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ABSTRACT Decades of research, much of it in Escherichia coli, have
yielded a wealth of insight into bacterial cell division. Here, we provide an
overview of the E. coli division machinery with an emphasis on recent
findings. We begin with a short historical perspective into the discovery of
FtsZ, the tubulin homolog that is essential for division in bacteria and
archaea. We then discuss assembly of the divisome, an FtsZ-dependent
multiprotein platform, at the midcell septal site. Not simply a scaffold, the
dynamic properties of polymeric FtsZ ensure the efficient and uniform
synthesis of septal peptidoglycan. Next, we describe the remodeling of
the cell wall, invagination of the cell envelope, and disassembly of the di-
vision apparatus culminating in scission of the mother cell into two
daughter cells. We conclude this review by highlighting some of the open
questions in the cell division field, emphasizing that much remains to be
discovered, even in an organism as extensively studied as E. coli.
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OVERVIEWOF E. COLIDIVISION
In Escherichia coli and other bacteria, cell division is executed by a multi-
protein transenvelope complex called the “divisome” (1–5). The first pro-
tein to localize to the midcell division site—the cytoplasmic tubulin-like
GTP hydrolase FtsZ—plays a foundational role in divisome organization,
and dynamic treadmilling behavior of FtsZ polymers ensures uniform as-
sembly of the peptidoglycan (PG) cross wall (6–9). Conserved in bacteria,
archaea, and chloroplasts, FtsZ is also found in mitochondria from diverse
single-celled eukaryotes but not in animal or plant nuclear genomes (10).
FtsZ associates with the cytoplasmic membrane in a ring-like arrangement,
the eponymous “Z ring.” Membrane association is mediated by two essen-
tial proteins, FtsA and ZipA (4). The intrinsic properties of FtsZ together
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with the concerted actions of several FtsZ modulatory
proteins help corral diffuse FtsZ polymers to the
nascent septal site. Additional essential proteins that
traverse the cytoplasmic membrane are recruited in a
genetically defined sequence: first FtsK, then FtsQ, FtsL,
and FtsB, followed by FtsW with FtsI, and finally, FtsN
(11, 12). These factors are involved in structural, mod-
ulatory, and PG-remodeling functions. The assembly
of the divisome at the nascent division site is coordi-
nated with growth and cell cycle progression. Once
core proteins reach optimal concentrations within the
divisome, an apparent conformational change stimu-
lates activation of cell wall synthesis via specialized
septal PG synthases. Treadmilling behavior within
FtsZ polymers guides the distribution of the cell wall
synthesis enzymes uniformly around the septum (8).
Cross wall synthesis is a major driver of constriction, and
other transenvelope divisome components ensure the
coordinated invagination of the outer membrane (OM).
Division culminates with divisome disassembly and daugh-
ter cell separation (13). Focusing on the molecular details
and recent literature, below, we review the mechanisms
ensuring temporal and spatial fidelity during the course of
E. coli division.

BRIEF HISTORYOF THE DISCOVERY OF
FTSZ
The earliest mention of nondividing E. coli cell “fila-
ments” or “snakes” in response to low doses of UV radi-
ation can be traced back to reports in the 1930s and
early 40s (14). In the 1960s, phenotypic analysis of
libraries of heat-sensitive mutants identified a subset
that formed long, filamentous cells at elevated growth
temperatures of 42°C. Termed “filamentation tempera-
ture sensitive (fts)” genes based on this phenotype, this
nomenclature persists to the present day as a descriptor
for essential divisome components (15–17) (Fig. 1A).
Pioneering studies by Lutkenhaus and Donachie led to
the cloning of ftsA and ftsZ (18–20).

The 1990s saw an explosion of data establishing FtsZ as a
bacterial cytoskeletal protein. These efforts were led by the
groundbreaking 1991 study of Bi and Lutkenhaus which
combined electron microscopy and immunogold labeling
to reveal FtsZ localization at the leading edge of the inva-
ginating cytoplasmic membrane (6). Fluorescence micros-
copy, known for its higher sensitivity but lower resolution
compared to immunogold electron microscopy, displayed

FtsZ in a continuous ring-like configuration at midcell,
the Z ring (21, 22). This advance, in turn, permitted
experiments illuminating the hierarchy of divisome as-
sembly taking advantage of conditional mutations in
essential cell division proteins (12). Together with the
high degree of conservation of FtsZ and data indicating
that it was the target of both the SOS (DNA damage
response system) and the positional regulator of cell divi-
sion, Min, these findings firmly established FtsZ as a foun-
dational component of the bacterial division machinery
(6, 23–26). Biochemical analysis from the de Boer,
RayChaudhuri, and Lutkenhaus groups confirmed that
FtsZ functioned as a GTPase (27–29). Like the eukaryotic
cytoskeletal protein tubulin, FtsZ polymerization is de-
pendent on GTP and can form single-stranded polymers/
filaments, sheets, bundles, and rings, depending on buffer
conditions. FtsZ does not, however, form the 13-stranded
microtubule structure typical of a/b tubulin dimers
(29–31). Structural data indicating that FtsZ and tubulin
share common core domains despite limited primary
sequence similarity unequivocally established FtsZ as an
ancestral homolog of tubulin (32, 33) (Fig. 1B).

Collectively, these early studies contributed to the para-
digmatic shift in our understanding of subcellular orga-
nization in bacteria and contributed to the emergence
of an entirely new field, bacterial cell biology. Enabled
by ingenious genetic approaches, cell-free reconstitu-
tion studies, superresolution microscopy, and high-re-
solution structural analyses, the last 20 years have
revealed basic principles underlying assembly and acti-
vation of the division machinery. We summarize key
findings in these areas focusing on E. coli and include
data from other bacterial species where appropriate.

