Another year of schizophrenia research has passed by despite the challenges of the COVID-19 pandemic. A redistributed healthcare system that is skewed towards the needs of managing the pandemic has come at the cost of severe mental illness (Ab et al., 2022). Additionally, the pandemic has led to worse outcomes in persons with psychosis (Fond et al., 2021; González-Blanco et al., 2020; Nemani et al., 2021). The pandemic has also amplified the already existing mental health care disparities across race and culture (Ferrarelli and Keshavan, 2020); Davis et al. (2022) have recently outlined the barriers and potential solutions for equitable care. Despite these challenges, schizophrenia research has evolved over the past year, and we look back at these advances in the field.
1. Prodrome, early intervention, biomarkers, and early psychosis
Advances continue to be made in understanding environmental and neurobiological determinants and mechanisms of transiting from prodromal to manifest psychotic states. Negative (Devoe et al., 2021) and cognitive symptom evaluation through validated instruments aim to supplement the existing ones that are skewed towards identifying positive psychotic symptoms in prodromal states (Strauss et al., 2020). Inflammatory (Kelsven et al., 2020; Perry et al., 2021), neurolinguistic (Bilgrami et al., 2022; Spencer et al., 2021), frontocentral P300 amplitudes, and biochemical assays (erythrocyte sphingomyelin and phosphatidylethanolamine) (Alqarni et al., 2020a, Alqarni et al., 2020b), have shown promise as biomarkers of transition (Park and Miller, 2020; Tang et al., 2020). A decreased global efficiency of the default mode resting activity (Cao et al., 2020), and altered reward processing mediated by the dysfunctional ventromedial prefrontal cortex (Millman et al., 2020) also predict this transition to psychosis.
Despite a growing acknowledgement of the heterogeneous phenotype of at-risk mental states (Malhi et al., 2021), early intervention research in psychosis has gained substantial ground (Woods et al., 2021a). Pharmacological strategies such as omega 3 fatty acids and their role in the prevention of psychosis continue to be elusive (Thompson et al., 2020). However, there are more encouraging reports of the real-world efficacy of psychological and psychosocial interventions (Formica et al., 2020; McGorry et al., 2021). Cognitive training, when applied in high-risk subjects, showed promising results; however, feasibility challenges still remain, indicating an urgent need to engage younger individuals with perhaps a different approach (Friedman-Yakoobian et al., 2020; Glenthøj et al., 2020).
In the coming years integrated biomarkers such as allostatic load combined with functionality assessment may guide transdiagnostic and personalized risk calculators (Puntis et al., 2021) to quantify individualized risks that may aid early intervention and secondary prevention (Oliver et al., 2021; Radua et al., 2021; Worthington et al., 2021).
2. Sleep and behavior
Sleep shares a complex relationship with schizophrenia and therefore it is unsurprising that the sleep deprivation model furthers our understanding of schizophrenia. Electrophysiological and cognitive studies have identified associations between sleep oscillation abnormalities and worsening clinical manifestations of schizophrenia (Castelnovo et al., 2020; Hennig et al., 2020; Kumari and Ettinger, 2020). A shorter duration of sleep is associated with more paranoia and poorer quality of sleep is associated with more hallucinatory experiences (Ferrarelli, 2020); these may also signal transition to psychosis (Clarke et al., 2021). Sleep deprivation produces changes in sensorimotor gating, attention, working memory, executive function, and social cognition. Concerns over the specificity of sleep biomarkers in psychosis do remain. Nevertheless, resetting healthy sleep oscillations (Manoach et al., 2020; Zhang et al., 2020) through cognitive-behavioral therapy (Waters et al., 2020) and neuromodulation (Fröhlich and Lustenberger, 2020) may improve overall treatment outcomes in schizophrenia.
There is a strong need to replicate these observations and derive a clear mechanistic understanding of the relationship between sleep and psychotic manifestations using high-definition electroencephalograms and functional neuroimaging techniques. This will provide a stronger theoretical framework for future treatment studies.
