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Abstract

Although machine learning techniques that estimate propensity scores for observational studies 

with multi-valued treatments have advanced rapidly in recent years, the development of propensity 

score adjustment techniques has not kept pace. While machine learning propensity models provide 

numerous benefits, they do not produce a single variable balancing score that can be used for 

propensity score stratification and matching. This issue motivates the development of a flexible 

ordinal propensity scoring methodology that does not require parametric assumptions for the 

propensity model. The proposed method fits a one-parameter power function to the cumulative 

distribution function (CDF) of the generalized propensity score (GPS) vector resulting from any 

machine learning propensity model, and is henceforth called the GPS-CDF method. The estimated 

parameter from the GPS-CDF method, a is a scalar balancing score that can be used to group 

similar subjects in outcome analyses. Specifically, subjects who received different levels of the 

treatment are stratified or matched based on their a value to produce unbiased estimates of 

the average treatment effect (ATE). Simulation studies presented show remediation of covariate 

balance, minimal bias in ATEs, and maintain coverage probability. The proposed method is 

applied to the Mexican-American Tobacco use in Children (MATCh) study to determine whether 

ordinal exposure to smoking imagery in movies causes cigarette experimentation in Mexican-

American adolescents.
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1 | INTRODUCTION

Although non-randomized observational studies with ordinal treatments are commonly 

encountered in public health research including mental health, substance use, and program 

evaluation,1,2 propensity scoring methods for ordinal treatments remain underdeveloped. 

Generally, ordinal treatments refer to treatment settings with three or more treatment 

levels with a defined ordering (e.g. treatment dosages, levels of a environmental exposure, 

etc). Since binary propensity scoring methods are very well established, researchers often 

disregard the ordered nature of the treatment and simply dichotomize the ordinal treatment 

or evaluate it as a multinomial treatment.2–5 This only enables coarse estimation of the 

treatment effect (e.g. high vs. low or A vs. B) rather than causal estimation which 

considers each level of the ordinal treatment. While dichotomization of a multi-valued 

variable simplifies estimation techniques and interpretation, it has also been shown to cause 

loss of power, residual confounding, and bias, and thus cannot be recommended in the 

ordinal treatment setting.6 The only currently well-established propensity score model for 

ordinal treatments uses the proportional odds (PO) model to model treatment assignment 

as a function of treatment-related baseline covariates.1,7 However, the PO assumption is 

easily violated in real world data. One notable example is the work of Cavasos-Rehg 

et al. (2014), that sought to analyze the effect of ordinal smoking reduction on mood 

and anxiety disorders, alcohol use, and drug use.2 The PO propensity model did not 

satisfy the proportional odds assumption - thus the authors were forced to classify the 

exposure as multinomial, use a multinomial specific propensity model, and ignore the 

natural ordering of the exposure variable. The clear limitations that result from propensity 

model misspecification in the ordinal treatment setting motivates the need for more robust 

ordinal propensity scoring methods.

1.1 | Ordinal Treatment Propensity Scoring

Instead of decomposing ordinal treatments into binary treatment comparisons, the 

generalized propensity score (GPS) extends causal inference theory to the multi-valued 

treatment setting.8–13 Unlike the binary treatment case where the propensity score is a scalar 

representing the conditional (given covariates xi) probability a subject was treated, the GPS, 

Pi, GPS, is a vector of length K, representing the conditional probabilities of a subject being 

treated under each of the K conditions, Pi, GPS = pi, 1, …, pi, K |xi .10,14

Like binary propensity scoring techniques, multi-valued propensity scoring techniques 

also require the assumptions of conditional independence (no unmeasured confounding) 

and positivity (every individual has a non-zero probability of receiving each potential 

treatment).8 However, implementing propensity matching procedures in studies with multi-

valued treatments or exposures is more complicated than matching in the binary treatment 

setting since there are not two distinct (bipartite) treatment and control groups. Instead all 
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subjects are exposed to some level of treatment and disjoint treatment groups are not present 

(also known as non-bipartite).15 Propensity score matching with non-bipartite treatment 

groups require the use of complex optimal or greedy matching algorithms, thoroughly 

described in Lu, Zanutto, Hornik, and Rosenbaum (2001) and Lu, Greevy, Xu, and Beck 

(2011).1,15 Optimal matching seeks to minimize the total distance, using an appropriate 

distance measure, among all possible pairings, while greedy matching iteratively creates 

the best available pair and then removes that pair from the pool of potential matches.1,15 

Optimal and greedy matching algorithms utilized in conjunction with propensity scoring 

overwhelmingly use 1:1 matching without replacement.

Recent advances in propensity methodology for multi-valued treatments (which have mostly 

focused on multinomial rather than ordinal treatments), typically do not construct balanced 

strata or matched pairs using the K − 1 elements of Pi, GPS, but rather estimate average 

potential outcomes separately for each treatment level.13,16 This approach only adjusts, 

usually through inverse probability of treatment weighting (IPTW), for the element of the 

GPS vector corresponding to the treatment that was actually observed rather than the full 

GPS vector. One notable method which utilizes information across more than one element of 

the GPS vector is the vector matching procedure proposed by Lopez and Gutman (2017)13 

and extended by Scotina and Gutman (2019).17 Briefly, vector matching is performed using 

the following steps: after estimating a GPS vector, the vector matching procedure defines an 

area of common support, then utilizes K-means clustering to create K strata of subjects with 

similar values for K − 2 elements of their GPS vectors. Caliper matching is then performed 

within each stratum to create a final matched cohort.13 This procedure creates matches 

which are closely matched on one element of their GPS vector and generally similar with 

regard to their other elements. While vector matching does utilize information across the 

GPS vector, it is independent of the order of the elements of the GPS vector.13

As a result, ordinal propensity scoring is a special instance of multinomial propensity 

scoring, for which extensions from the binary treatment setting based on the GPS vector 

Pi, GPS have been proposed.13,16–20 While GPS methodologies for multinomial treatments 

may also be applicable to the ordinal setting,10,11 one could gain efficiency in causal 

estimates by leveraging the natural ordering of the treatment/covariate relationship in the 

propensity model. With multinomial treatments, no inherent relationship exists between 

treatment assignments. For instance, in a multinomial four treatment scenario, knowing 

information about a subject’s probability of receiving treatment A, does not necessarily 

give any information about their probability of receiving treatments B, C, or D. However, 

when treatments are ordinal, the elements of Pi, GPS pi, 1, …, pi, K  have a relationship that 

can be leveraged. For example, with two or more ordered treatment levels, if a subject has 

the highest conditional probability of receiving the lowest treatment level, then the GPS 

vector elements typically decrease as treatment level increases. Given this ordered “dosing” 

structure, the full GPS vector gives a more accurate portrayal of a subject’s observed 

covariate profile than the GPS vector in the multinomial treatment setting.

In practice however, the full GPS vector is not typically utilized to conduct ordinal treatment 

propensity scoring stratification or matching. Instead, proportional odds (PO) logistic 
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regression models are commonly used as they directly produce a scalar balancing score 

upon which to stratify or match, i.e., the linear predictor β′x, for a given covariate vector, 

xi.1,7 Methods that do not involve propensity score adjustment, such as marginal structural 

models and g-estimation, have also been proposed for causal inference in the multi-valued 

treatment setting.21–23 However, while these methods have particular benefit in scenarios 

with time-varying treatment, they have rarely been applied in traditional studies where a 

multi-valued treatment is only measured once.24

Flexible machine learning models, such as the well-studied generalized boosted model 

(GBM),25–29 are rapidly replacing traditional logistic regression-based methods as the 

preferred tool for estimating propensity scores in observational studies since machine 

learning methods have the ability to handle high-dimensional covariate spaces, automatically 

select higher-order terms and interactions, and down-weight uninformative covariates in 

the propensity model. Additionally, they do not require a priori assumptions about the 

true underlying form of the propensity model, and are more robust to propensity model 

misspecification that logistic regression methods.28,29 Furthermore, in the spirit of the 

covariate balancing propensity score (CBPS) of Imai and Ratkovic (2014), machine learning 

methods can automatically produce a GPS vector with optimal balancing score properties, 

resulting in more precise estimates of treatment effect.14,29 Although machine learning 

methods have numerous benefits, they do not naturally produce a scalar balancing score. 