THE PROPERTIES OF FTSZ

FtsZ, the protein. The FtsZ polypeptide can be subdi-
vided into five domains (Fig. 1C). First is an unstruc-
tured N terminus of variable length ranging from 10
amino acid (aa) residues in E. coli to 68 aa in cyanobac-
teria (34, 35). The role of the N terminus is unknown,
although in cyanobacteria, it is considered to influence
FtsZ polymerization (34). Following the N terminus is a
large tubulin-like core domain that contains GTP-bind-
ing residues and is sufficient for polymerization in vitro
but cannot support division in vivo (32, 35). Next is the
C-terminal linker (CTL), an intrinsically disordered region
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FIG 1 The tubulin-like FtsZ plays a foundational role in E. coli division. (A) Phase images of wild-type E. coli under permissive (30°C)
and ftsZ84 (Ts) mutant cells under restrictive (42°C) growth temperatures (M. Buczek, unpublished data). FtsZ84 fails to localize to the
nascent division site under nonpermissive growth conditions. Bar, 5mm. (B) Three-dimensional structures of Tubulin and FtsZ: an a/b
heterodimer of tubulin (PDB 1JFF) (left); Methanococcus jannaschii FtsZ (PDB 1W5B) dimer made up of two identical monomers (right).
The C-terminal linker (CTL) and C-terminal peptide (CTP) domains are not present in the structure. Sandwiched in the dimeric units of
each protein is a space-filled model of GTP. The two structures were modeled using UCSF Chimera (https://www.cgl.ucsf.edu/chimera/).
(C) The domain architecture of FtsZ consists of a short disordered N-terminal end followed by the globular core, which contains the
tubulin-signature motif responsible for binding GTP and GTP hydrolysis residues. The core is linked to the C-terminal peptide (CTP) by
an intrinsically disordered linker region (CTL). The 14 aa CTP serves as a common binding site for various FtsZ binding proteins and
can be further split into conserved and variable (CTV) regions. (D) The structure of E. coli FtsZ (ftsZL178E; residue L178 is shown in
pink; PDB 6UNX) monomer bound to GTP is shown and was generated using UCSF Chimera. FtsZ L178E is incompetent for assembly
in the presence of GTP (32). Other critical residues D212 and G105 are labeled and are mutated in strains ftsZ2 (D212G) and ftsZ84
(G105S) alleles referred to in the main text. In the polymer, the T7 synergy loop at the bottom surface is inserted into the nucleotide
binding pocket of the second subunit resulting in GTP hydrolysis. Monomers are added toward the T7 loop-end of the growing polymer
referred to as the “1” end. Monomers disperse from the end to which GTP is bound, which is referred to as the “2” end of a treadmilling
FtsZ polymer. (E) Conventional fluorescence images of FtsZ polymers at midcell in wild-type E. coli cells. ZapA-GFP is used as a proxy for Z
ring localization in these cells (A. Cardenas Arevalo, unpublished data). Bar, 5mm; super resolution PALM microscopy image of FtsZ polymer
assemblies in a cross section of the “ring” in a wild-type cell reveals a heterogeneous wreath-like arrangement (image courtesy of Z. Jason Lyu
and Jie Xiao). Bar, 200nm. A diagrammatic interpretation of cytoplasmic FtsZ polymers arranged in a random, heterogenous structure 16nm
away from the inner membrane (IM). The FtsZ polymers are tethered to the IM by FtsA or ZipA (not shown).
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ranging between;50 aa in the Gammaproteobacteria and
firmicutes to over 250 aa in some Alphaproteobacteria
(36). Poorly conserved at the primary sequence level, dif-
ferences in CTL composition affect FtsZ polymer mor-
phologies and function in vivo (36–38). The CTL is
followed by a highly conserved patch of 14 aa (the C-ter-
minal peptide [CTP]) that is involved in mediating FtsZ
interactions with several essential and accessory proteins
in division (39, 40). The CTL provides the CTP the con-
formational freedom to interact with a variety of protein
partners (41). Recent data suggest that the CTL and CTP
can also influence FtsZ-FtsZ interactions within polymers
and polymer bundles, although this has yet to be thor-
oughly explored (42). Finally, the extreme C terminus of
FtsZ, the C-terminal variable (CTV) region, differs widely
in length and composition between species, the latter dic-
tating its influence on lateral interactions between FtsZ
polymers (43).

FtsZ, the dynamic polymer. FtsZ assembles into sin-
gle-stranded homopolymers by a tail-to-head associa-
tion of monomers. Although monomers are capable of
binding GTP on their own, the catalytic site for GTP
hydrolysis forms exclusively at the intermonomer inter-
face (27–29, 32, 44) (Fig. 1D). FtsZ polymerization is
thus dependent on GTP binding but not hydrolysis.
GTP hydrolysis destabilizes the FtsZ polymer leading to
disassembly. The available intracellular concentration
of FtsZ (;4 to 6mM) far exceeds that of the critical
concentration of assembly in vitro (7, 45). Curiously,
formation of even single-stranded FtsZ polymers exhib-
its cooperativity with a critical concentration of 1mM
(46). A plausible mechanism to reconcile this apparent
contradiction resides in the ability of FtsZ to adopt two
conformations: open, residing primarily in the polymer,
and closed, present primarily in the monomer pool. A
switch between the closed and open conformations
upon polymerization exposes a different interface,
which in turn promotes additional polymerization (47,
48). Mathematical models predict that such polymeriza-
tion-associated conformational change would allow for
higher-affinity associations among the subunits of the
polymer, explaining why assembly is cooperative (49, 50).

In vitro, FtsZ polymers exhibit continuous chiral tread-
milling, a motion defined by elongation of a polymer at
one end and shortening of the same polymer at the op-
posite end. Subunits are added to the “plus” end and

fall off the polymer at the “minus” end, with individual
subunits within the polymer remaining stationary (51).
In vivo, only ;30% of cellular FtsZ is present in the Z
ring at a given time and FtsZ molecules from cytoplas-
mic and membrane-bound pools are in rapid dynamic
exchange with a lifetime of ;8 s (52, 53). Consistent
with treadmilling, single-molecule tracking analysis
indicates that individual FtsZ molecules within the
cytokinetic ring are largely immobile (54). Seminal
superresolution imaging studies in E. coli and Bacillus
subtilis concurrently revealed that FtsZ treadmilling is
powered by GTP hydrolysis; mutants that perturb nu-
cleotide hydrolysis alter the rate of treadmilling in a
proportional fashion (55, 56). Further, In B. subtilis,
FtsZ treadmilling coalesces FtsZ polymers into a dense,
tight-pitched ring at the nascent septal site (57).
Treadmilling FtsZ polymers are oriented in both direc-
tions around the division plane and contribute to the
uniform distribution of the PG synthesis machinery at
the midcell septal site in E. coli and B. subtilis (55, 56)
(discussed further in “Coupling of septal PG synthesis
to FtsZ treadmilling”).

The treadmilling behavior of FtsZ implies a defined po-
larity for FtsZ filaments with regard to subunit-subunit
interactions, raising the question of the identity of the
plus end (58). Elegant genetic work from the Lutkenhaus
group suggests that the plus end resides proximal to the T7
synergy loop involved in GTP hydrolysis at the base of the
subunit rather than closer to the GTP-binding site on top
of the subunit (59) (Fig. 1D). Mutations proximal to the T7
synergy loop are not tolerated in vivo, suggesting that new
polymers are added to the FtsZ filament at this interface
(59). Notably, the polarity exhibited by FtsZ is the reverse
of that of microtubules (59).

Although recent work suggests that FtsZ primarily
serves as a guide for septal cross wall synthesis, a long-
standing controversy in the field centers on the poten-
tial for FtsZ to generate the force necessary for
constriction. This model, which implicates GTP hydrolysis
as a driver of constriction via a change in the morphology
of FtsZ polymers, is supported by the ability of reconsti-
tuted membrane-anchored FtsZ to deform tubular lipo-
somes (60–62). Substantial data, however, argue against
FtsZ as a major force-generating mechanism after con-
striction initiation. A mutation in ftsZ, ftsZ26, that shifts
the geometry of the divisome from a ring to an extended
spiral results in the formation of skewed cross walls that
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contract in a twisted formation, indicating that constric-
tion of an annular cytokinetic ring is dispensable for divi-
sion (63, 64). Likewise, FtsZ mutants defective in GTP
binding and/or hydrolysis in vitro (FtsZ84 [G105S] and
FtsZ2 [D212G]) retain the ability to support septation in
vivo, suggesting that nearly all of GTPase activity of FtsZ
is dispensable for division (27, 28, 55, 63, 65–68). Instead,
nucleotide hydrolysis appears to be required primarily for
controlling FtsZ-treadmilling dynamics and the uniform
circumferential distribution of septal cell wall synthases
(55, 56). This conclusion is underscored by recent findings
in B. subtilis: FtsZ treadmilling condenses FtsZ polymers
into a dense midcell ring that recruits cell wall synthases
more efficiently, concentrating their enzymatic activity
into a tight-pitched midcell zone (57, 69).

