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Abstract

Growth hormone (GH) receptor (GHR) signaling induces the phosphorylation of the signal 

transducer and activator of transcription 5 (pSTAT5) in the cells of several tissues including in 

the hypothalamus. During pregnancy, several STAT5-recruiting hormones (e.g., prolactin, GH and 

placental lactogens) are highly secreted. However, the precise contribution of GHR signaling 

to the surge of pSTAT5 immunoreactive neurons that occurs in the hypothalamus of pregnant 

mice is currently unknown. Thus, the objective of the present study was to determine whether 

GHR expression in neurons is required for inducing pSTAT5 expression in several hypothalamic 

nuclei during pregnancy. Initially, we demonstrated that late pregnant C57BL/6 mice (gestational 

day 14 to 18) exhibited increased pulsatile GH secretion compared to virgin females. Next, we 

confirmed that neuron-specific GHR ablation robustly reduces hypothalamic Ghr mRNA levels 

and prevents GH-induced pSTAT5 in the arcuate, paraventricular and ventromedial hypothalamic 

nuclei. Subsequently, the number of pSTAT5 immunoreactive cells was determined in the 

hypothalamus of late pregnant mice. Although neuron-specific GHR ablation did not affect the 

number of pSTAT5 immunoreactive cells in the paraventricular nucleus of the hypothalamus, 

reduced pSTAT5 expression was observed in the arcuate and ventromedial nuclei of pregnant 

neuron-specific GHR knockouts, compared to control pregnant mice. In summary, a subset 

of hypothalamic neurons requires GHR signaling to express pSTAT5 during pregnancy. These 

findings contribute to the understanding of the endocrine factors that affect the activation of 

transcription factors in the brain during pregnancy.

Graphical Abstract

*Corresponding author: Jose Donato Jr., PhD. Address: Av. Prof. Lineu Prestes, 1524, São Paulo, SP, Brazil, 05508000. 
jdonato@icb.usp.br. Phone: +55-11-3091-0929; Fax: +55-11-3091-7285. 

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

Credit authorship statement
Conceptualization: JDJ; Methodology: FW and PDST; Essential reagents: EOL and JJK; Formal Analysis: FW; Data Curation: JDJ; 
Original Draft Preparation: JDJ; Supervision and Project Administration: JDJ.

HHS Public Access
Author manuscript
Neurosci Lett. Author manuscript; available in PMC 2022 March 14.

Published in final edited form as:
Neurosci Lett. 2022 January 23; 770: 136402. doi:10.1016/j.neulet.2021.136402.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

cytokines; growth hormone; metabolism; neuroendocrinology; pregnancy; transcription factors

1. INTRODUCTION

Pregnancy is a physiological period characterized by critical hormonal alterations. In this 

regard, the corpus luteum and later the placenta produce high levels of sex steroids. Pituitary 

hormones or its placental variants also exhibit pronounced increases during pregnancy 

[1]. These numerous hormones act in practically all tissues leading to the key gestational 

adaptations. The brain is not an exception since behavioral, neurological and autonomic 

changes are necessary to maximize the chances of success for fetal development and 

delivery. Prolactin and placental lactogens are examples of hormones highly secreted 

during pregnancy [1]. Activation of the prolactin receptor (PrlR) in the hypothalamus 

triggers gestational metabolic changes and favors maternal behaviors [2–7]. The major 

intracellular pathway recruited by PrlR signaling involves the signal transducer and activator 

of transcription 5 (STAT5), which becomes phosphorylated upon PrlR activation and 

regulates the expression of targeted genes [8, 9]. Systemic prolactin infusion leads to STAT5 

phosphorylation (pSTAT5) in several hypothalamic areas, including the paraventricular 

(PVH), arcuate (ARH) and ventromedial (VMH) nuclei [10–13]. Previous studies have 

shown that neuronal STAT5 signaling regulates lactation performance, reproductive function 

and cognitive aspects, like memory formation [9, 14–16]. Furthermore, neuronal STAT5 

signaling is likely involved in the long-term metabolic and epigenetic adaptations induced 

by pregnancy and lactation [17]. Therefore, STAT5-recruiting hormones play a fundamental 

role in modulating different neuronal processes during pregnancy and lactation.