Therefore, their application has been limited within multi-valued treatment propensity 

score stratification and matching, instead focusing primarily on propensity adjustment using 

IPTW. As the popularity of multi-valued propensity score estimation using machine learning 

grows, stratification and matching methods for ordinal treatments need to be adapted.

1.2 | Causal Estimands of Interest for Ordinal Propensity Scoring

When conducting a causal analysis with multi-valued treatments, it is important to first 

define the causal estimands of interest. Though a within subject treatment effect exists in 

theory, as the difference among potential outcomes, it is generally impossible to observe an 

individual’s outcome under each possible treatment. Thus, estimation of the treatment effect 

relies on summarizing individual effects across populations (or sub-populations).26 The two 

notable estimands of interest in multi-valued treatment settings are the average treatment 

effect (ATE) and average treatment effect among the treated (ATT). In a setting with K 
treatments, let Z represent the random variable representing which of the K treatments a 

subject received, and z represent the observed value of Z. Then the 
K
2  pairwise average 

treatment effects (ATEs) are defined as the differences in mean outcomes had the entire 

population been observed under one treatment z versus had the entire population been 

observed under a different treatment z′ ATEz, z′ .26 The ATE is calculated by taking the 

expectation across the entire population of interest:

ATEz, z′ = E Y z − Y z′ = E Y z − E Y z′ . (1)

Greene et al. Page 4

Stat Med. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alternatively, the average treatment effect among the treated (ATT) of treatment z among 

those treated with z′ ATTz, z′  is the expected difference between the mean outcomes of 

subjects treated with z′ (their observed treatment a) and their mean outcomes had they been 

treated with treatment z instead.26 The ATT is defined as:

ATEz, z′ = E Y z′ Z = z = E Y z Z = z . (2)

Though ATE and ATT can each be estimated within a study, which causal estimand is of the 

greatest interest depends on the research question. ATE is more likely to be of more interest 

if a treatment could be potentially offered to every member of a population.26 Therefore, if 

the relationship between treatment and outcome in an observational study is expected to be 

ordinal, where all members of a random sample of an infinite super-population are exposed 

to at least some level of treatment or “dose”, then ATE is likely the estimand of interest. In 

this case, an appropriate matched or stratified outcome model estimates the treatment effect 

by estimating the difference in the effect size between treatment levels within a matched pair 

or strata, then aggregates these differences over all strata or matched pairs. Estimating ATEs 

are the focus of this paper since the proposed methods are specific to ordinal treatments. The 

examples presented in this paper assume a linear relationship between the ordinal treatment 

and outcome. However, the methodology presented here could be adapted to other treatment/

outcome relationships.

In sum, there is room to improve current methods for ordinal propensity score analysis. 

Specifically, there is a need to unite the strength of machine learning methods with the 

ability to conduct multi-valued treatments propensity score stratification and matching. 

Therefore, this paper presents an innovative method, known as the GPS-CDF method, which 

uses the cumulative distribution function (CDF) to map an ordinal GPS vector produced by 

any type of propensity model (parametric or machine learning) to a single scalar balancing 

score. This balancing score can be used to stratify or match subjects who have similar 

baseline covariates, but received different treatments (or exposures). The added flexibility 

of using any model to estimate the GPS vector overcomes limitations inherent in being 

forced to use the parametric proportional odds model to calculate a balancing score. Section 

2 presents the GPS-CDF method, Sections 3 and 4 test the performance of the method in 

simulation, Section 5 applies GPS-CDF and current ordinal propensity score methods to 

evaluate the effect of exposure to smoking imagery in movies to cigarette experimentation 

among Mexican-American teens, and Section 6 presents a discussion and outlines future 

work.

2 | METHODS

The GPS vector can be conceptualized as a discrete probability distribution whose elements 

make up a probability mass function (PMF). If one were able to accurately describe the 

distribution, or “shape”, of the GPS vector using a single parameter, where subjects with 

similar parameter values also have similar GPS vectors, then any propensity model could 

be used to calculate the GPS vector. This would simplify the multi-valued treatments 

propensity score problem, making it similar to a binary propensity score problem, and 
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enable propensity matching or stratification using the estimated parameter as a scalar 

balancing score. However, the PMF of the GPS vector is not guaranteed to be either 

monotonically increasing or decreasing, (for example if the maximum element of the vector 

does not correspond to either the highest or lowest value of treatment). One parameter 

functions cannot accurately model shapes which are not strictly increasing or decreasing. 

Therefore, the CDF of the GPS vector, Pi, GPS − CDF , which is always strictly increasing, is 

introduced in Equation 3.

Pi, GPS − CDF = Fz Z = pi, 1, ∑
z = 1

2
pi, z, …, ∑

z = 1

K − 1
pi, z, 1 |Xi (3)

2.1 | Modeling the CDF

A key backbone of propensity scoring techniques is that subjects who have similar 

propensity scores (or GPS vectors in the multi-valued treatments scenario) have similar 

baseline covariate profiles. The CDF of the GPS vector is a one-to-one function of the 

PMF of the GPS vector, and can thus be used to compare the similarity of two subject’s 

baseline covariate profiles in lieu of the GPS vector itself. Since the CDF of the GPS 

vector is a strictly increasing function that is bounded by [0,1], it can be accurately modeled 

using any flexible one parameter function. The ability to accurately describe a GPS vector 

with one parameter overcomes a key limitation of most propensity scoring stratification 

and matching methods for multi-valued treatments, the non-existence of an intuitive scalar 

balancing score.

The setting of this problem is similar to model-based phase I dose escalation trials for 

cytotoxic cancer therapies where the probability of a dose limiting toxicity increases as 

standardized dose, dz increases.30–32 Standardized dose in this setting is defined as the 

ratio of a specific dose level z to either the maximum dose level K or the median dose 

level. For example, in the setting with four ordered treatments and using the maximum dose 

level as the reference dose (as used throughout this paper), the standardized doses d1, d2, 
d3, d4 equal 0.25, 0.5, 0.75, and 1 respectively. In these dose escalation trials, binary data 

indicating whether the patient observed a dose limiting toxicity is observed for small cohorts 

of patients at increasing dose levels. Then, a parametric function (often a one-parameter 

power function) is used to model the dose-toxicity curve of increasing doses and estimate 

a maximum tolerated dose. This power function can be used in a similar manner to model 

the CDF of the GPS vector in an ordinal propensity analysis. The proposed power function 

governed by the single a parameter which approximates a subject’s GPS-CDF vector is 

shown in Equation 4, where the left side represents the CDF for the estimated GPS vector, 

d1, …, dK are the standardized doses which lie between 0 and 1 for the K possible levels of 

treatment, and â is the scalar that dictates the shape of the power function fitting the CDF.

Fz Z ≈ d1
exp a , …, dK − 1

exp a , dK
exp a

(4)
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When using the power function to model the CDF in the current setting, there are not 

multiple observations at each exposure or standardized dose. Instead, the probabilities of 

each treatment level are based on one subject’s observed covariate values. It is therefore 

natural to fit the power function to the data using a non-linear least squares (NLS) algorithm, 

given formally, for one subject i, by Equation 5.

ai = min
a

∑
z = 1

K − 1
dz

exp a − Fz Z 2for z = 1, …, K − 1 (5)

This NLS algorithm iteratively fits values for a, the shape parameter, until the residual 

distance between the estimated CDF of the GPS vector and fitted power function is 

minimized, thus obtaining the optimal parameter a, which is the ordinal treatments scalar 

balancing score. While other one parameter functions could be used to model the CDF of the 

GPS vector, the current method is an intuitive and computationally simple way to estimate a 

scalar balancing score, a. The exponential, logistic, and logarithmic functions might initially 

seem plausible to summarize CDFs; however they do not share the advantages of the power 

function. Our studies show the power function accurately fits both concave and convex 

CDFs. Further, using this functional form retains the desirable property, similar in spirit to 

the functional uniform prior proposed by Bornkamp (2012),33 that the function’s “shape” is 

uniformly distributed across the parameter space. This makes the choice of dexp(a) superior 

to alternatives for modeling the CDF (such as da) when using a as a measure of between 

subject CDF similarity for matching and stratification. Under alternative parameterizations, 

we have observed awkward resultant CDFs, and the “jump” from a = 0 to a = 1 is large, 

which would result in matching or stratifying dissimilar sets of patients. The curves from a 

variety of parameters are shown graphically in Figure 1.

