30 1 

equivalent of imine, and 1.2 equivalents of aryl halide (Table 1, entry 2) to afford the product 

in 31% yield (see SI for additional ligands screened). An extensive additive screen identified 

tetra-alkyl ammonium salts and imidazolium salts as helpful for reactivity, with nBu4NCl 

giving the best results (see SI for full list of additives screened). The use of nBu4NBr 

did not cause the same increase in yield.36 2,4,6-trimethoxybenzonitrile, the byproduct of 

imine fragmentation, was consistently formed in 10–20% higher yield than 3. With heavier 

aliphatic amine-derived imines, we observe the products of C-N reduction and elimination 

(alkane and alkene). Therefore, adjusting stoichiometries of the starting material and adding 

an equivalent of inorganic base increased the yield to 94%. As we noticed in our previous 

work, the imine nitrogen is sufficiently basic to promote desired reactivity in the absence of 

other bases, giving a 72% yield (entry 10).

With respect to the scope of the reaction, electron-deficient aryl bromides give desired 

products in excellent yield (Scheme 2). Scaling the reaction up by 10x results in only 

a slight decrease in yield (3). Notably, electrophilic moieties that are incompatible with 

organometallic reagents31,32,35 are tolerated, including nitriles (3, 6), ketones (4, 8), 

aldehydes (16), and esters (7, 9–11). Aryl bromides containing heteroatoms proceed with 

high efficiency – cyclic amide 12, sulfonamide 13, quinazolinone 14, and Celecoxib 

derivative 15 – while N-heterocycles provide trace product.30,37 Electron-neutral aryl 

bromides still provide modest yields, whereas electron-rich bromides afford trace product. 

This is accompanied by the formation of nickel black, suggesting that electron-rich aryl 

bromides lead to catalyst deactivation.38 Notably, we found that replacing the electron-rich 
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bromide with the corresponding aryl iodide and adding LiCl as an additive can restore yields 

to ~30–40% (18,19).29,39

Acyclic α-tertiary amines provide desired product in good yields, tolerating protected 

alcohols (22) as well as protected amines (23). Five- and six-membered ring systems 

containing functional groups such as esters, protected amines, and ethers deliver product 

in high yields (24–28, 32–34), tolerating additional substitution in modest yields. Notably, 

no isomerization is observed using our methodology. Alpha methyl cycloheptyl amine 

also proved to be a competent coupling partner, furnishing 29 in moderate yield. 

Adamantylamine 30 and Nemanda derivative 31 also provide desired product. Notably, 

bipyridines are also capable ligands with these substrates, due to a more sterically 

accessible, pseudo-tetrahedral carbon-centered radical. This allows for facile inner-sphere 

reductive elimination, whereas traditional tertiary planar radicals proceed via an outer-sphere 

mechanism.40 Amines used as intermediates en route to pharmaceuticals, such as TNF-α 
converting enzyme (TACE) inhibitor intermediate 32, give desired product in good yields.41 

Drug derivatives, such as NK1 analog 33 and CCR5 inhibitor intermediate 34, can also be 

synthesized utilizing our method.42,43

We next turned our attention to the role of additive on the reaction. Both nBu4NCl and 

tert-butyl imidazolium chloride were found to be beneficial to reactivity. Interestingly, 

without an additive, an appreciable amount of nickel black is observed in the reaction. 

Because tetra-alkyl ammonium salts and imidazolium salts are known to provide electro-

steric stabilization of nanoparticles,44–48 we propose that the first role of the additive may 

be to prevent catalyst death by preventing aggregation that would lead to the irreversible 

formation of nickel black.38 By doing so, this preserves the necessary equilibrium with 

the active catalyst. Indeed, tracking the reaction progress over time indicates that with 

nBu4NCl, product formation increases steadily over time, whereas without nBu4NCl the 

product formation plateaus around 50% (see SI for more details). In addition, substituting 

chloride for other anions still provides an increase in yield (Table 1, entries 5 & 6), in line 

with a nanoparticle stabilization argument.49

In-situ LED-NMR kinetic analysis indicates that nBu4NCl also provides a rate acceleration 

within the first hour of the reaction (Scheme 3A), demonstrating that preventing catalyst 

death is not its only role. In this case, exchanging the chloride anion does not provide the 

same rate acceleration (see SI for kinetics data), indicating that chloride is necessary. The 

rate of starting material consumption tracks linearly between 0, 5, and 10% of nBu4NCl 

loading, but increased loadings (20, 50%) do not improve arene consumption. Therefore, 

adding more nBu4NCl than nickel catalyst loading does not affect the initial rate of 

reaction but improves the yield of reaction, presumably due to preventing catalyst death. 