Growth hormone (GH) secretion also increases during pregnancy. In humans, this increase 

occurs predominantly through GH placental variants (GH-V), which are encoded by Gh2 
gene, whereas the secretion of GH pituitary variant (GH-N), encoded by Gh1 gene, is 

suppressed by negative feedback mechanisms [18–20]. However, rodents do not contain the 

genes encoding the GH placental variants and the increase in GH secretion during pregnancy 

relies exclusively on the pituitary gland. Consequently, rodents maintain a pulsatile pattern 

of GH secretion during gestation [21, 22]. Like the PrlR, activation of GH receptor 

(GHR) also recruits STAT5 transcription factor as its major intracellular signaling pathway 

[8]. Furthermore, systemic or intracerebroventricular infusion of GH induces pSTAT5 in 

practically the same hypothalamic areas that express the PrlR [9, 10, 23, 24].
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During pregnancy, there is a natural surge in pSTAT5 immunoreactive cells in several 

hypothalamic nuclei, including the PVH, ARH and VMH [12, 25, 26]. Importantly, PrlR 

ablation from forebrain neurons reduces but does not eliminate the number of pSTAT5 

immunoreactive cells in the ARH and VMH, whereas pSTAT5 immunoreactive cells 

in the PVH remain unaltered [25]. Therefore, although PrlR signaling clearly induces 

the activation of STAT5 pathway in the hypothalamus during pregnancy, other unknown 

STAT5-recruiting hormone may also recruit these transcription factors in the brain of 

pregnant animals. The present study was designed to test whether GHR expression in 

neurons is necessary for inducing pSTAT5 expression in specific hypothalamic nuclei during 

pregnancy.

2. MATERIALS AND METHODS

2.1. Animals

In the experiment to determine pulsatile GH secretion during pregnancy, adult C57BL/6 

female mice were used. To assess whether GHR signaling is necessary to induce 

pSTAT5 in the brain, nestin-cre mice (The Jackson Laboratory, Bar Harbor, ME; 

RRID: IMSR_JAX:003771) were bred with mice carrying loxP-flanked Ghr alleles. After 

successive breedings, we were able to produce in the same litters mice homozygous for 

the loxP-flanked Ghr alleles and carrying the nestin-cre transgene (hereafter named as 

NestinΔGHR mice). Control mice were floxed littermates that did not carry the cre allele. 

Mice were weaned at 3 weeks of age and their mutations confirmed by polymerase 

chain reaction (PCR) using the DNA that had been previously extracted from the tail 

tip (REDExtract-N-Amp™ Tissue PCR Kit, Sigma-Aldrich, St. Louis, MO). Mice had ad 

libitum access to a regular rodent chow and filtered water and were maintained in standard 

conditions of light (12-h light/dark cycle). The experiments were approved by the Ethics 

Committee on the Use of Animals of the Institute of Biomedical Sciences at the University 

of São Paulo (protocol number: 73/2017).

2.2. Pulsatile GH secretion

Eight-week-old female C57BL/6 mice were handled daily for 30 days to acclimate to the 

procedure of tail-tip blood sampling and to minimize the stress during the experiment. 