The theoretical justification for the GPS-CDF method mimics that of previous work which 

concludes the distribution of ordered treatments only depends on a subject’s observed 

covariates through the balancing score. Therefore, if a is a balancing score, then a subject’s 

outcome is conditionally independent of treatment assignment given a.9,11

2.2 | GPS-CDF Matching

After the power parameter, a, has been estimated, it can then be used in either an optimal 

or greedy matching algorithm to pair similar subjects who received different levels of 

treatment. Optimal matching seeks to minimize the total distance among all possible 

pairings, while greedy matching iteratively creates the best available pair and then removes 

that pair from the pool of potential matches.1,15 The proposed metric for GPS-CDF 

matching is inspired by the equal percent bias reduction metric of Lu et al. (2001)1 and 

is calculated as the ratio of the squared difference of power parameters for two subjects, 

ai and aj, in the numerator and the squared difference in observed treatment received, zi 

and zj (or di and dj in practice), in the denominator. Minimizing this metric will match 

subjects who have similar estimated values for a (and thus similar CDFs, GPS vectors, and 

subsequent observed covariate profiles), but who received different treatments. The metric 
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for two subjects, i and j, is shown in Equation 6 where є is a vanishingly small constant to 

prevent the numerator from equaling zero.

Δp = Δ xi, xj = ai − aj
2 + ϵ

zi − zj
2 (6)

The following steps describe the GPS-CDF matching procedure in detail:

1. Select potential confounding variables for the propensity model.

2. Estimate the GPS vector using any appropriate propensity model (ex: GBM, PO 

ordinal logistic regression model, etc.).

3. Calculate the cumulative distribution GPS vector for each subject.

4. Fit a one parameter power function to each GPS-CDF vector to obtain ai.

5. Calculate the ∆(i,j) matrix to determine the distance from each subject to all 

others based on the metric from Equation 6.

6. Establish matched pairs using an optimal or greedy matching algorithm.

7. Assess covariate balance after matching using graphical methods and 

standardized mean differences (SMDs).

8. Conduct an appropriate matched outcome analysis to estimate ATE.

2.3 | CDF Stratification

The estimated power parameter ai can also be used to group similar subjects into strata. 

Since matching is essentially a specific case of stratification where each strata contains 

two subjects, the extension from GPS-CDF matching to GPS-stratification is staightforward. 

Within each stratum are subjects who received differing levels of treatments, but whose 

covariates are similar. Though any number of strata can be created, previous studies of 

binary treatments have shown that five equal-sized quintiles removes approximately 90% of 

the initial imbalance in each of the observed covariates.7,34 The following steps describe the 

CDF stratification procedure in detail:

1. Follow Steps 1–4 from the GPS-CDF matching procedure.

2. Order observations by their estimated ã value and divide into quintiles.

3. Conduct an appropriate stratified outcome analysis to estimate ATE.

3 | SIMULATION STUDY DESIGN

A simulation study was conducted to determine how the GPS-CDF matching and 

stratification methods perform in the presence of model misspecification. Model 

misspecification can occur in both the propensity model and/or the outcome model, and 

both must be considered.35 The design of the simulation study was adapted from previous 

simulation studies for binary and continuous treatments, and was tailored to represent 
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realistic scenarios.5,36–38 Each simulated dataset assumed four ordinal exposure categories 

denoting treatment, nine standard normal baseline covariates, and one binary outcome. In 

this simulation, the treatment effect was linearly related to the log odds of the binary 

outcome. To produce various levels of treatment and outcome confounding, six covariates 

(x1, x2, x4, x5, x7, x8) were associated with treatment assignment probability through a 

specified treatment assignment model, and six covariates (x1 – x6) were associated with the 

outcome assignment probability through the outcome assignment model. As a result, four 

variables, x1, x2, x4, and x5 had an association with both the treatment and outcome. The 

associations between the baseline covariates with treatment and outcome are shown in Table 

1.

The current simulation study considered four scenarios that are similar to those of 

previously conducted simulation studies and vary whether both the treatment assignment 

(propensity) model and outcome model are correctly specified.5,35 In Scenario 1 both 

models were correctly specified. Incorrect specification was manifested by the inclusion 

of a non-linear, and slightly mis-measured confounding covariate, (xi,1 + 0.5)2, into the 

treatment assignment model (Scenario 2), outcome model (Scenario 3), or both models 

(Scenario 4). Further details on the simulation design, including the equations which 

governed treatment and outcome assignment,are shown in the Supporting Information. Since 

one benefit of non-parametric methods is that they do not rely on parametric assumptions 

such as proportional odds, in each of the four scenarios the treatment probabilities for 

each observation were generated from a model which violated proportional odds, that 

is, coefficient values quantifying the effect of a covariate on treatment assignment were 

not constant across treatment level. Treatment was assigned by sampling one value from 

a multinomial distribution with sampling weights equal to the subject’s estimated GPS 

vector. The logit of the binary outcome variable was assumed to be linearly related to the 

treatment variable and associated covariates. Each subject’s outcome variable was assigned 

by sampling from a Bernoulli(pi) distribution (where pi was calculated by applying the 

inverse logit transformation to the left-hand side of each subject’s outcome assignment 

equation). Since this study assumed a linear relationship between treatment and log odds of 

the outcome, after adjusting for the GPS vector (via matching or stratification) the resulting 

coefficient from the conditional logistic regression model provided unbiased estimation of 

the ATE.

For each of the four scenarios, 1000 datasets of 1000 observations were generated and 

analyzed using five methods of estimating ATE: unadjusted (crude odds ratio), proportional 

odds optimal matching on β′x, proportional odds stratification on β′x, optimal GPS-CDF 

matching, and GPS-CDF stratification. The proportional odds propensity model adjusted 

for all first order covariates associated with treatment assignment. Similarly, to test GPS-

CDF matching and stratification, all covariates associated with treatment assignment were 

included in a non-parametric GBM propensity model to estimate the GPS vector. The 

GPS vector was subsequently used in conjunction with optimal GPS-CDF matching, and 

GPS-CDF stratification. Though GPS-CDF stratification and matching can be used with any 

method which can produce a GPS vector, like Griffin et al. (2017), this paper focused 

on using GBM to estimate the GPS vector for a few notable reasons. First, GBM is 
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well-established in the binary and multi-valued treatment propensity research literature.25–29 

Secondly, the simulations presented in this paper considered a complex relationship between 

covariates and treatment (i.e. higher order unobserved confounding, and non-proportional 

odds violations). Setodji et al. (2017) evaluated performance of GBM versus the covariate 

balancing propensity score (CBPS) method14 in the binary treatment setting and found 

that, while both methods performed well, in some instances, when complex relationships 

existed between covariates and exposure (e.g. non-linearity, and interaction) GBM tended 

to outperform CBPS.39 GBM has an associated user-friendly R package which undoubtedly 

increases its application across a wide range of disciplines (e.g. atrial fibrillation, trauma, 

and leukemia among many others).40–42 Finally, the performance of GBM is directly related 

to other tree-based methods such as random forest, BART, or combination methods such as 

super learning.28,29

4 | SIMULATION RESULTS

Before propensity score adjustment, variables associated with treatment (x1, x2, x4, x5, x7, 

x8) were severely imbalanced across treatment groups. To quantify the degree of imbalance, 

standardized mean differences between treatment were calculated across all treatment level 

contrasts. Table 2 displays these results specifically for Scenario 4.