FtsZ, as part of the cytokinetic ring.While the precise
organization of FtsZ filaments within the cytokinetic
ring is still unsettled, recent advances in high-resolution
imaging and single-molecule analyses have provided
important insights into the in vivo architecture of the Z
ring. In cells at the beginning of visible constriction, the
ring is estimated to have a cross-sectional diameter of
;550 to 600 nm with a width (along the cell length
axis) and radial thickness of ;100 and ;60 nm, respec-
tively (68). Increasing intracellular FtsZ concentration
has little, if any, impact on the width of the Z ring, sug-
gesting that it is a defined parameter (70). Conventional
fluorescence microscopy suggests that the Z ring is continu-
ous, while superresolution imaging supports a discontinu-
ous, heterogeneous structure consisting of short, randomly
overlapping filaments arranged into a wreath-like array
with nodes of higher density scattered throughout (21, 70,
71) (Fig. 1E). The peak intensity nodes likely correspond to
clusters of FtsZ polymers at a spatial resolution limit of
;35nm (8, 70). Cryoelectron tomograms in E. coli and
other species indicate the presence of long overlapping
polymers of FtsZ positioned a short distance (;16nm)
away from the cytoplasmic membrane resembling a more
continuous structure (72) (Fig. 1E).

CORRALLING FTSZ POLYMERS TO
MIDCELL

The topological factors. The prevailing view is that the
timing and position of FtsZ assembly are governed pri-
marily by modulatory factors (73–75). Nearly 94% of

cells under nutrient-rich conditions supporting fast
growth and ;60% of cells under nutrient-poor condi-
tions supporting slow growth contain Z rings (73, 76).
FtsZ concentration remains largely unchanged over the
course of the cell cycle in rich medium. Although FtsZ
concentration increases by ;20% during the lifetime of
a cell cultured in nutrient-poor medium, the correlation
between Z ring assembly and intracellular concentra-
tion remains weak under these conditions (73, 76).

Dispensable for growth individually and largely in com-
bination, a few proteins control the location of FtsZ as-
sembly in E. coli (Fig. 2A). The predominant function
of these proteins appears to be inhibitory, effectively
confining FtsZ polymers to midcell to ensure high local
concentration at the nascent division site. Best known is
the Min system, which inhibits FtsZ assembly specifi-
cally at cell poles (77–79). Additional factors include
those that help prevent FtsZ assemblies over unsegre-
gated chromosomal material (e.g., SlmA) and those that
coordinate FtsZ assembly with the termination of DNA
replication (e.g., Ter-MatP linkage) (80, 81). The activ-
ity of these dedicated topological systems is facilitated
by general-acting factors, including the Zaps (FtsZ-
associated proteins) that promote FtsZ assembly within
the context of the ring (39). It is unclear whether the
nonessential nature of these systems foretells the exis-
tence of an as-yet-unidentified positioning factor(s) or
if FtsZ assembly at the nascent division site is promoted
when the local concentration of the protein reaches
high enough levels by the collective action of these fac-
tors that the system becomes self-reinforcing.

Min, a negative positional regulator. The classic min
mutant phenotype of heterogeneously sized and anu-
cleate “mini-cells” resulting from midcell and polar
divisions was first described by Adler in 1967 (82).
Cloned by de Boer and colleagues in the late 1980s, the
E. coli min locus encodes three proteins: MinC, the
membrane-associated ATPase MinD, and MinE. MinD
and MinE provide topological specificity to MinC,
which interacts directly with FtsZ to inhibit assembly
(24, 77). Data suggest that MinC binds to the FtsZ CTP,
placing its inhibitory domain at the intermonomer
interface of an FtsZ subunit occluding polymer assem-
bly (83–85). MinC is activated by MinD-mediated
recruitment to the membrane and, potentially, additional
factors (86–88). Fluorescence microscopy, genetics, and
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FIG 2 Assembly and activation of the divisome. (A) Left, FtsZ polymers (green) are corralled at midcell by a number of factors. Negative
positional factors Min and nucleoid occlusion (NO), which together generate a high to low gradient of inhibitor concentration from poles to
the cell center (gray), prevent FtsZ assembly elsewhere in the cell. The replicating ori regions (red ovals) and the ter region (yellow) on a
duplicating chromosome are marked. FtsZ cross-linking proteins, including ZapA, ZapC, and ZapD (blue), are postulated to condense FtsZ
polymers through lateral interactions to ensure efficient recruitment of cell wall synthesis enzymes to midcell. The FtsZ CTL domain is also
considered to contribute to FtsZ lateral interactions. Right, the Ter-MatP linkage provides a positive positional signal that possibly links
chromosome replication and segregation with FtsZ placement. The DNA-binding protein MatP (pink diamonds) binds both the terminus (ter)
region on the chromosome and the ZapB-ZapA complex. (B) The genetically defined assembly of the essential E. coli divisome proteins is
shown. The direction of the arrows represents the presence of a protein that helps in the recruitment of the next protein in the sequence. In
this scheme, the proteins that constitute the cytokinetic ring at the cytoplasmic face of the IM can be visualized initially followed by the integral
membrane proteins which predominantly play structural, regulatory, and synthesis roles in cell wall assembly. FtsN, the last protein to be
recruited, can in certain genetically defined backgrounds arrive early to the divisome and through its interactions with FtsA (arrow) back recruit
the other proteins. (C) The cytoplasmic core of the cytokinetic ring is composed of three proteins: FtsZ, FtsA, and ZipA. Together, FtsA and
ZipA anchor FtsZ filaments to the membrane. Of the two, FtsA plays the primary role in division progress. ZipA influences FtsA
polymerization (dotted double arrow) and enhances the recruitment of other division proteins to the midcell site (curved arrow; only FtsK is
included in this figure for clarity). FtsZ and FtsA polymer architecture are considered to be influenced by each other (dotted double arrow). (D)
In dividing cells, high levels of FtsN accumulate at the septum where it interacts with FtsA on the cytoplasmic side. The periplasmic essential
(E) subdomain of FtsN is involved in activating (arrow) the FtsQLB complex. The resulting conformational changes in FtsQLB allow it to
transition from a recruitment state to an activated form. At this point, FtsL interacts with FtsI to stimulate the transglycosylase and
transpeptidase activities of FtsW and FtsI, respectively, leading to septal PG (sPG) synthesis. The periplasmic SPOR domain of FtsN also
interacts with denuded glycan strands (G) at the septum, formed due to the action of amidases (Ami) cleaving the sPG. This invokes a septal
PG feedback loop and the recruitment of additional FtsN molecules to midcell. Signals from both cytoplasmic (FtsA-FtsN) and periplasmic
(FtsN-PG and FtsN-FtsQLB) compartments lead to the activation of cross wall synthesis. FtsA and FtsQ interactions may help stabilize FtsQLB
directly or indirectly (dotted double arrow). FtsA oligomerization state may also influence FtsWI activity (dotted arrow). IM, inner membrane;
PG, peptidoglycan; OM, outer membrane.
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biochemistry indicate that Min-mediated inhibition of
FtsZ is a dynamic process where MinC oscillates on and
off the cell membrane driven by repeating cycles of ATP
hydrolysis of the membrane-associated MinD and the ac-
tivity of MinE (41, 78, 89–92). MinE stimulates the
ATPase activity of MinD at cell poles, thereby promoting
disassociation of the MinCD complex (93). Subsequently,
MinD reassembles on the membrane at the other half of
the cell and recruits MinC afresh from the cytoplasmic
pool. Data indicating that MinE interferes with the MinC-
MinD interaction on the membrane even when ATP hy-
drolysis by MinD is blocked and MinD remains associated
with membrane provide further support for this model
(92). Together, oscillations of MinC and MinD on and off
membrane at alternate poles establish a time-averaged
gradient of FtsZ inhibition at the cytoplasmic membrane
with a minimum at midcell, favoring FtsZ assembly at this
position (78, 90) (Fig. 2A).