3. Newer agents and treatment optimization
The role of the glutamatergic system in schizophrenia has been receiving increased attention in the past decade and has gained traction in the past few years (Benesh et al., 2020; Egerton et al., 2020; Kelleher et al., 2020; Roberts et al., 2020; Zeppillo et al., 2020). Magnetic resonance spectroscopy studies have elaborated the dysfunction of glutamate and glutathione in psychosis (Sydnor and Roalf, 2020). Glutamatergic modulators including inhibitors of glycine transporter 1, D-amino acid oxidase, and phosphodiesterase, as well as α7 nicotinic acetylcholine receptor agonists are promising avenues based on pre-clinical and early clinical studies (Egerton et al., 2020; Oh and Fan, 2020). Interestingly, targeting glutamatergic agents during prodrome and early psychosis may have definitive advantages over dopaminergic blockage (Chaumette et al., 2020; Tiihonen et al., 2021). Newer agents such as lumateperone – a modulator of dopaminergic, serotonergic, and glutaminergic neurotransmission (Correll et al., 2021) offer hope; while addition of newer agents such as samidorphan to mitigate olanzapine induced weight gain will aid in improved tolerability (Kahn et al., 2021).
Prediction of antipsychotic response in schizophrenia is slowly moving from clinical and socio-demographic towards biological markers such as inflammation and resting state functional connectivity (Enache et al., 2021; Mehta et al., 2021; Mongan et al., 2020; Yang et al., 2021). This is a first step towards identifying disease-biology-based predictive biomarkers that can subsequently help in (a) the early identification and treatment of resistant schizophrenia, (b) treatment planning and resource allocation, and (c) delivering personalized treatments (Kraguljac et al., 2021).
Personalized precision medicine is increasingly relevant with clozapine use, with recent evidence hinting that Asians need roughly half the recommended dose of clozapine since they achieve higher serum clozapine values as compared to Caucasians (de Leon et al., 2020; Suhas et al., 2020).
Recent psychopharmacology research in schizophrenia may have not resulted in substantial increase in the number of effective interventions. However, it has paved a way for optimization strategies of several existing drugs to improve efficacy, tolerability, and safety.
4. In the near future
A consistent issue with schizophrenia research is the lack of uniform outcome and assessment measures. Additionally, a vast majority of randomized controlled trials in schizophrenia exclude patients who do not fit into eligibility criteria due to reasons such as suicidality, tardive dyskinesia, medical comorbidities, and treatment resistance (Taipale et al., 2022). Such patients who represent one in five real-world patients need to be represented in scientific studies for better ecological validity. Future science in schizophrenia should also focus on uniformity of assessment measures evaluating and reporting core outcomes (Campana et al., 2021; Woods et al., 2021b; Zipursky et al., 2020).
Neuroimaging research will stand to gain with larger sample sizes, facilitated by multinational collaborative efforts. The applications of novel imaging techniques such as synaptic vesicle glycoprotein ligands in positron emission tomography imaging to evaluate synaptic dysfunction, neuromelanin magnetic resonance imaging to examine dopamine and neurite orientation dispersion, and density imaging to examine gray matter will soon be put to test (Keshavan et al., 2020).
Artificial intelligence-based data acquisition and ecological momentary assessments provide real-world data that may provide valuable insights into psychosis (Durand et al., 2021; Parrish et al., 2020). Deep learning applications are likely to be increasingly relevant to unravel the neurobiology, understand the transition, prognosticate and practice personalized precision medicine in schizophrenia (Cortes-Briones et al., 2021). Such research is still in its infancy (Haining et al., 2021; Torous and Keshavan, 2021) and yet, is likely to evolve rapidly, signaling an exciting paradigm shift in schizophrenia research.
CRediT authorship contribution statement
SS reviewed the literature and prepared the first draft of the manuscript. UMM supervised SS, identified the themes, and edited the manuscript.
Declaration of competing interest
None of the authors have any conflicts of interest to declare.
Acknowledgments
None.