Numerous instances of SMDs indicating imbalance (>0.2) were present among those 

variables associated with treatment, and, as expected, as the difference in treatment 

level contrast increased the SMD also tended to increase. These results confirm that 

the simulation study design successfully created datasets which were imbalanced across 

treatment level and offers a reference point to assess the ability of the proposed methods to 

remove imbalance.

For each scenario, performance of the selected methods was compared using average bias, 

mean squared error (MSE), and coverage probability of the estimated ATE. Covariate 

balance across treatment groups was assessed using average pairwise standardized mean 

differences.43–45 Box plots showing the distribution of the estimated ATE, along with the 

associated performance measures are shown in Figure 2.

In Scenario 1 each method (with the exception of the unadjusted crude odds ratio), showed 

minimal bias and MSE, as well as coverage probabilities near 95%. This was expected since 

both the propensity model and outcome model were correctly specified. It is noteworthy to 

point out that the matching and stratification methods based on the proportional odds model 

performed well even though the proportional odds assumption is violated. The reason is 

likely due to the fact that covariate data were still ordered to some degree, with respect to the 

outcome and thus balance could still be achieved even though the model’s assumptions did 

not hold. Scenario 2, where the propensity model was misspecified, but the outcome model 

was correct showed comparable results to Scenario 1, indicating that the four adjustment 

methods chosen were robust to misspecification of the propensity model. When the outcome 

model was perturbed, as in Scenario 3, performance of all methods began to decline, as 

expected, though bias was still fairly small in the range of [−0.045, 0.028]. In this scenario, 

using stratification with either method (proportional odds or GPS-CDF) resulted in increased 
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bias and decreased coverage probability compared to both matching methods. In Scenario 

4, both of the GPS-CDF methods convincingly outperformed all other methods with respect 

to bias and coverage probability. The GPS-CDF stratification method produced small bias 

and coverage probability close to 95%. GPS-CDF matching did not perform at the level 

of GPS-CDF stratification, but still outperformed all other existing methods for ordinal 

treatments. Average standardized mean differences between variables, within a matched pair, 

after implementing GPS-CDF matching, in Scenario 4 are displayed in Table 3.

Inspection of balance results the reveals that most matched pairs (82%) were constructed 

from individuals who had treatments only one level apart. This is not surprising since 

subjects who have similar treatment levels generally have more similar covariate profiles, 

in the simulation. Comparing Table 3 to Table 2 shows that after conducting GPS-CDF 

matching the weighted average SMD (weighted by number of matches created within 

treatment contrast) decreased for all covariates associated treatment (x1,x2,x4,x5,x7,x8) to 

near or below 0.2 indicating that observed covariate imbalance was largely removed.

4.1 | Sensitivity to Sample Size and Number of Treatment Levels

Additional simulations were performed to assess the GPS-CDF methods’ performance 

across varying sample sizes (n=200, n=400, n=600, and n=800) and number of treatment 

levels (K = 6, K = 8, K = 10). Each of these simulations compared the same five methods 

as the primary simulation study (unadjusted, PO matching, PO stratification, GPS-CDF 

Matching, and GPS-CDF stratification). For each sample size considered, 1000 datasets 

with four ordinal treatment levels, were constructed under simulation Scenario 4 (incorrect 

specification of both the propensity and outcome model). Absolute bias, and mean squared 

error were the highest for each method at a sample size of 200. Both absolute bias and mean 

squared error decreased at a sample size of 400 and had little variation at sample sizes of 

600, 800, and 1000. Coverage probability was lowest for all adjustment methods at n=200. 

The relationship between sample size and coverage probability had a slightly inverted-U 

shape for PO matching, PO stratification, and GPS-CDF matching methods. Each of these 

methods had their highest coverage probabilities at sample sizes of 400, 600, and 800, and 

slightly lower coverage probability at n=1000. While the coverage probability of GPS-CDF 

stratification was the lowest at n=200, it remained constantly high across all other sample 

sizes tested. This result was not surprising since it is more difficult to find close matches in a 

small pool of subjects. Across all sample sizes tested, the GPS-CDF methods outperformed 

existing proportional odds-based methods. Graphical representation of these results is shown 

in Figure 3

To assess the proposed methods’ performance across possible number of treatments, 

simulations were conducted using 6, 8, and 10 treatment levels. Simulation results are 

presented graphically in Figure 4.

Generally, across these measures of performance, all methods tended to perform better 

as the number of treatments increased, except for GPS-CDF stratification (which still 

had generally good operating characteristics). As the number of treatments increased the 

absolute bias and mean squared error tended to decrease across all methods, except for 

GPS-CDF stratification (though bias and MSE remained small for this method). Mean 
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squared error plateaued at 6 treatments and showed little variation up to 10 treatments. 

Coverage probability increased as the number of treatments increased for each method 

except GPS-CDF Stratification. Interestingly, as the number of treatments increased, both 

matching methods showed better coverage probability than each stratification method. This 

is likely due to increased variability around the estimate as shown in the graph of MSE and 

the boxplots shown in Figure 2.

5 | THE MATCH STUDY

GPS-CDF matching and stratification procedures were applied to the Mexican-American 

Tobacco use in Children (MATCh) study to determine whether exposure to smoking imagery 

in movies influences cigarette experimentation among smoking-naive Mexican-American 

adolescents.46 The MATCh study was a cohort study conducted in the Houston, Texas area 

to assess factors influencing an adolescent’s decision to experiment with cigarettes.46 A 

primary research question assessed in the MATCh study was how exposure to smoking 

imagery in movies (SIM) affects a young person’s choice to experiment with cigarettes.47 

The study quantified exposure to smoking imagery in movies using the Beach method, 

in which a subject indicates whether or not they have viewed 50 randomly selected 

movies from a pool of 250 popular movies whose smoking content was analyzed by the 

Media Research Laboratory at Dartmouth College,48,49 and grouped subjects into ordered 

quartiles based on their level of exposure. In order to facilitate comparisons between results 

of the MATCh study and previous research, the MATCh study calculated the odds of 

experimenting associated with a quartile increase in SIM exposure.47,50,51 Prior research 

showed a significant positive association between increased exposure to smoking imagery 

in movies and experimentation with cigarettes (adjusted logistic regression OR = 1.27, 95% 

CI [1.10, 1.48], p = 0.002).47 However, ordinal propensity scoring methods have never been 

used to analyze this endpoint. Therefore, previous results do not support causal inference. 

The current analysis considered a subset of 546 subjects who reported no history of cigarette 

experimentation and had complete information for all relevant variables. Since the MATCh 

study was observational and the dataset contains a non-randomized ordinal exposure of 

interest, it is an excellent example for ordinal propensity scoring. In fact, tobacco use and 

smoking are public health outcomes commonly studied using propensity scoring techniques 

since exposures cannot be randomized.2,3,11,52–54 Furthermore, the effect of media influence 

on substance use is a popular example of ordinal treatment exposure. Notably, Lu, Zanutto, 

Hornik, and Rosenbaum (2001) and Zanutto, Lu, and Hornik (2005), in their respective 

seminal papers on proportional odds propensity matching1 and stratification7 for ordinal 

exposures, both evaluated the effectiveness of a national anti-drug media campaign on teens’ 

intentions to use drugs.