The chromosome as a positional regulator. In the
late 1980s, Conrad Woldringh observed that the site of
cell division rarely overlaps with the chromosome
(nucleoid), even when DNA replication is perturbed, a
phenomenon later termed “nucleoid occlusion” (NO)
(94, 95). The chromosome occupies a majority of the
cell; thus, together with the Min system, NO may be
sufficient to prevent aberrant septation (96). In E. coli,
genetic data suggest that the FtsZ inhibitor and DNA-
binding protein SlmA contributes to NO by binding to
DNA throughout the cell (97, 98). SlmA interacts more
or less equally with all regions of the chromosome but
the terminus, which is positioned at the cell center prior
to division, leaving a SlmA-free zone for FtsZ assembly
(98) (Fig. 2A).

At the same time, defects in slmA have no detectable
impact on the timing or position of Z ring formation, sug-
gesting either that the Min system alone is sufficient to
regulate FtsZ assembly at midcell during standard growth
and SlmA is needed when DNA integrity is compromised
or that additional NO factors exist (99). While loss of
slmA is synthetically lethal with defects in min, the viabil-
ity of min slmA double mutants is restored by increasing
FtsZ levels 2- to 3-fold or by growth in minimal medium
when the cell cycle is slowed down (97). These data sug-
gest that SlmA together with Min helps increase the local
concentration of FtsZ, facilitating assembly at midcell. If
correct, this function would be shared with the unrelated

B. subtilis NO factor, Noc, which condenses FtsZ poly-
mers into a tight-pitched ring at the nascent septum in
conjunction with its native Min system (100).

Ter-MatP linkage, a positive positional regulator. The
Ter-MatP linkage system promotes FtsZ assemblies at
midcell (80), making it the only positive topological
regulator of FtsZ assembly identified to date in E. coli.
The E. coli chromosome is spatially organized into four
macrodomains, large stretches of DNA that occupy spe-
cific regions of the cell during DNA replication. These
domains include Ori, which encodes the origin of DNA
replication, the right and left lateral domains, and the
Ter macrodomain, which encodes the terminus of repli-
cation (101). The Ter region is organized into a macro-
domain by MatP, a ter-binding protein (101). DNA-
bound MatP recruits ZapB and, indirectly, its binding
partner, ZapA (102). In vitro, ZapA interacts directly
with FtsZ polymers promoting lateral interactions, and
genetic and cytological data support a similar function
in vivo (81, 103–105). The MatP-ZapB-ZapA protein
complex aids FtsZ assembly at midcell by anchoring the
terminus of the chromosome to the division site, pro-
viding a possible link in coordinating division with
DNA replication (102) (Fig. 2A).

ASSEMBLY OF THE CYTOKINETIC RING

Association of FtsZ with the membrane. In E. coli,
FtsZ associates with the cytoplasmic membrane by the
aid of two proteins, FtsA and ZipA, and together they
form the essential core of the cytokinetic ring at midcell
(106, 107). FtsA and ZipA both interact with the FtsZ
CTP, and while either can anchor FtsZ polymers to the
membrane and support FtsZ assembly in vivo, both are
essential for division to proceed (107–112). A critical
ratio of FtsA:FtsZ and ZipA:FtsZ levels is required for
division; excess FtsA/ZipA inhibits division, but a com-
pensatory increase in FtsZ levels overcomes this inhibi-
tion (106, 113).

A peripheral membrane protein, FtsA, is widely con-
served, and accumulating data suggest that in addition
to mediating interaction of FtsZ polymers to the cyto-
plasmic membrane, it also coordinates recruitment of
downstream divisome components. FtsA belongs to the
actin superfamily of ATPases but possesses a different
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domain architecture (114, 115). Electron tomography of
E. coli cells overexpressing ftsA and ftsZ reveals FtsA-
FtsZ polymer complexes with FtsZ polymers situated
;16 nm away from the cytoplasmic membrane and
partial FtsA polymers present nearly halfway between
the two (72). FtsZ polymer dynamics on a lipid bilayer
containing FtsA is driven by GTP-dependent treadmil-
ling of FtsZ (51). A role for the ATP hydrolytic function
of FtsA in division is not clear. Mutations located near
the ATP-binding pocket of FtsA fail to support cell divi-
sion at higher temperatures (116). It is plausible that
ATP hydrolysis is involved in FtsA oligomer disassem-
bly or turnover, as mutants that reduce FtsA oligomeri-
zation suppress defects in ATP binding/hydrolysis and
ATP hydrolysis rates are reduced in oligomerization-
defective FtsA (116, 117).

Restricted to the Gammaproteobacteria, the integral
membrane protein ZipA anchors FtsZ polymers to the
cytoplasmic membrane (106). ZipA promotes the sta-
bility of the FtsZ cytokinetic ring in vivo, likely by cor-
ralling FtsZ polymers at midcell, a notion bolstered by
the ability of ZipA to cross-link FtsZ polymers in vitro
(112, 118). The requirement for ZipA can be bypassed
by gain-of-function mutations in ftsA (e.g., ftsA*
[R286W]), suggesting that the primary function of
ZipA is to serve as a supplementary membrane anchor
of FtsZ (119, 120) (Table 1) (discussed in “Role of FtsA
in recruitment of late division proteins”).

Lateral interactions of FtsZ polymers in the cytokinetic
ring. Note, for the purpose of this review, that we refer
to FtsZ assemblies with lateral contacts directly between
polymers as “bundles” and close polymer associations
facilitated by protein partners as “cross-links.”

The relative ability of purified FtsZ to bundle in vitro
differs substantially between bacterial species (43). E.
coli FtsZ exists primarily as single-stranded polymers
under standard assembly conditions (50mM morpholi-
neethanesulfonic acid [MES; pH 6.5], 50mM KCl,
2.5mM MgCl2, 1mM EGTA, and 1mM GTP), while B.
subtilis FtsZ forms large sheets and bundles in the same
buffer conditions (43). Differences in intrinsic lateral
interactions between the two species of FtsZ appear to
be mediated through the core and CTV domains,
potentially influenced by the CTL (36, 43). In vitro,
bundling is enhanced in FtsZ proteins derived from

various species when FtsZ concentration is increased or
in the presence of crowding agents, such as DEAE-dex-
tran, and divalent cations (31, 121–123).