References
- Ab B., Ha H., P R., S R., A M. Disruptions in care for medicare beneficiaries with severe mental illness during the COVID-19 pandemic. JAMA Netw. Open. 2022;5 doi: 10.1001/jamanetworkopen.2021.45677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alqarni A., Mitchell T.W., McGorry P.D., Nelson B., Markulev C., Yuen H.P., Schäfer M.R., Berger M., Mossaheb N., Schlögelhofer M., Smesny S., Hickie I.B., Berger G.E., Chen E.Y.H., de Haan L., Nieman D.H., Nordentoft M., Riecher-Rössler A., Verma S., Thompson A., Yung A.R., Amminger G.P., Meyer B.J. Comparison of erythrocyte omega-3 index, fatty acids and molecular phospholipid species in people at ultra-high risk of developing psychosis and healthy people. Schizophr. Res. 2020;226:44–51. doi: 10.1016/j.schres.2019.06.020. [DOI] [PubMed] [Google Scholar]
- Alqarni A., Mitchell T.W., McGorry P.D., Nelson B., Markulev C., Yuen H.P., Schäfer M.R., Berger M., Mossaheb N., Schlögelhofer M., Smesny S., Hickie I.B., Berger G.E., Chen E.Y.H., de Haan L., Nieman D.H., Nordentoft M., Riecher-Rössler A., Verma S., Thompson A., Yung A.R., Meyer B.J., Amminger G.P. Supplementation with the omega-3 long chain polyunsaturated fatty acids: changes in the concentrations of omega-3 index, fatty acids and molecular phospholipids of people at ultra high risk of developing psychosis. Schizophr. Res. 2020;226:52–60. doi: 10.1016/j.schres.2019.08.033. Biomarkers in the Attenuated Psychosis Syndrome. [DOI] [PubMed] [Google Scholar]
- Benesh J.L., Mueller T.M., Meador-Woodruff J.H. AMPA receptor subunit localization in schizophrenia anterior cingulate cortex. Schizophr. Res. 2020;S0920–9964(20):30041–30044. doi: 10.1016/j.schres.2020.01.025. [DOI] [PubMed] [Google Scholar]
- Bilgrami Z.R., Sarac C., Srivastava A., Herrera S.N., Azis M., Haas S.S., Shaik R.B., Parvaz M.A., Mittal V.A., Cecchi G., Corcoran C.M. Construct validity for computational linguistic metrics in individuals at clinical risk for psychosis: associations with clinical ratings. Schizophr. Res. 2022 doi: 10.1016/j.schres.2022.01.019. S0920-9964(22)00029–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campana M., Falkai P., Siskind D., Hasan A., Wagner E. Characteristics and definitions of ultra-treatment-resistant schizophrenia - a systematic review and meta-analysis. Schizophr. Res. 2021;228:218–226. doi: 10.1016/j.schres.2020.12.002. [DOI] [PubMed] [Google Scholar]
- Cao H., Chung Y., McEwen S.C., Bearden C.E., Addington J., Goodyear B., Cadenhead K.S., Mirzakhanian H., Cornblatt B.A., Carrión R., Mathalon D.H., McGlashan T.H., Perkins D.O., Belger A., Seidman L.J., Thermenos H., Tsuang M.T., van Erp T.G.M., Walker E.F., Hamann S., Anticevic A., Woods S.W., Cannon T.D. Progressive reconfiguration of resting-state brain networks as psychosis develops: preliminary results from the North American Prodrome Longitudinal Study (NAPLS) consortium. Schizophr. Res. 2020;226:30–37. doi: 10.1016/j.schres.2019.01.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castelnovo A., Zago M., Casetta C., Zangani C., Donati F., Canevini M., Riedner B.A., Tononi G., Ferrarelli F., Sarasso S., D’Agostino A. Slow wave oscillations in schizophrenia first-degree relatives: a confirmatory analysis and feasibility study on slow wave traveling. Schizophr. Res. 2020;221:37–43. doi: 10.1016/j.schres.2020.03.025. Sleep Pathology in Schizophrenia and the Psychosis Spectrum. [DOI] [PubMed] [Google Scholar]
- Chaumette B., Sengupta S.M., Lepage M., Malla A., Iyer S.N., Kebir O., ICAAR study group. Dion P.A., Rouleau G.A., Krebs M.-O., Shah J.L., Joober R. A polymorphism in the glutamate metabotropic receptor 7 is associated with cognitive deficits in the early phases of psychosis. Schizophr. Res. 2020 doi: 10.1016/j.schres.2020.06.019. S0920-9964(20)30371–6. [DOI] [PubMed] [Google Scholar]