Covariate imbalance across quartile of SIM exposure prior to adjustment was expected 

and observed. For ease of interpretation, the averages of the pairwise SMDs between each 

quartile are displayed. Table 4 displays the covariate imbalance across exposure quartile for 

potential pre-exposure confounding variables and shows there were several average SMDs 

above the recommended cutoff of 0.2.26,55 Detailed descriptions of these variables can be 

found in Wilkinson et al. (2009).47 Subjects in higher SIM exposure quartiles tended to be 

more predominately male, be more likely to have been born in the USA, have a higher level 
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of acculturation, have more close peers who smoke, and have higher scores for risk taking 

behavior, thrill and adventure seeking behaviors, drug and alcohol seeking behaviors, and 

social disinhibition.

To estimate ATE using GPS-CDF matching and stratification procedures, all variables listed 

in Table 4 were first entered into a GBM propensity model as independent variables 

to estimate the GPS vector for the probability of exposure to each quartile of smoking 

imagery in movies. After initial GBM propensity score estimation showed evidence of 

overfitting, the number of regression trees was reduced from 10,000 (default) to 4,000 and 

propensity scores were re-estimated. Reducing the number of trees resulted in better balance 

among pre-treatment covariates and eliminated concerns regarding overfitting. The two 

assumptions necessary for propensity scoring are positivity, which is assessed subjectively, 

and no unmeasured confounding, which must be assumed.8,26 A specific rule to determine 

if positivity is sufficient do not exist, so it must be subjectively assessed, in conjunction 

with balance diagnostics (shown later in Figure 6 ), to determine if the treatment groups 

are sufficiently similar to support causal estimation of the treatment estimands.26 Graphical 

evidence of positivity are shown using side-by-side boxplots in Figure 5.

As expected, the element of the GPS vector corresponding to the level of exposure which 

was actually observed tended to be the largest. However, there was not great separation 

between the boxplots representing each estimated level of exposure (to the extent seen in 

McCaffrey et al. (2013)), and thus, positivity and overlap assumptions were met.

5.1 | MATCh Study Results

After applying the new GPS-CDF matching procedure it was clear that covariate imbalance 

was largely removed for the variables considered. This is shown graphically in Figure 6.

The average SMD value within matched pairs was below 0.2 for each potential confounder 

considered. This indicates balance was acheived and that subjects who were paired together 

had similar covariate profiles. These results, paired with the subjective assessment that the 

assumptions of positivity and overlap hold, support causal estimation of the ATE.

GPS-CDF stratification was also used to analyze the MATCh data, and both methods 

showed that odds of smoking experimentation increased as the exposure to smoking 

imagery in movies increased (ORGPS-CDF Strat= 1.53, 95% CI [1.15, 2.03] p = 0.004, 

ORGPS-CDF Match= 1.57, 95% CI [1.00, 2.44], p = 0.048). These results were similar to those 

from proportional odds matching (ORPO Match = 1.61, 95% CI [1.11, 2.35], p = 0.013), and 

proportional odds stratification (ORPO Strat. = 1.41, 95% CI [1.10, 1.80], p = 0.007). The 

unadjusted crude odds ratio was slightly higher than all propensity methods (ORcrude = 1.66, 

95% CI [1.34, 2.06], p < 0.001). The results from all of these methods were similar and 

further support evidence from previous studies that adolescents’ odds of experimenting with 

cigarettes increases as exposure to smoking imagery in movies increases.
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6 | DISCUSSION

Despite some recent advances in methodology and application for multi-valued treatment 

propensity scoring, there remains a lack of propensity score literature specific to ordinal 

treatments, and no well-studied methods to conduct propensity score matching or 

stratification when strict parametric models are unable to induce covariate balance.5,13,16,56 

The methods presented here provide an easily applicable remedy when the proportional odds 

is violated, as encountered by Cavasos-Rehg et al. (2014) and others. Furthermore, since 

GPS-CDF matching and stratification have been shown via simulation to perform at least as 

well as matching or stratifying on β′x, they can be applied to any ordinal treatment setting, 

even if the proportional odds assumption holds.

Compatibility with novel non-parametric propensity score estimation is the most obvious 

strength of GPS-CDF matching and stratification presented in this paper. The proposed 

method can be implemented with any parametric or non-parametric propensity model that 

estimates a GPS vector. Non-parametric methods of estimating propensity scores, such 

as GBM, random forests, Bayesian adaptive regression trees, super learning, and high 

dimensional propensity score (hd-PS) methodology, have become more popular in recent 

years due to their ability to automatically select variables and include higher order terms 

while achieving excellent covariate balance.5,14,25,26,29,37,57–60 Using these non-parametric 

models decreases the amount of time researchers have to spend assessing higher order and 

interaction terms in the propensity score model to achieve covariate balance.

Currently generalized propensity scores estimated from non-parametric models are 

implemented using IPTW.25,26,29,37,61–63 There are several reasons to continue developing 

multi-valued treatments stratification and matching methods rather than solely relying on 

IPTW. First, IPTW utilizes the exact value of the estimated propensity score for the 

treatment observed rather than using the value only to group subjects with similar propensity 

scores (as in stratification or matching).10,26,63–66 When the estimated propensity score 

is used finely, it can be overly influential on the estimation of treatment effect.66 This 

issue is amplified when estimated propensity score weights are highly variable, and thus 

a few observations greatly influence the estimated magnitude and precision of a treatment 

effect.13,61,67,68 Large highly variable weights can be prevalent if the estimation of the 

propensity score is biased due to model is misspecification, incorrect model assumptions 

(e.g. proportional odds), or if there are a large number of predictors in the model.28,29,61 

Utilizing non-parametric machine learning procedures to estimate the propensity scores is 

one way to minimize the bias resulting from these scenarios.37,69,70 Therefore, in situations 

likely to produce large highly variable weights, it would be preferable to estimate propensity 

scores using a non-parametric machine learning algorithm, then adjust for these scores using 

a stratification or matching procedure.

Since the CDF of the GPS is modeled using standardized doses, this novel method can 

accurately estimate the GPS vector even when the interval between observed doses is 

not constant. Furthermore, unlike other propensity matching methods for multi-valued 

treatments, GPS-CDF matching and stratification are not constrained by the number of 

possible treatments (e.g. Rassen et al. (2013)18) and its natural extension to continuous 
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treatments is currently being developed. Assessing the performance of the proposed method 

with an increasing number of pre-treatment covariates is another area of future research. 

Griffin et al. (2017) evaluated the impact of including additional variables in the propensity 

model with no relation to binary treatment assignment. Their results agreed with other 

research, which suggests as the number of variables in the propensity model increases, 

SMD increases, balance degrades, and treatment effect is estimated less accurately.29,39,71,72 

Since the methods proposed in this paper can be used in conjunction with any method 

of estimating propensity scores which produces a GPS vector, it would be of interest 

to determine if there are instances where one estimation method outperforms others. 

Other future research topics include adapting the GPS-CDF method to non-linear treatment/

outcome relationships, testing the method’s performance in high dimensional settings when 

paired with variable selection procedures, and comparing the performance of the GPS-CDF 

method with related matching and stratification methods for multinomial treatments.13,16,17 

The GPSCDF R package has been developed and is available to aid researchers in 

implementing the methods described in this paper.73

The simulation scenarios considered in this study bring to light real-life obstacles 

investigators face when analyzing observational data such as severe covariate imbalance 

across treatment groups, parametric violations, and inability to rule out model 

misspecification. Overall, the simulation design and results were similar to those of previous 

studies that investigated continuous and binary treatments.5,36 The proposed methods 

performed well across Scenarios 1–3, and were robust to the most severely perturbed 

Scenario 4, compared to the other methods. As it is essential to use simulation to assess the 

performance of novel methods to determine how robust they are to various levels of model 

misspecification,35 we showed that GPS-CDF matching and stratification significantly 

outperform the currently available PO methods in the presence of this issue.

Further evidence of the usefulness and performance of the novel method was shown in 

the MATCh analysis. Implementing GPS-CDF matching and stratification produced an 

adequately balanced sample (all average SMDs < 0.2) by grouping subjects with similar 

covariate profiles, but who were in differing SIM quartiles. The odds ratios estimated 

by GPS-CDF matching and stratification indicated that the odds of experimenting with 

cigarettes significantly increased as exposure level of smoking imagery in movies increased. 