Outside intrinsically driven lateral interactions, at least
three factors, the ZapAB complex, ZapC, and ZapD, bind
FtsZ directly and promote FtsZ polymer associations
within the cytokinetic ring (39) (Fig. 2A). Although indi-
vidually dispensable for division, cells lacking zapA, zapB,
or zapC exhibit diffuse Z rings and those deleted of two or
more Zaps show moderate filamentation, suggesting over-
lapping roles in FtsZ assembly (124–127). This redun-
dancy probably lies in corralling loosely assembled
clusters of FtsZ polymers, increasing local concentration
of the protein at the division site. Only ZapA is widely
conserved, while ZapC and ZapD are restricted to the
gammaproteobacterial class (103, 125–127). Biochemistry
indicates that all three Zaps cross-link FtsZ polymers by
distinct mechanisms. Tetramers of ZapA cooperatively
link FtsZ filaments through interactions with the FtsZ
core domain while dimers of ZapD cross-link via interac-
tions with the CTP (41, 128, 129). At least two FtsZ bind-
ing sites have been identified in ZapC, supporting a model
where ZapC monomers cross-link adjacent FtsZ polymers
through interactions with the core domain (130, 131). Of
note, ZipA also cross-links FtsZ polymers and in this as-
pect appears to be functionally redundant to the Zap pro-
teins (118).

Lateral interactions and polymer treadmilling, a
conundrum. It is not trivial to reconcile increases in
lateral interactions between FtsZ filaments with the
treadmilling behavior of FtsZ in the cell. In the simplest
sense, increasing contacts between adjacent polymers
should stabilize subunits within both polymers, inhibi-
ting turnover. Consistent with this prediction, GTP hy-
drolysis rates are reduced in laterally associated FtsZ
polymers in vitro (7, 122). Treadmilling dynamics, how-
ever, appear to differ between bundled and cross-linked
FtsZ polymers. While FtsZ CTL domain mutations that
enhance bundling in vitro reduce treadmilling velocity
in a reconstitution assay, the dynamic properties of
ZapA-cross-linked FtsZ polymers are essentially identi-
cal to “naked” wild-type FtsZ polymers (55, 132, 133).
This suggests that the CTL and ZapA control the dis-
tance between FtsZ polymer lateral associations without
strongly affecting the dynamics of the single-stranded
polymer. The weak affinity (micromolar range) of ZapA
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for FtsZ and the competition for binding with other
FtsZ modulatory proteins in the context of the divisome
likely render the ZapA-FtsZ interaction transient (133).
Individual polymer dynamics may thus be less affected
by cross-links than first principles would suggest. The
physiological relevance of FtsZ lateral associations in Z
ring assembly therefore appears to lie in funneling FtsZ
polymers to the nascent septal site and propagating
more treadmilling filaments, the latter potentially a con-
sequence of increased polymer collisions at high local
concentrations of the protein (57, 134).

A self-reinforcing corralling model for midcell FtsZ
assembly. Accumulating data support a model in
which the topological factors together with the Zaps
drive assembly of the septal cytokinetic ring by corral-
ling FtsZ polymers at midcell (69, 100, 132). In agree-
ment with this “self-reinforcing corral” model, accrual
of FtsZ to threshold numbers at the nascent septal site
appears to be critical for coordinating division with cell
size (135). Genetic data are also consistent with this view.
Increasing concentration of wild-type FtsZ or expressing a
hypermorphic variant, ftsZ*, that exhibits increased lateral
interactions in vitro suppresses the filamentation associ-
ated with double deletions in min and slmA or zapA and
zapC (97, 136, 137). Finally, advanced microscopy in B.
subtilis cells supports the idea that FtsZ treadmilling-de-
pendent lateral associations corral FtsZ polymers at the
nascent septal site and enhance the recruitment of cell
wall synthesis enzymes (69).

THE BUSINESS ENDOF THE DIVISOME

The transenvelope divisome, a cross wall synthesis
machine. Composed of scaffolding proteins, regulatory
factors, and PG synthesis enzymes, transenvelope compo-
nents of the divisome play an essential and direct role in
cross wall synthesis. Despite being commonly referred to
as “late” proteins, transenvelope divisome components
assemble in concert with cytoplasmic components,
guided in part via interactions with FtsA (138–140). The
late protein moniker is historical, stemming from
genetic-hierarchy findings (12). Like those of FtsZ, the
levels of transenvelope proteins are largely unchanged
throughout the cell cycle, their absolute numbers increas-
ing but concentration remaining unaffected as the cell
grows (73, 75). Analysis of a fluorescent FtsZ fusion

protein indicates that division initiates when FtsZ, and
likely other cell division proteins, reaches threshold num-
bers at the nascent septal site, prompting a conforma-
tional change that stimulates PG synthesis at midcell
(141). Below, we describe the function of individual
essential components of the septal ring, for simplicity
tackling them according to their hierarchy of assembly as
established by genetic analysis (FtsK, FtsQ, FtsL, FtsB,
FtsW,, FtsI,, and FtsN) (Fig. 2B).

Cellular roles of transenvelope divisome components.
(i) FtsK. A four-pass transmembrane protein whose C-
terminal domain shares homology with proteins
involved in chromosome partitioning, FtsK, a DNA
translocase, corrects aberrant division across unsegre-
gated chromosomal material by “pumping” DNA away
from the invaginating septum (142–144). The chromo-
some partitioning domain is dispensable for E. coli
growth (145, 146), arguing against a major role for
FtsK as a checkpoint linking division and chromosome
segregation. Instead, the essentiality of FtsK appears to
lie in its ability to recruit other transenvelope proteins,
particularly the FtsQLB complex.

(ii) FtsQLB. The widely conserved bitopic membrane
proteins, FtsQ, FtsL, and FtsB, play an important struc-
tural role in transenvelope assembly of the divisome
(147–153). FtsQ contains a large periplasmic domain
required for recruitment of FtsL and FtsB, and the three
proteins localize as a FtsQLB complex to midcell (154,
155). FtsQ is considered to interact with multiple divi-
sion proteins, including FtsN, the last protein in the ge-
netically defined pathway (149, 156). FtsL and FtsB
interact with each other through periplasmic leucine-
zipper motifs and are critical for recruitment of PG syn-
thesis enzymes FtsW and FtsI (PBP3), in addition to
FtsN (157). Genetic data suggest that beyond its role as
a scaffold for transenvelope protein assembly, FtsQLB
promotes septal PG synthesis following recruitment of
threshold levels of FtsN (151–153).

(iii) FtsW and FtsI. Together, FtsW and FtsI mediate
synthesis of the PG cross wall. A 10-pass transmembrane
protein, FtsW is a monofunctional transglycosylase re-
sponsible for covalently linking N-acetylglucosamine and
N-acetylmuramic acid molecules that make up the
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backbone of PG (158–160). Encoded in the same “2-
min” division and cell wall (dcw) region of the chromo-
some as ftsW, ftsI encodes the class B penicillin-binding
protein, PBP3, a monofunctional transpeptidase that cat-
alyzes linkages between the peptide stems of PG subunits
(161). Its name is derived from its nature as a target of
penicillin and other beta-lactam antibiotics; treatment of
E. coli with the PBP3-specific beta-lactam, cephalexin,
inhibits division entirely (162–164).