During the adaptation period, part of the animals were kept in their home cages (virgin 

group; n = 4), whereas another group of female mice were bred with sexually-experienced 

males (pregnancy group; n = 3). Blood collection occurred in late pregnant mice (gestational 

day 14 to 17) and in the virgin group. Blood collection started at the beginning of the light 

cycle (approximately 8:00 h) and 36 sequential tail-tip blood samples of 5 μL were collected 

from each mouse at 10 min intervals [27]. Immediately before the first sample collection, a 

small portion of the tail tip (1 mm) was cut with a surgical blade to allow the collection of 

small drops of blood. Mice were allowed to move freely in their home cage with ad libitum 

access to food and water. For each blood collection, mice were placed inside a cardboard 

tube and quickly held by the base of the tail. Using a 10 μL pipette, a 5 μL sample of 

whole blood was collected and transferred to 105 μL of phosphate-buffered saline (PBS) 

with 0.05% tween-20 (PBS-T). After each blood collection, fingertip pressure was gently 

applied to the tail tip to stop bleeding. Samples were immediately placed on dry ice and 
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stored at −80 °C. We used a sensitive sandwich ELISA for GH, according to the instructions 

previously published [27]. Mean GH levels were calculated by averaging all GH values from 

each mouse.

2.3. Quantitative real-time PCR

The entire hypothalamus of late pregnant NestinΔGHR (n = 8) and control (n = 7) 

mice was collected and RNA was extracted with TRIzol (Invitrogen, Carlsbad, CA), 

followed by incubation in DNase I RNase-free (Roche Applied Science) and then 

reverse transcription using 2 μg of total RNA, SuperScript II Reverse Transcriptase 

(Invitrogen) and random primers p(dN)6 (Roche Applied Science). Real-time PCR was 

performed using the 7500TM Real-Time PCR System (Applied Biosystems, Warrington, 

UK), Power SYBR Green Gene Expression PCR Master Mix (Applied Biosystems) 

and specific primers for target genes: Actb (forward: gctccggcatgtgcaaag; reverse: 

catcacaccctggtgccta), Gapdh (forward: gggtcccagcttaggttcat; reverse: tacggccaaatccgttcaca), 

Ghr (forward: atcaatccaagcctggggac; reverse: acagctgaatagatcctgggg), Stat5a 
(forward: cgctggactccatgcttctc; reverse: gacgtgggctcctcacactga) and Stat5b (forward: 

ggactccgtccttgataccg; reverse: tccatcgtgtcttccagatcg). Data were normalized to the geometric 

average of Actb and Gapdh. Relative quantification of mRNA was calculated by 2−ΔΔCt.

2.4. Perfusion and tissue processing

The experiment to confirm the absence of GH-induced pSTAT5 in the brain of NestinΔGHR 

mice was carried out in non-pregnant mice to avoid pregnancy-induced pSTAT5 in the 

hypothalamus [12, 25, 26]. Thus, non-pregnant NestinΔGHR and control mice (n = 3/group) 

received an intraperitoneal (i.p.) injection of porcine pituitary GH (20 μg/g of body weight, 

National Hormone and Pituitary Program) and were perfused 90 min later. To determine the 

number of pSTAT5 immunoreactive cells in the hypothalamus during pregnancy, control (n 
= 8) and NestinΔGHR mice (n = 6) were perfused during late gestation (gestational day 14 

to 18) without any prior treatment. For the perfusion, mice were deeply anesthetized and 

perfused transcardially with saline, followed by a 10% buffered formalin solution. Brains 

were post-fixed for 45 min and cryoprotected overnight at 4 °C in 0.1 M PBS containing 

20% sucrose. Brains were cut in 30-μm thick sections using a freezing microtome. Four 

series of tissues were collected in antifreeze solution and stored at −20°C.

2.5. pSTAT5 staining

Brain slices were rinsed in 0.02 M potassium PBS, pH 7.4 (KPBS), followed by 

pretreatment in water solution containing 1% hydrogen peroxide and 1% sodium hydroxide 

for 20 min. After rinsing in KPBS, sections were incubated in 0.3% glycine and 0.03% 

lauryl sulfate for 10 min each. Next, slices were blocked in 3% normal serum for 1 h, 

followed by incubation in an anti-pSTAT5Tyr694 primary antibody (Cell Signaling, Beverly, 

MA, Cat# 9351; RRID: AB_2315225; 1:1,000). After two days, sections were rinsed in 

KPBS and incubated for 90 min in AlexaFluor488-conjugated secondary antibody (1:500, 