This observation is consistent with saturation kinetics, where more additive relative to 

catalyst loading has no effect on the reactivity due to complete saturation of the catalyst. 

We hypothesized that we may be forming an anionic nickel complex that would undergo 

accelerated oxidative addition, similar to what has been seen for anionic palladium species 

in combination with alkyl ammonium chlorides.48,50 Thus, we attempted to form the active 

Ni(I) catalyst in situ via cyclic voltammetry and add in nBu4NCl in hopes of generating the 

anionic complex, but did not see the formation of a new species. In addition, nBu4NCl has 
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no effect on the reduction potential from Ni(II) to Ni(I), indicating accelerated reduction to 

the active catalyst is not responsible for the rate acceleration.51 Lastly, UV-Vis experiments 

indicate no change in the catalyst upon addition of nBu4NCl, in contrast to recent work.51 

Alternatively, the chloride could exchange with the Ni(III) oxidative addition complex, 

similar to observations in Gong’s reductive coupling,29 generating a Ni(II)-Cl species 

after reductive elimination, which has been shown to be more reducible than its bromide 

analogue.52,53

Our proposed mechanism begins with oxidation of the redox-active imine by the excited 

state of the Ir photocatalyst (Scheme 3B). In our previous work, we provided evidence that 

the tertiary alkyl radical is generated via an imidoyl radical intermediate.22 Meanwhile, the 

nickel catalyst can undergo oxidative addition to generate a Ni(III) species. Because anionic 

diketone-based ligands were necessary to achieve productive reactivity, we propose that 

outer-sphere reductive elimination, as described by the Molander and Gutierrez groups,40 

generates the desired product and NiII-X. Single electron transfer between the reduced 

photocatalyst and Ni(II) turns over both catalytic cycles.

Our reaction can also be applied to medicinally relevant scaffolds, highlighting the ability 

to install quaternary carbons for pharmaceutical applications (Scheme 4). The reported 

convergent synthesis of Activin receptor-like kinase-2 inhibitors relies on N-Boc piperidine 

compound 37 as a key intermediate.54 This compound is synthesized in a seven-step linear 

sequence starting with pinacol borane 35 with a 5% overall yield. The formation of the 

quaternary center (36) is the bottleneck of the current route, providing product in only a 15% 

yield. Utilizing our method and starting from the commercially available amine allows for 

the expedited synthesis of compound 37, with only two steps and a 67% overall yield.

In summary, we have developed a protocol to activate the C-N bond of sterically 

encumbered α-3° amines to utilize them as alkyl precursors for a dual photoredox/nickel-

catalyzed C(sp3)-C(sp2) cross-coupling. Upon condensing primary amines onto an electron-

rich activating group, we generate tertiary alkyl radicals that couple with a NiIII aryl-halide 

complex to generate benzylic quaternary centers. Using nBu4NCl as an additive increased 

the rate of the reaction while also resuscitating the nickel catalyst. Given increasing 

use of deaminative functionalizations with α-1° and α-2° amines via Katritzky salts, 

our complementary deamination addresses a synthetic need by unveiling α-3° as alkyl 

precursors for arylation. By leveraging amines as tertiary radical precursors, we have 

expanded the synthetic toolbox which will assist in diversifying the chemical space in 

pharmaceutical chemistry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Use of Primary Amines as Alkyl Precursors.
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Scheme 2. 
Scope

a) done on a 1.0 mmol scale. b) from the aryl iodide and 1 equiv. of LiCl was added. c) 

NiCl2(dtbbpy)(H2O)4 was used in place of Ni(TMHD)2
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Scheme 3. 
Mechanistic Investigation
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Scheme 4. 
Streamlined Synthesis of ALK2 Inhibitors
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Table 1.

Optimization and Control Reactions.

a)
GCMS yields with mesitylene as an internal standard.

b)
isolated yield.
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