(iv) FtsN. Last in the genetically derived divisome as-
sembly hierarchy, FtsN consists of a short, N-terminal
cytoplasmic domain (165, 166), a 19-residue periplas-
mic subdomain (E) essential for activation of cross
wall synthesis (167), and a C-terminal SPOR (sporula-
tion related repeat) domain (168). The latter interacts
with so-called “denuded” glycans (G), the product of
cell wall hydrolases that remove the peptide stem
from the glycan backbone as part of PG remodeling
during growth and cell separation (169, 170). Within
the divisome, FtsN interacts not only with its immedi-
ately upstream assembly partner, FtsI, but also with
FtsQ and FtsA, providing a connection between peri-
plasmic, membrane, and cytoplasmic components of
the divisome (171–175). Interaction between FtsA
and FtsN is considered to propagate the signal that
activates division once assembly of the cytokinetic
ring is complete (151, 176). Consistent with a role as a
mediator of divisome integrity and function, ftsN was
first identified as a multicopy suppressor of an ftsA
(Ts) mutant (177). Overexpression of FtsN also sup-
presses conditional alleles of ftsK, ftsQ, and ftsI and
can bypass the requirement for the conditionally
essential division regulator, FtsEX (139, 176)
(Table 1). Although frequently referred to as the “trig-
ger” for division, suggesting a transient but essential
role, FtsN activity is bypassed by gain-of-function
mutations in ftsA, ftsL, ftsB, ftsW, and ftsI, suggesting
a more nuanced role (151–153, 178–180) (Table 1)
(discussed in “Activation of cross wall synthesis and
cell separation”).

Role of FtsA in recruitment of late division proteins.
The last decade of work points to a critical role for FtsA
in bridging the transition between cytoplasmic and
periplasmic components of the divisome. Several hyper-
morphic ftsA alleles bypass the requirement for ZipA,

the best characterized of which is ftsA* (R286W), sug-
gesting that they mimic the physiological role of ZipA
(119, 120). Notably, FtsA* and FtsA*-like mutants are
also able to suppress the requirement for ftsN, ftsK, and
ZapC overexpression-related FtsZ assembly defects
(178, 181, 182). Consistent with accelerated divisome
assembly and activation in ftsA*-bearing cells, they are
;20% shorter than wild-type cells (183). Cytological
and biochemical data suggest that FtsA* and FtsA*-like
proteins form shorter oligomers, which may explain the
basis of the gain of function (115, 120, 184, 185).
Shorter FtsA oligomers expose more sites of interac-
tions with downstream proteins that would normally be
occluded in the longer FtsA polymer. Together, these
data support a model in which ZipA enhances interac-
tions between FtsA and downstream division proteins
by competing for the common FtsA/ZipA-binding site
on the FtsZ CTP and disrupting FtsA polymers into
shorter fragments (111, 120) (Fig. 2C). FtsA and ZipA
interact in an in vivo cross-linking assay, suggesting
that ZipA may also function as a direct modulator of
FtsA activity (186).

ACTIVATION OF THE DIVISOME

Activation of cross wall synthesis and cell separation.
To ensure the production of viable daughter cells, divi-
sion must be coordinated with both DNA replication
and cell growth. As discussed above, part of this coor-
dination is achieved through the Min system and NO
(see “Min, a negative positional regulator” and “The
chromosome as a positional regulator”), through inter-
actions between FtsZ and ter-binding protein MatP
(see “Ter-MatP linkage, a positive positional regula-
tor”), and by the chromosome pumping activity of
FtsK (see “Cellular roles of transenvelope divisome
components”). The mechanisms coordinating division
with cell growth, however, are only now beginning to
emerge. Recent work suggests that two factors—accu-
mulation of division proteins to threshold numbers
within the divisome and related changes in the nature
of interactions between divisome components—under-
lie activation of cross wall synthesis by FtsW and FtsI
(141, 151–153). Activation of FtsW and FtsI, in turn,
shifts PG synthesis from elongation of the cylindrical
wall to cross wall formation by an as-yet-unknown
mechanism (161).
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Interactions between FtsN and FtsQLB are responsible
for the initial activation of FtsW and FtsI. Early in the
cell cycle, the concentration of FtsN, FtsQLB, and other
transenvelope components at the nascent division site is
low, a consequence of reduced numbers of FtsZ poly-
mers at this position (141), their own growth-dependent
accumulation, and limited availability of the FtsN bind-
ing site of FtsA (187). In this state, FtsQLB is structurally
“off,” unable to activate FtsWI-mediated septal PG syn-
thesis. As the cell grows, numbers of FtsQLB, FtsWI, and
FtsN molecules increase within the divisome as their
recruitment is enhanced by ZipA- and FtsEX-mediated
exposure of the FtsN binding site of FtsA (see discussion
of FtsEX in the next section). Increases in their local con-
centration facilitate interaction between the periplasmic
essential subdomain (E) of FtsN and FtsQLB, shifting the
latter to an “on” state (167). Interaction of the cytoplas-
mic N-terminal domain of FtsN with FtsA is thought to
reinforce the FtsQLB “on” state (188). Once on, FtsL
stimulates FtsW and FtsI activity, initiating cross wall syn-
thesis (151–153) (Fig. 2D). This “threshold activation”
model is supported by the reduced cell lengths of ftsA, ftsL,
ftsB, ftsW, and ftsI hypermorphs and cells overexpressing
ftsN (151, 152, 179, 180, 183, 189). Overproduction of the
region containing the FtsN (E) subdomain alone bypasses
the requirement for full-length FtsN for division, further
highlighting the critical nature of this region to cross wall
synthesis (167). Purified Pseudomonas aeruginosa FtsQLB
activates FtsWI-mediated PG synthesis in the presence of
PG precursors, providing additional support for this model
(190). Notably, in this scheme, one can envision the role of
FtsN somewhat akin to a “clamp,” holding the divisome in
the appropriate conformation and thus promoting contin-
ued cell wall synthesis via FtsWI.

Cross wall synthesis is followed by cross wall splitting,
which in turn reinforces FtsN recruitment and activa-
tion of FtsWI (151). Synthesis of new PG at the leading
edge of the septum stimulates splitting of the PG mac-
romolecule, a consequence of cell wall hydrolase (ami-
dase) activity proximal to the OM. As mentioned,
amidases clip peptide stems from the glycan backbone,
facilitating cell separation (161). The strong affinity of
FtsN for the products of amidase activity (denuded gly-
cans [G]) enhances its recruitment to the septum, fur-
ther potentiating the FtsQLB-mediated activation of
FtsWI (Fig. 2D). Accessory SPOR domain-containing
proteins also localize to the midcell (167, 188, 191). Of
these, DedD interacts with the FtsQLB complex and

stimulates FtsWI activity in wild-type cells in parallel
with FtsN (188). DedD becomes essential when FtsN
activity is reduced, suggesting that other SPOR proteins
may play a critical septal PG synthesis role under spe-
cific genetic conditions (188).