- Clarke L., Chisholm K., Cappuccio F.P., Tang N.K.Y., Miller M.A., Elahi F., Thompson A.D. Sleep disturbances and the at risk mental state: a systematic review and meta-analysis. Schizophr. Res. 2021;227:81–91. doi: 10.1016/j.schres.2020.06.027. Tackling Heterogeneity in Clinical High-Risk Syndromes (CHR) [DOI] [PubMed] [Google Scholar]
- Correll C.U., Vanover K.E., Davis R.E., Chen R., Satlin A., Mates S. Safety and tolerability of lumateperone 42 mg: an open-label antipsychotic switch study in outpatients with stable schizophrenia. Schizophr. Res. 2021;228:198–205. doi: 10.1016/j.schres.2020.12.006. [DOI] [PubMed] [Google Scholar]
- Cortes-Briones J.A., Tapia-Rivas N.I., D’Souza D.C., Estevez P.A. Going deep into schizophrenia with artificial intelligence. Schizophr. Res. 2021 doi: 10.1016/j.schres.2021.05.018. [DOI] [PubMed] [Google Scholar]
- Davis B., Anglin D.M., Oluwoye O., Keshavan M. The unfulfilled promise of equitable first episode care for Black-Americans: a way forward. Schizophr. Res. 2022;241:171–173. doi: 10.1016/j.schres.2022.01.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devoe D.J., Lu L., Cannon T.D., Cadenhead K.S., Cornblatt B.A., McGlashan T.H., Perkins D.O., Seidman L.J., Tsuang M.T., Woods S.W., Walker E.F., Mathalon D.H., Bearden C.E., Addington J. Persistent negative symptoms in youth at clinical high risk for psychosis: a longitudinal study. Schizophr. Res. 2021;227:28–37. doi: 10.1016/j.schres.2020.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durand D., Strassnig M.T., Moore R.C., Depp C.A., Ackerman R.A., Pinkham A.E., Harvey P.D. Self-reported social functioning and social cognition in schizophrenia and bipolar disorder: using ecological momentary assessment to identify the origin of bias. Schizophr. Res. 2021;230:17–23. doi: 10.1016/j.schres.2021.02.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egerton A., Grace A.A., Stone J., Bossong M.G., Sand M., McGuire P. Glutamate in schizophrenia: neurodevelopmental perspectives and drug development. Schizophr. Res. 2020;223:59–70. doi: 10.1016/j.schres.2020.09.013. [DOI] [PubMed] [Google Scholar]
- Enache D., Nikkheslat N., Fathalla D., Morgan B.P., Lewis S., Drake R., Deakin B., Walters J., Lawrie S.M., Egerton A., MacCabe J.H., Mondelli V. Peripheral immune markers and antipsychotic non-response in psychosis. Schizophr. Res. 2021;230:1–8. doi: 10.1016/j.schres.2020.12.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrarelli F. Sleep disturbances in schizophrenia and psychosis. Schizophr. Res. 2020;221:1–3. doi: 10.1016/j.schres.2020.05.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrarelli F., Keshavan M.S. The COVID pandemic and the endemic disparities in care across race for psychotic disorders. Schizophr. Res. 2020;223:75–76. doi: 10.1016/j.schres.2020.07.021. Epub 2020 Aug 6 PMID: 32773340. [DOI] [PubMed] [Google Scholar]
- Fond G., Pauly V., Leone M., Llorca P.-M., Orleans V., Loundou A., Lancon C., Auquier P., Baumstarck K., Boyer L. Disparities in intensive care unit admission and mortality among patients with schizophrenia and COVID-19: a national cohort study. Schizophr. Bull. 2021;47:624–634. doi: 10.1093/schbul/sbaa158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Formica M.J.C., Phillips L.J., Hartmann J.A., Yung A.R., Wood S.J., Lin A., Amminger G.P., McGorry P.D., Nelson B. Has improved treatment contributed to the declining rate of transition to psychosis in ultra-high-risk cohorts? Schizophr. Res. 2020;S0920–9964(20):30235–30238. doi: 10.1016/j.schres.2020.04.028. [DOI] [PubMed] [Google Scholar]
- Friedman-Yakoobian M.S., Parrish E.M., Eack S.M., Keshavan M.S. Neurocognitive and social cognitive training for youth at clinical high risk (CHR) for psychosis: a randomized controlled feasibility trial. Schizophr. Res. 2020;S0920–9964(20):30461–30468. doi: 10.1016/j.schres.2020.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fröhlich F., Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: towards the rational design of non-invasive brain stimulation. Schizophr. Res. 2020;221:71–80. doi: 10.1016/j.schres.2020.04.003. Sleep Pathology in Schizophrenia and the Psychosis Spectrum. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenthøj L.B., Mariegaard L.S., Fagerlund B., Jepsen J.R.M., Kristensen T.D., Wenneberg C., Krakauer K., Medalia A., Roberts D.L., Hjorthøj C., Nordentoft M. Cognitive remediation plus standard treatment versus standard treatment alone for individuals at ultra-high risk of developing psychosis: results of the FOCUS randomised clinical trial. Schizophr. Res. 2020;224:151–158. doi: 10.1016/j.schres.2020.08.016. [DOI] [PubMed] [Google Scholar]