These results provide more evidence that increased exposure to smoking imagery in 

movies significantly influences whether or not Mexican-American adolescents decide to 

experiment with cigarettes. In light of these findings, targeted public health campaigns can 

be implemented in order to diminish the likelihood of adolescent cigarette use.

Limitations of the study exist. There may be settings where the power function is not 

the best for a given data set; for example, for a GPS vector near (0,0,0,1) or (1,0,0,0), 

the distance between the power function and vector could be large. While we expect this 

setting to be rare, given the necessary propensity scoring assumption of positivity requires 

all subjects to have a non-zero probability of receiving each potential treatment, other one 

parameter alternatives could be explored should this issue occur; meanwhile, the procedure 

outlined in the paper would remain the same, in principle. Further, guidelines on how to 

assess quality of causal effects specifically for the ordinal setting (e.g., necessary sample 
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sizes, degree of balance achieved, etc.), will be important to determine in future research. 

Finally, regarding estimation of the standard errors of the ATE in the ordinal treatments 

setting, Lopez and Gutman (2017) point out that for multinomial treatments, “Like other 

approaches that match with multiple treatments, estimating the standard error of these point 

estimates is still an open research question.”13 Methods referred to in the multiple treatments 

literature include weighting and bootstrapping.5,74 We investigated such a bootstrapping 

approach for a related application and the resulting standard errors were nearly identical to 

those from the conditional logistic regression without using bootstrapping. However, more 

investigation may be warranted in future research.

7 | CONCLUSION

This paper shows the GPS-CDF method is a flexible, straightforward, and intuitive method 

of removing covariate imbalance in observational studies with ordinal treatments. The 

approach does not rely on the proportional odds model; in fact it can be used with 

any parametric or non parametric propensity model. The GPS-CDF method provides 

many opportunities for future research including extensions to continuous and multinomial 

treatments, applications to public health, genetics, and electronic health records datasets. 

Hopefully, continued development in the field of multi-valued treatments propensity scoring 

will encourage researchers to utilize these methods in practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

DATA AVAILABILITY

The data that support the findings of this study are available on request from the 

corresponding author. The data are not publicly available due to privacy or ethical 

restrictions.

References

[1]. Lu B, Zanutto E, Hornik R, Rosenbaum P. R. Matching with doses in an observational study 
of a media campaign against drug abuse. Journal of the American Statistical Association. 
2001;96(456):1245–1253. [PubMed: 25525284] 

[2]. Cavazos-Rehg PA, Breslau N, Hatsukami D, et al. Smoking cessation is associated with lower 
rates of mood/anxiety and alcohol use disorders. Psychological medicine. 2014;44(12):2523–
2535. [PubMed: 25055171] 

[3]. Harder VS, Stuart EA, Anthony JC Adolescent cannabis problems and young adult 
depression: male-female stratified propensity score analyses. American journal of epidemiology. 
2008;168(6):592–601. [PubMed: 18687663] 

[4]. Urban C, Niebler S. Dollars on the Sidewalk: Should US Presidential Candidates Advertise in 
Uncontested States?. American Journal of Political Science. 2014;58(2):322–336.

[5]. Fong C, Hazlett C, Imai K, others. Covariate balancing propensity score for a continuous 
treatment: application to the efficacy of political advertisements. The Annals of Applied 
Statistics. 2018;12(1):156–177.

[6]. Royston P, Altman D. G, Sauerbrei W. Dichotomizing continuous predictors in multiple 
regression: a bad idea. Statistics in medicine. 2006;25(1):127–141. [PubMed: 16217841] 

Greene et al. Page 16

Stat Med. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[7]. Zanutto E, Lu B, Hornik R. Using propensity score subclassification for multiple treatment doses 
to evaluate a national antidrug media campaign. Journal of Educational and Behavioral Statistics. 
2005;30(1):59–73.

[8]. Rosenbaum PR, Rubin DB The central role of the propensity score in observational studies for 
causal effects. Biometrika. 1983;70(1):41–55.

[9]. Joffe MM, Rosenbaum PR Invited commentary: propensity scores. American Journal of 
Epidemiology. 1999;150(4):327–333. [PubMed: 10453808] 

[10]. Imbens GW The role of the propensity score in estimating dose-response functions. Biometrika. 
2000;87(3):706–710.

[11]. Imai K, Van Dyk D. A. Causal inference with general treatment regimes. Journal of the American 
Statistical Association. 2004;99(467).

[12]. Huang I-C, Frangakis C, Dominici F, Diette GB, Wu AW. Application of a Propensity Score 
Approach for Risk Adjustment in Profiling Multiple Physician Groups on Asthma Care. Health 
Services Research. 2005;1(40):253–278.

[13]. Lopez MJ, Gutman R, others. Estimation of causal effects with multiple treatments: a review and 
new ideas. Statistical Science. 2017;32(3):432–454.

[14]. Imai K, Ratkovic M. Covariate balancing propensity score. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology). 2014;76(1):243–263.

[15]. Lu B, Greevy R, Xu X, Beck C. Optimal nonbipartite matching and its statistical applications. 
The American Statistician. 2011;65(1):21–30. [PubMed: 23175567] 

[16]. Yang S, Imbens GW, Cui Z, Faries DE, Kadziola Z. Propensity score matching and 
subclassification in observational studies with multi-level treatments. Biometrics. 2016;.

[17]. Scotina AD, Gutman R Matching algorithms for causal inference with multiple treatments. 
Statistics in medicine. 2019;.

[18]. Rassen JA, Shelat AA, Franklin JM, Glynn RJ, Solomon DH, Schneeweiss S Matching by 
propensity score in cohort studies with three treatment groups. Epidemiology. 2013;24(3):401–
409. [PubMed: 23532053] 

[19]. Seya H, Yoshida T. Propensity score matching for multiple treatment levels: A CODA-based 
contribution. arXiv preprint arXiv:1710.08558. 2017;.

[20]. Tu C, Shuo J, Koh WY. Comparison of clustering algorithms on generalized propensity score 
in observational studies: A simulation study. Journal of Statistical Computation and Simulation. 
2013;83(12):2206–2218.

[21]. Robins JM, Hernan MA, Brumback B Marginal structural models and causal inference in 
epidemiology. Epidemiology. 2000;:550–560. [PubMed: 10955408] 

[22]. Naimi AI, Cole SR, Kennedy EH An introduction to g methods. International journal of 
epidemiology. 2017;46(2):756–762. [PubMed: 28039382] 

[23]. Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Estimation of the causal effects of 
time-varying exposures. In: Chapman and Hall/CRC 2008 (pp. 567–614).

[24]. Suarez D, Haro J. M, Novick D, Ochoa S. Marginal structural models might overcome 
confounding when analyzing multiple treatment effects in observational studies. Journal of 
clinical epidemiology. 2008;61(6):525–530. [PubMed: 18471655] 

[25]. McCaffrey DF, Ridgeway G, Morral AR Propensity score estimation with boosted regression 
for evaluating causal effects in observational studies. Psychological methods. 2004;9(4):403. 
[PubMed: 15598095] 

[26]. McCaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, Burgette LF A tutorial on 
propensity score estimation for multiple treatments using generalized boosted models. Statistics 
in medicine. 2013;32(19):3388–3414. [PubMed: 23508673] 

[27]. Harder VS, Stuart EA, Anthony JC Propensity score techniques and the assessment of measured 
covariate balance to test causal associations in psychological research. Psychological methods. 
2010;15(3):234. [PubMed: 20822250] 

[28]. Lee BK, Lessler J, Stuart EA Improving propensity score weighting using machine learning. 
Statistics in medicine. 2010;29(3):337–346. [PubMed: 19960510] 

Greene et al. Page 17

Stat Med. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[29]. Griffin BA, McCaffrey DF, Almirall D, Burgette LF, Setodji CM Chasing Balance and Other 
Recommendations for Improving Nonparametric Propensity Score Models. Journal of Causal 
Inference. 2017;5(2).