FtsEX, the conditionally essential division regulators.
An important modulator of divisome activity, FtsEX local-
izes to midcell dependent on the interaction of FtsE with
FtsZ (192–195). FtsEX contributes to the recruitment of
FtsK and the nonessential amidase activator, EnvC (196).
During division, the role of FtsEX is twofold. FtsX inter-
acts with FtsA, helping expose the FtsA interface, facilitat-
ing assembly of additional division proteins, a function
analogous to that proposed for ZipA (179) (discussed in
“Role of FtsA in recruitment of late division proteins”).
FtsEX also enhances the septal PG feedback cycle indi-
rectly by promoting amidase activity via interactions with
activator EnvC (188, 196). Despite its contribution to im-
portant aspects of division, increases in the osmotic
strength of the medium, the presence of hyperactive ftsA*,
ftsB*, ftsL*, or ftsW* alleles, or the overexpression of FtsN
can bypass the essentiality of FtsEX (179).

CONSTRICTION OF THE DIVISION SEPTUM
ANDCELL SEPARATION

FtsZ, a guiding force. Constriction of the multilayered
Gram-negative septum requires coordinated synthesis
of new cytoplasmic membrane, PG, and OM. As
touched on earlier, cytoplasmic membrane invagination
is largely a consequence of PG material “pushing” it to-
ward the center like the closing of an annular ring
rather than constriction of the Z ring itself (Fig. 3A).
Consistent with this idea, nearly 50 years ago, experi-
ments targeting FtsI (PBP3) demonstrated that PG syn-
thesis is rate limiting for division (164). This finding
was refined by the observation of twisted septa in an
ftsZ GTPase mutant (ftsZ26) with otherwise no changes
to the timing of division or cell growth, pointing to a
role for FtsZ GTP hydrolysis activity in largely guiding
the formation of a symmetrical septum (63) (Fig. 3B).
More recently, quantitative superresolution imaging in
various species buttresses the conclusion that constric-
tion is limited by the rate of septal PG synthesis and is
independent of FtsZ-treadmilling dynamics (57, 68,
197). Most important to the argument in favor of cell
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wall synthesis as the driver of septation is the observa-
tion that FtsZ disassembles from the divisome prior to
the closure of the cytoplasm. This finding suggests that
FtsZ is dispensable, at least in the final stages of division
(198, 199). Notwithstanding, the ability of FtsZ GTP hy-
drolysis-driven polymer dynamics to deform liposomes
and membranes may support a role for “pulling” forces
on the membrane as a signal to initiate early stages of
constriction (133, 200–202).

Coupling of septal PG synthesis to FtsZ treadmilling.
While it is established that FtsZ-treadmilling velocity
is dependent on GTP hydrolysis and directs PG

synthesis enzymes circumferentially across the septum,
precisely how FtsZ treadmilling at the cytoplasmic face of
the membrane controls septal PG synthesis at the periplas-
mic face of the membrane is just beginning to be eluci-
dated (55) (Fig. 3C). Truncated FtsQ and FtsN constructs
bound to supported lipid bilayers exhibit dynamics similar
to those of FtsZ in the presence of both FtsZ and FtsA
(175). Notably, these motions are observed only in associ-
ation with FtsZ (175). On their own, the peptides dis-
played random stop and go motions, suggesting that
FtsQ, FtsN, and associated proteins form transient associ-
ations with treadmilling FtsZ polymers via a “diffusion
and capture” mechanism. While single-molecule analysis
supports such dynamics for FtsN and FtsWI (180),

FIG 3 FtsZ treadmilling drives uniform distribution of cross wall synthases leading to septal PG (sPG) synthesis, constriction, and scission.
(A) Accumulating evidence shows that the “pushing” force of sPG synthesis is the major driver of constriction and has long been known
to be the rate-limiting step. FtsZ membrane anchors FtsA and ZipA are not shown. (B) Super resolution microscopy images of E. coli
FtsZ treadmilling across the septum at different time points is shown (reprinted from reference 55 with permission of the publisher).
Treadmilling is GTP dependent and influences the distribution of septal cross wall synthesis enzymes (reprinted from reference 55 with
permission of the publisher). (C) Cartoon of treadmilling FtsZ polymers guiding sPG synthesis. The polarity of the FtsZ polymer is
shown with growing (1) and shrinking (2) ends. The treadmilling FtsZ polymer is linked (via essential divisomal factors represented as a
green rod) to sPG synthases and can move bidirectionally around the septal plane. The essential septal transglycosylase FtsW and
transpeptidase FtsI are shown in two tracks. The FtsZ track (shown associated via other divisiomal proteins in green) promotes uniform
distribution of the two synthases around the septum (arrow). Independent of FtsZ (shown alone), the enzymatically active synthases
generate new cross wall exhibiting slower directional movements. (D) PG and OM remodeling is coordinated during division. The activity
of the periplasmic amidases (Ami) involved in PG hydrolysis is controlled from the IM by FtsEX-linked activation of the periplasmic
EnvC and from the OM by lipoproteins NlpD-DolP. The Tol-Pal complex spanning the cell envelope layers is energized by the proton
motive force across the IM and plays a major role in constriction. This protein complex coordinates the constriction of the OM with the
restructuring of the PG as well. IM, inner membrane; PG, peptidoglycan; OM, outer membrane.
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fluorescence recovery after photobleaching (FRAP) and
superresolution imaging reveal a spatial separation
between FtsZ and FtsN in cells (203). Such separation
makes it unlikely that a majority of FtsN movement in the
cells is directly affected by FtsZ dynamics.

FtsW and FtsI exist in two states: a population of “fast-
track” molecules coupled to FtsZ-treadmilling dynamics
and a “slow-track” population that exhibits directional
motion independent of FtsZ (180). Strikingly, only the
slow-moving population is sensitive to inhibition of sep-
tal transglycosylase or transpeptidase activities, suggest-
ing that these are active in septal PG synthesis (180). The
model emerging from these experiments is that inactive
FtsWI molecules traverse the septum directionally by end-
tracking with treadmilling FtsZ polymers. While FtsZ sub-
units within the polymer remain stationary, the plus and
minus ends grow and shrink, respectively. End-tracking
thus allows for even distribution of FtsWI synthases at the
division plane. Accordingly, an E. coli ftsZ GTPase mutant
is affected in its ability to evenly distribute septal cell wall
synthases but not in overall PG synthesis activity (55).
Conformational changes in divisome regulators such as
FtsN and FtsQLB lead to a switch in FtsW and FtsI from
an enzymatically inactive state to an active one. This
switch coincides with dissociation of the synthases from a
treadmilling FtsZ polymer to slower directional motions
where the enzymes are actively involved in cross wall as-
sembly and setting the rate of constriction.

PG synthesis and cleavage. Synthesis and cleavage of
septal PG have to be carefully regulated to ensure the
fidelity of the cell envelope during division. Among
the key enzymatic activities responsible for PG synthe-
sis and breakdown are transglycosylation, transpepti-
dation, and the action of hydrolases and glycosylases,
involved in PG cleavage (161). In E. coli, cell wall syn-
thesis is largely segregated into two machines: the divi-
some and the elongasome. Responsible for lateral cell
wall synthesis, the elongasome is scaffolded by the
actin-like protein MreB and encodes its own primary
transglycosylase, RodA, and transpeptidase, PBP2
(161). Both the divisome and elongasome rely on an
overlapping set of proteins to modify and remodel the
cell wall, allowing for insertion of new material and
repair of damaged sections (161). Notably, accumulat-
ing data suggest that the activities of many of these
enzymes are modulated by the external environment

to which they are constantly exposed (204). Below, we
review the major PG synthesis and modification pro-
teins involved in cell division.