- González-Blanco L., Dal Santo F., García-Álvarez L., de la Fuente-Tomás L., Moya Lacasa C., Paniagua G., Sáiz P.A., García-Portilla M.P., Bobes J. COVID-19 lockdown in people with severe mental disorders in Spain: do they have a specific psychological reaction compared with other mental disorders and healthy controls? Schizophr. Res. 2020;223:192–198. doi: 10.1016/j.schres.2020.07.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haining K., Brunner G., Gajwani R., Gross J., Gumley A.I., Lawrie S.M., Schwannauer M., Schultze-Lutter F., Uhlhaas P.J. The relationship between cognitive deficits and impaired short-term functional outcome in clinical high-risk for psychosis participants: a machine learning and modelling approach. Schizophr. Res. 2021;231:24–31. doi: 10.1016/j.schres.2021.02.019. [DOI] [PubMed] [Google Scholar]
- Hennig T., Schlier B., Lincoln T.M. Sleep and psychotic symptoms: an actigraphy and diary study with young adults with low and elevated psychosis proneness. Schizophr. Res. 2020;221:12–19. doi: 10.1016/j.schres.2019.09.012. Sleep Pathology in Schizophrenia and the Psychosis Spectrum. [DOI] [PubMed] [Google Scholar]
- Kahn R.S., Silverman B.L., DiPetrillo L., Graham C., Jiang Y., Yin J., Simmons A., Bhupathi V., Yu B., Yagoda S., Hopkinson C., McDonnell D. A phase 3, multicenter study to assess the 1-year safety and tolerability of a combination of olanzapine and samidorphan in patients with schizophrenia: results from the ENLIGHTEN-2 long-term extension. Schizophr. Res. 2021;232:45–53. doi: 10.1016/j.schres.2021.04.009. [DOI] [PubMed] [Google Scholar]
- Kelleher E., McNamara P., Dunne J., Fitzmaurice B., Heron E.A., Whitty P., Walsh R., Mooney C., Hogan D., Conlon N., Gill M., Vincent A., Doherty C.P., Corvin A. Prevalence of N-Methyl-d-Aspartate Receptor antibody (NMDAR-Ab) encephalitis in patients with first episode psychosis and treatment resistant schizophrenia on clozapine, a population based study. Schizophr. Res. 2020;222:455–461. doi: 10.1016/j.schres.2019.11.023. [DOI] [PubMed] [Google Scholar]
- Kelsven S., de la Fuente-Sandoval C., Achim C.L., Reyes-Madrigal F., Mirzakhanian H., Domingues I., Cadenhead K. Immuno-inflammatory changes across phases of early psychosis: the impact of antipsychotic medication and stage of illness. Schizophr. Res. 2020;226:13–23. doi: 10.1016/j.schres.2020.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keshavan M.S., Collin G., Guimond S., Kelly S., Prasad K.M., Lizano P. Neuroimaging in schizophrenia. Neuroimaging Clin. N. Am. 2020;30:73–83. doi: 10.1016/j.nic.2019.09.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraguljac N.V., McDonald W.M., Widge A.S., Rodriguez C.I., Tohen M., Nemeroff C.B. Neuroimaging biomarkers in schizophrenia. AJP. 2021 doi: 10.1176/appi.ajp.2020.20030340. appi.ajp.2020.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumari V., Ettinger U. Controlled sleep deprivation as an experimental medicine model of schizophrenia: an update. Schizophr. Res. 2020;221:4–11. doi: 10.1016/j.schres.2020.03.064. Sleep Pathology in Schizophrenia and the Psychosis Spectrum. [DOI] [PubMed] [Google Scholar]
- de Leon J., Rajkumar A.P., Kaithi A.R., Schoretsanitis G., Kane J.M., Wang C.-Y., Tang Y.-L., Lin S.-K., Hong K.S., Farooq S., Ng C.H., Ruan C.-J., Andrade C. Do Asian patients require only half of the clozapine dose prescribed for Caucasians? A critical overview. Indian J. Psychol. Med. 2020;42:4. doi: 10.4103/IJPSYM.IJPSYM_379_19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malhi G.S., Bell E., Hamilton A., Morris G. Early intervention for risk syndromes: what are the real risks? Schizophr. Res. 2021;227:4–9. doi: 10.1016/j.schres.2020.04.006. [DOI] [PubMed] [Google Scholar]