[30]. Storer BE Design and analysis of phase I clinical trials. Biometrics. 1989;:925–937. [PubMed: 
2790129] 

[31]. O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 
clinical trials in cancer. Biometrics. 1990;:33–48. [PubMed: 2350571] 

[32]. Berry SM, Carlin BP, Lee JJ, Muller P Bayesian adaptive methods for clinical trials. CRC press; 
2010.

[33]. Bornkamp B Functional uniform priors for nonlinear modeling. Biometrics. 2012;68(3):893–901. 
[PubMed: 22845801] 

[34]. Cochran WG The effectiveness of adjustment by subclassification in removing bias in 
observational studies. Biometrics. 1968;:295–313. [PubMed: 5683871] 

[35]. Lenis D, Ackerman B, Stuart E. A. Measuring model misspecification: Application to propensity 
score methods with complex survey data. Computational Statistics & Data Analysis. 2018;.

[36]. Austin PC, Grootendorst P, Anderson GM A comparison of the ability of different propensity 
score models to balance measured variables between treated and untreated subjects: a Monte 
Carlo study. Statistics in medicine. 2007;26(4):734–753. [PubMed: 16708349] 

[37]. Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF Evaluating uses of data mining 
techniques in propensity score estimation: a simulation study. Pharmacoepidemiology and drug 
safety. 2008;17(6):546–555. [PubMed: 18311848] 

[38]. Austin PC Type I error rates, coverage of confidence intervals, and variance estimation in 
propensity-score matched analyses. The International Journal of Biostatistics. 2009;5(1).

[39]. Setodji CM, McCaffrey DF, Burgette LF, Almirall D, Griffin BA The right tool for the 
job: Choosing between covariate balancing and generalized boosted model propensity scores. 
Epidemiology (Cambridge, Mass.). 2017;28(6):802.

[40]. Larsen TB, Skjøth, Nielsen PB, Kjældgaard JN, Lip GY Comparative effectiveness and safety 
of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: 
propensity weighted nationwide cohort study. Bmj. 2016;353:i3189. [PubMed: 27312796] 

[41]. Holcomb JB, Swartz MD, DeSantis SM, et al. Multicenter Observational Prehospital 
Resuscitation on Helicopter Study (PROHS). Journal of Trauma and Acute Care Surgery. 2017;.

[42]. Piemontese S, Ciceri F, Labopin M, et al. A comparison between allogeneic stem cell 
transplantation from unmanipulated haploidentical and unrelated donors in acute leukemia. 
Journal of hematology & oncology. 2017;10(1):24. [PubMed: 28103944] 

[43]. Flury BK, Riedwyl H Standard distance in univariate and multivariate analysis. The American 
Statistician. 1986;40(3):249–251.

[44]. Austin PC Balance diagnostics for comparing the distribution of baseline covariates between 
treatment groups in propensity-score matched samples. Statistics in medicine. 2009;28(25):3083–
3107. [PubMed: 19757444] 

[45]. Yang D, Dalton JE A unified approach to measuring the effect size between two groups using 
SAS®. In: :1–6; 2012.

[46]. Wilkinson AV, Waters AJ, Vasudevan V, Bondy ML, Prokhorov AV, Spitz MR Correlates of 
susceptibility to smoking among Mexican origin youth residing in Houston, Texas: a cross-
sectional analysis. BMC Public Health. 2008;8(1):337. [PubMed: 18822130] 

[47]. Wilkinson AV, Spitz MR, Prokhorov AV, Bondy ML, Shete S, Sargent JD Exposure to smoking 
imagery in the movies and experimenting with cigarettes among Mexican heritage youth. Cancer 
Epidemiology and Prevention Biomarkers. 2009;18(12):3435–3443.

[48]. Worth K, Tanski S, Sargent J. Trends in top box office movie tobacco use 1996–2004 (no. 16). 
Washington, DC: American Legacy Foundation. Report describing trends in how smoking is 
portrayed in the movies. 2006;.

[49]. Sargent JD, Worth KA, Beach M, Gerrard M, Heatherton TF Population-based assessment of 
exposure to risk behaviors in motion pictures. Communication Methods and Measures. 2008;2(1–
2):134–151. [PubMed: 19122801] 

Greene et al. Page 18

Stat Med. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[50]. Song AV, Ling PM, Neilands TB, Glantz SA Smoking in movies and increased smoking 
among young adults. American journal of preventive medicine. 2007;33(5):396–403. [PubMed: 
17950405] 

[51]. Hanewinkel R, Sargent JD Exposure to smoking in internationally distributed American movies 
and youth smoking in Germany: a crosscultural cohort study. Pediatrics. 2008;121(1):e108–e117. 
[PubMed: 18166530] 

[52]. Foody JM, Cole CR, Blackstone EH, Lauer MS A propensity analysis of cigarette smoking 
and mortality with consideration of the effects of alcohol. The American journal of cardiology. 
2001;87(6):706–711. [PubMed: 11249887] 

[53]. Novak SP, Reardon SF, Raudenbush SW, Buka SL Retail tobacco outlet density and youth 
cigarette smoking: a propensity-modeling approach. American Journal of Public Health. 
2006;96(4):670–676. [PubMed: 16507726] 

[54]. Austin PC A tutorial and case study in propensity score analysis: an application to estimating the 
effect of in-hospital smoking cessation counseling on mortality. Multivariate behavioral research. 
2011;46(1):119–151. [PubMed: 22287812] 

[55]. Cohen J Statistical power analysis for the behavioral sciences. Hilsdale. NJ: Lawrence Earlbaum 
Associates. 1988;2.

[56]. Zhu Y, Coffman DL, Ghosh D A Boosting Algorithm for Estimating Generalized Propensity 
Scores with Continuous Treatments. Journal of Causal Inference. 2015;3(1):25–40. [PubMed: 
26877909] 

[57]. Breiman L Random forests. Machine learning. 2001;45(1):5–32.

[58]. Hill JL Bayesian nonparametric modeling for causal inference. Journal of Computational and 
Graphical Statistics. 2011;20(1):217–240.

[59]. Hainmueller J Entropy balancing for causal effects: A multivariate reweighting method to 
produce balanced samples in observational studies. Political Analysis. 2012;20(1):25–46.

[60]. Pirracchio R, Petersen ML, Laan M Improving propensity score estimators’ robustness to model 
misspecification using super learner. American journal of epidemiology. 2014;181(2):108–119. 
[PubMed: 25515168] 

[61]. Parast L, McCaffrey DF, Burgette LF, et al. Optimizing variance-bias trade-off in the 
TWANG package for estimation of propensity scores. Health Services and Outcomes Research 
Methodology. 2017;17(3–4):175–197. [PubMed: 29104450] 

[62]. Ju C, Combs M, Lendle SD, et al. Propensity score prediction for electronic healthcare 
databases using super learner and high-dimensional propensity score methods. Journal of Applied 
Statistics. 2019;46(12):2216–2236. [PubMed: 32843815] 

[63]. Burgette L, Griffin BA, McCaffrey D Propensity scores for multiple treatments: A tutorial for the 
mnps function in the twang package. R package. Rand Corporation. 2017;.

[64]. Feng P, Zhou X-H, Zou Q-M, Fan M-Y, Li X-S Generalized propensity score for estimating 
the average treatment effect of multiple treatments. Statistics in medicine. 2012;31(7):681–697. 
[PubMed: 21351291] 

[65]. Austin PC, Grootendorst P, Anderson GM A comparison of the ability of different propensity 
score models to balance measured variables between treated and untreated subjects: a Monte 
Carlo study. Statistics in medicine. 2007;26(4):734–753. [PubMed: 16708349] 

[66]. Rubin DB On principles for modeling propensity scores in medical research. 
Pharmacoepidemiology and drug safety. 2004;13(12):855–857. [PubMed: 15386710] 

[67]. Busso M, DiNardo J, McCrary J. New evidence on the finite sample properties of 
propensity score reweighting and matching estimators. Review of Economics and Statistics. 
2014;96(5):885–897.