Jackson ImmunoResearch Laboratories, Cambridge, MA). Then, sections were rinsed in 

KPBS, mounted onto gelatin-coated slides and covered with Fluoromount G mounting 

medium (Electron Microscopic Sciences, Hatfield, PA).
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2.6. Image analysis

A Zeiss Axiocam 512 color camera adapted to an Axioimager A1 microscope (Zeiss, 

Munich, Germany) was used to obtain the photomicrographs. The ImageJ software (http://

rsb.info.nih.gov/ij/) was used to manually count the number of pSTAT5 immunoreactive 

neurons in two or three rostrocaudal levels of the PVH (Bregma −0.70 and −0.95 mm), ARH 

(Bregma −1.25 to −1.75 mm) and VMH (Bregma −1.25 to −1.75 mm).

2.7. Statistical analysis

GraphPad Prism software (GraphPad, San Diego, CA) was used for the statistical analyses. 

Unpaired two-tailed Student’s t-test was used in the comparisons between the groups. Data 

were expressed as mean ± standard error of the mean.

3. RESULTS

3.1. Increased pulsatile GH secretion in late pregnant mice

In accordance with previous studies that have shown augmented GH secretion in pregnant 

mice [21, 22], we observed increased mean GH levels in late pregnant mice, as compared 

to virgin group (t(5) = 3.169, P = 0.0249; Fig. 1). Thus, similarly to other hormones 

like prolactin and placental lactogens [8, 9] that also induce the activation of the STAT5 

signaling pathway, circulating GH levels are also increased in pregnant mice.

3.2. Generation of neuron-specific GHR knockout mice

To investigate the importance of GHR signaling in the brain, we produced a neuron-specific 

GHR knockout mouse (NestinΔGHR mice). To confirm the efficacy of the targeted deletion, 

hypothalamic Ghr gene expression was determined in late pregnant mice. Compared to 

control animals, NestinΔGHR mice exhibited a robust reduction in Ghr mRNA levels in the 

hypothalamus (t(13) = 5.841, P < 0.0001; Fig. 2A). In contrast, no differences in Stat5a 
and Stat5b mRNA levels were observed between control and NestinΔGHR mice (Fig. 2A). 

To determine whether neuron-specific GHR ablation is sufficient to prevent GH-induced 

activation of the STAT5 signaling pathway in the hypothalamus, non-pregnant control and 

NestinΔGHR mice received an i.p. GH injection. As expected [23, 24], numerous pSTAT5 

immunoreactive cells were observed in the PVH, ARH and VMH of GH-injected control 

mice (Fig. 2B). On the other hand, virtually no pSTAT5 positive cell was observed in these 

nuclei of GH-injected NestinΔGHR mice (Fig. 2C).

3.3. Reduced number of pSTAT5 immunoreactive cells in the hypothalamus of pregnant 
NestinΔGHR mice

Late pregnancy causes the surge of pSTAT5 immunoreactive cells in hypothalamic nuclei 

that also exhibit GH-induced pSTAT5 [12, 25, 26]. To determine whether GHR signaling is 

responsible for inducing pSTAT5 in the hypothalamus of pregnant mice, pregnancy-induced 

pSTAT5 was assessed in the hypothalamus of control and NestinΔGHR mice. As previously 

shown [12, 25, 26], pregnancy alone is sufficient to induce pSTAT5 in the PVH, ARH and 

VMH of control mice (Fig. 3). Although the number of pSTAT5 immunoreactive cells in 

the PVH was not different between control and NestinΔGHR pregnant mice, neuron-specific 
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GHR ablation reduced the number of pSTAT5 immunoreactive cells in the ARH (t(12) = 

2.243, P = 0.0446) and VMH (t(12) = 2.684, P = 0.0199; Fig. 3). Thus, GHR signaling 

contributes with the activation of the STAT5 intracellular pathway in the hypothalamus of 

pregnant mice.