(i) Additional septal PG synthesis by PBP1b. While
FtsW and FtsI are essential for septal PG synthesis, the
bifunctional class A penicillin-binding protein, PBP1b, is
thought to fortify their activity (205). Regulated from the
cytoplasmic membrane by FtsW and FtsI and from the OM
by a lipoprotein-periplasmic linkage LpoB-CpoB, PBP1b
carries both transpeptidase and transglycosylase activities
(206). While PBP1b localizes throughout the cell envelope,
it is enriched at the division site (205, 207). Recent evidence
suggests that nonessential SPOR domain-containing pro-
teins, including DedD, stimulate the functionality of PBP1b
(208). Although dispensable under normal laboratory
growth conditions, defects in PBP1b increase sensitivity to
beta-lactam antibiotics in general (209).

(ii) Septal PG hydrolysis by amidases. As touched on
above (“Activation of cross wall synthesis and cell sepa-
ration”), the outer layer of the septal PG is cleaved by a
set of periplasmic amidases, AmiA, AmiB, and AmiC,
in parallel with PG synthesis. The amidases AmiB and
AmiC are recruited to the divisome dependent on the
prior localization of FtsN (210, 211). AmiA is localized
throughout the periplasm during all stages of the cell
cycle (210). Deletion of all three amidases results in
chains of cells attached to one another by septal PG
layers that fail to split and interfere with OM invagina-
tion (212, 213). To prevent discordant PG hydrolytic
activity, the amidases are tightly regulated. AmiA and
AmiB activity is mediated by EnvC on the cytoplasmic
membrane (196, 213, 214) (Fig. 3D). EnvC itself is allos-
terically controlled by ATP-dependent changes in
FtsEX conformation (discussed in “FtsEX, the condi-
tionally essential division regulators”). AmiC, on the
other hand, is activated by the OM proteins NlpD-
YraP/DolP coincident with constriction via the Tol-Pal
system (211) (Fig. 3D) (discussed below).

Invagination of the OM. Spanning the cell envelope,
the Tol-Pal complex coordinates OM invagination with
PG synthesis. Five proteins, TolQ, TolA, and TolR at
the cytoplasmic membrane, TolB in the periplasm, and
the lipoprotein Pal in the OM, link the different layers
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of the cell envelope through protein-protein and pro-
tein-PG interactions (215). Mutants defective in tol-pal
display multiple phenotypes, including chaining, OM
vesiculation, defects in membrane integrity, and a delay
in OM invagination (216). Interactions between Pal and
TolB or Pal and the PG are critical for efficient OM
invagination (217, 218). Prior to division, TolB-Pal
complexes diffuse through the OM, while TolQR and
TolA are associated with the cytoplasmic membrane. In
dividing cells, TolQAR accumulates at the septum and
proton motive force-driven conformational changes in
TolR and TolA promote the association of TolA with
TolB at the OM. Consequently, the OM lipoprotein Pal
is liberated from TolB and interacts with the septal PG
(216, 218). Tol-Pal also functions in activating PG-
remodeling enzymes to complete the processing of
remaining denuded glycan strands at the septum.
Together, Tol-Pal activities help coordinate comple-
tion of septal PG remodeling with the inward folding
of the OM (219) (Fig. 3D).

Disassembly and closing the pore. Once septal PG
synthesis is initiated, constriction proceeds at a relatively
steady pace, taking ;12min in nutrient-rich medium at
37°C (68). As mentioned earlier, the rate of septum clo-
sure is driven primarily by cell wall synthesis but is par-
tially influenced by chromosome segregation; for
instance, matP mutant cells display higher rates of pore
closure (68). The cytoplasm of the two daughter cells is
separated first, potentially by membrane fusion, inward
growth of PG, or a combination of both (198). The OM
is sealed in the final step subsequent to the amidase-
mediated separation of septal PG. The mechanisms gov-
erning these two membrane fusion events are unclear.

The few details we do know about the final stage of division
come from the work conducted by Daley, Söderström, and
colleagues. Combining superresolution microscopy with
FRAP analyses they determined that division proteins dis-
assemble in essentially the reverse order of the genetically
determined assembly hierarchy (13). As discussed earlier
(see “FtsZ, a guiding force”), FtsZ is not required for com-
pletion of constriction as it exits the septum prior to the
sealing of the cytoplasm at a pore diameter of ;250nm
(199). Other division proteins follow with FtsA/ZipA dis-
persing first, followed by FtsQL, FtsI, and finally FtsN.
Strikingly, some FtsN molecules persist at the closed pore,
dependent on the FtsN SPOR domain, suggesting that

dispersal of all FtsN molecules from the closing septum
takes place only when the denuded glycan (G) strands are
completely processed (203). The signal that triggers divi-
some disassembly is unknown. Biophysical (e.g., membrane
curvature) and biochemical properties of the closing septal
pore and/or transient interactions with as-yet-unidentified
protein regulators may affect this process (199). In support
of the latter, ZapB and ZapE are considered to contribute
to disassembly (174, 220).

CONCLUDING REMARKS
The divisome conjures up an image of a single macro-
molecular complex that enables a bacterial cell to build
a midcell septum and divide into two new daughter
cells. However, it is clear that the bacterial divisome is
not a monolith but instead is a multipartite machine
distributed across cellular compartments and mem-
brane layers finely tuned to respond to cytoplasmic and
extracellular stimuli that ensure the spatiotemporal pre-
cision of division.

Since FtsZ was first visualized at the septum in 1991, we
have made tremendous strides toward elucidating the
mechanistic details underlying cell division in E. coli.
Even so, questions remain. These include, but are not
limited to, the spatial architecture of the divisome
through the different stages of division, the contribu-
tion of septal cell wall precursor availability to the tim-
ing and/or rate of division, and the nature of the signals
stimulating cell wall constriction and disassembly of the
division machinery. Further, precise molecular details
of how division is coordinated with the cell cycle and
how different environmental conditions shape these
processes are difficult problems that are currently being
investigated.

Finally, while this chapter has focused on the molecular
mechanisms underlying FtsZ-based division, it would
be amiss on our part not to mention atypical modes of
growth and proliferation exhibited by E. coli variants
such as the “L-forms” that lack PG. The existence of L-
form variants has been known for nearly a century, but
details of how they divide were sparse (221). Pioneering
work from the Errington group have provided some
insights into division mechanisms in these variants,
even in the absence of FtsZ (222). These findings illus-
trate the awe-inspiring evolutionary plasticity present in
bacterial division and emphasize that there is plenty left
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to discover, even in a model organism as richly investi-
gated and understood as E. coli. With the advances in
several techniques, including live-cell single-molecule
imaging, in situ cryotomography, microfluidics, and
whole-genome sequencing, to name a few, it is perhaps
not an exaggeration to state that the versatile toolkit
that is available to understand the mechanistic strategies
of bacterial division is greater than it has ever been
before. The lessons we have learned, and continue to
learn, from E. coli division will therefore remain an
invaluable reference in understanding division in other
species, including in traditionally understudied ones.
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