[68]. Li F, Morgan KL, Zaslavsky AM Balancing covariates via propensity score weighting. Journal of 
the American Statistical Association. 2018;113(521):390–400.

[69]. Chen KP, Moskowitz A Comparative effectiveness: propensity score analysis. In: Springer 2016 
(pp. 339–349).

[70]. Guertin JR, Rahme E, Dormuth CR, LeLorier J Head to head comparison of the propensity 
score and the high-dimensional propensity score matching methods. BMC medical research 
methodology. 2016;16(1):22. [PubMed: 26891796] 

Greene et al. Page 19

Stat Med. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[71]. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T Variable selection 
for propensity score models. American journal of epidemiology. 2006;163(12):1149–1156. 
[PubMed: 16624967] 

[72]. Wyss R, Girman CJ, LoCasale RJ, Alan Brookhart M, Stürmer T Variable selection for 
propensity score models when estimating treatment effects on multiple outcomes: a simulation 
study. Pharmacoepidemiology and drug safety. 2013;22(1):77–85. [PubMed: 23070806] 

[73]. Brown DW, Greene TJ, DeSantis SM GPSCDF: Generalized Propensity Score Cumulative 
Distribution Function2019. R package version 0.1.1.

[74]. Austin PC, Small DS The use of bootstrapping when using propensity-score matching without 
replacement: a simulation study. Statistics in medicine. 2014;33(24):4306–4319. [PubMed: 
25087884] 

Greene et al. Page 20

Stat Med. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
Shapes of the power model evaluated for different parameter values
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FIGURE 2. 
Simulation results for each method under each scenario (1000 datasets per scenario).
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FIGURE 3. 
Comparing operating characteristics of each method for sample sizes of 200, 400, 600, 800, 

1000
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FIGURE 4. 
Comparing operating characteristics of each method for 4, 6, 8, and 10 possible treatment 

levels.
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FIGURE 5. 
Comparing overlap of estimated generalized propensity scores from the MATCh data, that is 

Pr(Z = z|Xi) for z = Q1, …, Q4, across observed SIM exposure quartile.
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FIGURE 6. 
Average SMD before and after matching for influential variables from the MATCh data. 

A red icon indicates SMD > 0.2 and a blue icon indicates average SMD < 0.2. Note: 

HS = High School, HHMS = Household family member who smokes, CPS = Close Peer 

Smokes, CS = Cognitive Susceptibility, RTB = Risk taking behavior, POE = Positive 

outcome expectation, TAS = Thrill and adventure seeking, DAA = Drug and Alcohol 

Seeking Behaviors, SD = Social disinhibition, SSS = Subjective social status.
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TABLE 1

Association of covariates with treatment and outcome where xi, 1 − 9 ∼iid N 0, 1

Strongly Associated With 
Treatment

Moderately Associated With 
Treatment Independent of Treatment

Strongly Associated With 
Outcome

x 1 x 2 x 3

Moderately Associated With 
Outcome

x 4 x 5 x 6

Independent of Outcome x 7 x 8 x 9
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TABLE 2

Scenario 4: Standardized mean differences between treatment levels before propensity adjustment

Variable Average SMD 1 vs. 2 1 vs. 3 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4

x 1 0.33 0.19 0.41 0.56 0.23 0.38 0.19

x 2 0.30 0.09 0.23 0.53 0.19 0.48 0.31

x 3 0.11 0.08 0.10 0.12 0.09 0.12 0.13

x 4 0.54 0.10 0.41 0.94 0.34 0.88 0.55

x 5 0.30 0.08 0.23 0.53 0.18 0.48 0.31

x 6 0.10 0.08 0.09 0.12 0.09 0.12 0.13

x 7 0.50 0.45 0.73 0.90 0.29 0.46 0.20

x 8 0.29 0.25 0.41 0.51 0.17 0.27 0.15

x 9 0.11 0.08 0.10 0.12 0.09 0.12 0.13
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TABLE 3

Scenario 4: Average number of matches and weighted average of standardized mean differences within 

matched pairs across all combinations of treatment after GPS-CDF Matching

Weighted Average SMD 1 vs. 2 1 vs. 3 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4

n Matches — 238.17 25.38 45.76 138.33 16.61 35.92

x 1 0.24 0.12 0.59 1.06 0.09 0.36 0.22

x 2 0.14 0.06 0.26 0.42 0.10 0.44 0.22

x 3 0.12 0.07 0.24 0.18 0.10 0.36 0.20

x 4 0.19 0.11 0.32 0.68 0.10 0.51 0.23

x 5 0.14 0.06 0.26 0.41 0.10 0.42 0.22

x 6 0.12 0.07 0.24 0.18 0.10 0.36 0.20

x 7 0.22 0.09 0.38 0.78 0.17 0.34 0.36

x 8 0.15 0.09 0.29 0.47 0.10 0.36 0.22

x 9 0.12 0.07 0.24 0.16 0.10 0.38 0.19
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TABLE 4

Distribution of influential variables across quartile of exposure to smoking imagery in movies within the 

MATCh study.

Q 1 Q 2 Q 3 Q 4 Avg. SMD

N 137 136 137 136

Age 11.5 (0.7) 11.5 (0.8) 11.7 (0.8) 11.7 (0.8) 0.171

Male (N (%)) 50 (36.5) 47 (34.6) 64 (46.7) 74 (54.4) 0.238*

Born in USA (N (%)) 96 (70.1) 96 (70.6) 98 (71.5) 111 (81.6) 0.140

Level of Acculturation 3.28 (0.7) 3.40 (0.7) 3.49 (0.6) 3.71 (0.7) 0.327*

Parental Educ. (N (%)) 0.195

Less than HS 94 (68.6) 93 (68.4) 86 (62.8) 85 (62.5)

Completed Some HS 27 (19.7) 23 (16.9) 19 (13.9) 22 (16.2)

HS or More 16 (11.7) 20 (14.7) 32 (23.4) 29 (21.3)

Smokers in HH (N (%)) 0.149

None 97 (70.8) 89 (65.4) 85 (62.0) 96 (70.6)

One 27 (19.7) 37 (27.2) 41 (29.9) 30 (22.1)

More than One 13 (9.5) 10 ( 7.4) 11 ( 8.0) 10 ( 7.4)

Close Peer Smokes (N(%)) 13 (9.5) 16 (11.8) 17 (12.4) 20 (14.7) 0.084

Served Detention (N(%)) 38 (27.7) 33 (24.3) 38 (27.7) 58 (42.6) 0.198

CS (N (%)) 22 (16.1) 32 (23.5) 37 (27.0) 42 (30.9) 0.191

RTB 1.63 (0.8) 1.86 (0.7) 2.03 (0.8) 2.09 (0.8) 0.333*

POE 1.15 (0.3) 1.19 (0.3) 1.26 (0.4) 1.24 (0.4) 0.182

TAS 6.18 (3.1) 7.18 (3.0) 7.67 (3.0) 7.74 (3.1) 0.285*

DAA 0.41 (0.9) 0.78 (1.3) 0.91 (1.3) 0.99 (1.4) 0.270*

SD 2.97 (1.8) 3.47 (2.0) 3.91 (1.8) 4.10 (1.7) 0.353*

SSS 7.98 (1.2) 7.94 (1.6) 7.96 (1.4) 7.92 (1.3) 0.024

*
Numerous variables have average SMD > 0.2 indicating covariate imbalance.

(Note: HS = High School, HH = Household, CS = Cognitive susceptibility, RTB = Risk taking behavior score, POE = Positive outcome 
expectation, TAS = Thrill and adventure seeking, DAA = Drug and alcohol seeking behaviors, SD = Social disinhibition score, SSS = Subjective 
social status. All statistics reported as (mean (sd) unless otherwise noted).
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