4. DISCUSSION

In the present study, we showed evidence that GHR signaling is partially responsible for the 

expression of pSTAT5 that naturally occurs in the hypothalamus of pregnant mice. Using 

a mouse model in which the PrlR was deleted from forebrain neurons, Gustafson et al. 

[25] observed a partial reduction in the number of pSTAT5 immunoreactive cells in several 

hypothalamic nuclei during pregnancy [25]. Thus, the activation of both PrlR and GHR 

during pregnancy recruits the STAT5 transcription factor in the brain.

Neuron-specific GHR ablation was achieved by using the nestin-cre mouse model. This 

strain is known to present neuroendocrine abnormalities like reduced body growth and 

suppressed pituitary GH secretion [28–30]. These defects are caused by the presence of 

a GH minigene that was inserted into the transgene construct, whose expression inhibits 

endogenous GH secretion via negative feedback mechanisms [30]. Importantly, since 

we induced GHR ablation in neurons, these endocrine dysfunctions were prevented in 

NestinΔGHR mice. Actually, the absence of GH negative feedback in NestinΔGHR mice leads 

to GH hypersecretion and consequently increased body growth [27, 31–33]. Therefore, 

differently than nestin-cre mice that exhibit a GH deficiency phenotype, NestinΔGHR mice 

are protected from the neuroendocrine abnormalities caused by central transgene expression. 

We did not determine whether prolactin secretion is normal in NestinΔGHR mice. However, 

NestinΔGHR mice show normal fertility (data not shown), which is a function regulated by 

prolactin [34]. Furthermore, NestinΔGHR mice exhibit normal litter size at birth and weaning, 

unaltered litter growth and intact lactation-induced hyperphagia [31]. Considering that 

defects in prolactin secretion could lead to infertility, poor maternal behavior and reduced 

milk production (which affects both litter growth and maternal feeding), it is very unlikely 

that the lower number of pSTAT5 immunoreactive cells displayed by pregnant NestinΔGHR 

mice was caused by decreased prolactin secretion. Finally, in late pregnant mice, the 

activation of PrlR relies on the secretion of placental lactogens and not through pituitary 

prolactin, whose expression could be affected by neuron-specific transgene expression.

Although GH is not considered a typical gestational hormone, circulating GH levels increase 

during pregnancy in humans and mice [18–22]. Since the mouse pituitary is responsible to 

produce GH during pregnancy, GH secretion maintains a pulsatile pattern [21, 22]. In the 

present study, we confirmed the pulsatile pattern of GH secretion and also the increased 

mean GH levels during late pregnancy, as compared to virgin mice. Of note, all three 

pregnant mice evaluated exhibited very distinct patterns of GH secretion during pregnancy. 

This great variability was not previously reported [21, 22] and its cause is unknown, but 

it may be related to the range of gestational days used in our experimental sampling. 

GH possibly plays essential physiological roles during pregnancy, controlling fetus growth, 

maternal metabolism and protein synthesis [35]. More recently, our group has shown that 

neuron-specific GHR ablation reduces the pregnancy-induced hyperphagia and body fat 
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gain, and produces profound improvement in insulin resistance in late pregnant mice [31]. 

Whether these effects are mediated by STAT5 signaling pathway is currently unknown. 

Nonetheless, Stat5a/b ablation in neurons prevents behavioral, metabolic and epigenetic 

long-term changes induced by the experience of gestation and lactation [17]. Therefore, the 

activation of STAT5 signaling pathway in the brain during pregnancy is likely involved in 

short- and long-term gestational adaptations.

Central ablation of either PrlR or GHR reduces the number of pSTAT5 immunoreactive 

cells in the ARH and VMH. In the ARH, GHR expression is predominantly observed in 

neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y [32, 36–38], 

although other ARH neuronal populations also exhibit a variable degree of responsiveness 

to GH [27, 38–41]. In contrast, PrlR is mostly expressed in ARH tyrosine hydroxylase- 

or Rip-expressing neurons, and not in AgRP cells [42, 43]. Thus, central ablation of 

PrlR or GHR probably prevented STAT5 activation in different ARH neuronal populations 

during pregnancy. In the VMH, PrlR expression is restricted to its ventrolateral subdivision 

(VMHvl), whereas GH responsive cells are observed in the entire VMH [23, 44]. During 

pregnancy, pSTAT5 immunoreactive cells are only observed in the VMHvl, suggesting a 

prevailing role of PrlR signaling inducing pSTAT5 in this brain region. However, PrlR 

ablation in forebrain neurons did not completely prevent the pregnancy-induced pSTAT5 

expression in the VMH [25], suggesting that other STAT5-recruiting hormones, like GH, are 

also involved in this activation.

Intriguingly, neither PrlR nor GHR ablation was able to reduce pSTAT5 expression in the 

PVH [25]. PVH neurons express Prlr and Ghr mRNA [10, 23]. However, while a systemic 

GH injection induces a robust pSTAT5 expression in the mouse PVH [45], exogenous 

prolactin has a limited capacity to induce pSTAT5 in the PVH of virgin animals [10]. 

However, lactating mice exhibit a prolactin-dependent pSTAT5 expression in the PVH [13]. 

Furthermore, reproductive experience increases the responsiveness to prolactin in the PVH 

[46]. In the PVH, prolactin responsive cells are mainly composed of oxytocin neurons [46, 

47], whereas just a few PVH oxytocin neurons exhibit GH-induced pSTAT5 [45]. In this 

regard, GH-induced pSTAT5 in the PVH is majoritarily found in corticotropin-releasing 

hormone, somatostatin and thyrotropin-releasing hormone neurons [45, 48]. Thus, similarly 

to the ARH, GH and prolactin act in different neuronal populations of the PVH. Besides 

prolactin and GH, numerous others cytokines can potentially induce pSTAT5 [8]. Leptin 

levels increase during pregnancy and leptin can recruit STAT5 signaling pathway in the 

hypothalamus [49]. However, the mouse PVH exhibits very low leptin receptor expression 

[50, 51]. Other examples of STAT5-recruiting hormones that increase during pregnancy 

are erythropoietin [52], thrombopoietin [53], interleukin-4 [54] and interleukin-10 [55]. 

However, whether PVH neurons express the receptors of these hormones and if they are 

responsible to induce pregnancy-induced pSTAT5 in this nucleus is currently unknown. In 

conclusion, a subset of hypothalamic neurons requires GHR signaling to express pSTAT5 

during pregnancy. Our findings help to identify the endocrine factors that induce the 

activation of the STAT5 in the brain during pregnancy, which in turn is likely involved 

in short- and long-term metabolic gestational adaptations.
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Fig. 1. 
Increased pulsatile GH secretion in late pregnant mice. Mean circulating GH levels and 

three examples of the pulsatile pattern of GH secretion in virgin females (V; n = 4) and late 

pregnant C57BL/6 mice (P; n = 3). *, P = 0.0249.
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Fig. 2. 
Validation of neuron-specific GHR knockout mice. A. Hypothalamic gene expression in late 

pregnant control (n = 7) and NestinΔGHR (n = 8) mice. ****, P < 0.0001. B. GH-induced 

pSTAT5 in hypothalamic nuclei of non-pregnant control mice (n = 3). C. GH-induced 

pSTAT5 in hypothalamic nuclei of non-pregnant NestinΔGHR mice (n = 3). Abbreviation: 3V, 

third ventricle. Scale Bar = 100 μm.
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Fig. 3. 
Reduced number of pSTAT5 immunoreactive cells in the hypothalamus of pregnant 

NestinΔGHR mice. Distribution of pSTAT5 immunoreactive cells in hypothalamic nuclei of 

late pregnant control (n = 8) and NestinΔGHR mice (n = 6). Abbreviation: 3V, third ventricle. 

Scale Bar = 100 μm. *, P < 0.05.
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