- Manoach D.S., Mylonas D., Baxter B. Targeting sleep oscillations to improve memory in schizophrenia. Schizophr. Res. 2020;221:63–70. doi: 10.1016/j.schres.2020.01.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGorry P.D., Mei C., Hartmann J., Yung A.R., Nelson B. Intervention strategies for ultra-high risk for psychosis: progress in delaying the onset and reducing the impact of first-episode psychosis. Schizophr. Res. 2021;228:344–356. doi: 10.1016/j.schres.2020.12.026. [DOI] [PubMed] [Google Scholar]
- Mehta U.M., Ibrahim F.A., Sharma M.S., Venkatasubramanian G., Thirthalli J., Bharath R.D., Bolo N.R., Gangadhar B.N., Keshavan M.S. Resting-state functional connectivity predictors of treatment response in schizophrenia – a systematic review and meta-analysis. Schizophr. Res. 2021;237:153–165. doi: 10.1016/j.schres.2021.09.004. [DOI] [PubMed] [Google Scholar]
- Millman Z.B., Gallagher K., Demro C., Schiffman J., Reeves G.M., Gold J.M., Rakhshan P.J., Fitzgerald J., Andorko N., Redman S., Buchanan R., Rowland L., Waltz J.A. Evidence of reward system dysfunction in youth at clinical high-risk for psychosis from two event-related fMRI paradigms. Schizophr. Res. 2020;226:111–119. doi: 10.1016/j.schres.2019.03.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mongan D., Sabherwal S., Susai S.R., Föcking M., Cannon M., Cotter D.R. Peripheral complement proteins in schizophrenia: a systematic review and meta-analysis of serological studies. Schizophr. Res. 2020;222:58–72. doi: 10.1016/j.schres.2020.05.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemani K., Li C., Olfson M., Blessing E.M., Razavian N., Chen J., Petkova E., Goff D.C. Association of psychiatric disorders with mortality among patients with COVID-19. JAMA Psychiatry. 2021 doi: 10.1001/jamapsychiatry.2020.4442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oh S.J., Fan X. Current understanding on the role of nitric oxide and therapeutic potential of NO supplementation in schizophrenia. Schizophr. Res. 2020;222:23–30. doi: 10.1016/j.schres.2020.05.050. [DOI] [PubMed] [Google Scholar]
- Oliver D., Spada G., Colling C., Broadbent M., Baldwin H., Patel R., Stewart R., Stahl D., Dobson R., McGuire P., Fusar-Poli P. Real-world implementation of precision psychiatry: transdiagnostic risk calculator for the automatic detection of individuals at-risk of psychosis. Schizophr. Res. 2021;227:52–60. doi: 10.1016/j.schres.2020.05.007. Tackling Heterogeneity in Clinical High-Risk Syndromes (CHR) [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park S., Miller B.J. Meta-analysis of cytokine and C-reactive protein levels in high-risk psychosis. Schizophr. Res. 2020;226:5–12. doi: 10.1016/j.schres.2019.03.012. [DOI] [PubMed] [Google Scholar]
- Parrish E.M., Depp C.A., Moore R.C., Harvey P.D., Mikhael T., Holden J., Swendsen J., Granholm E. Emotional determinants of life-space through GPS and ecological momentary assessment in schizophrenia: what gets people out of the house? Schizophr. Res. 2020;224:67–73. doi: 10.1016/j.schres.2020.10.002. [DOI] [PubMed] [Google Scholar]
- Perry B.I., Zammit S., Jones P.B., Khandaker G.M. Childhood inflammatory markers and risks for psychosis and depression at age 24: examination of temporality and specificity of association in a population-based prospective birth cohort. Schizophr. Res. 2021;230:69–76. doi: 10.1016/j.schres.2021.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puntis S., Oliver D., Fusar-Poli P. Third external replication of an individualised transdiagnostic prediction model for the automatic detection of individuals at risk of psychosis using electronic health records. Schizophr. Res. 2021;228:403–409. doi: 10.1016/j.schres.2021.01.005. [DOI] [PubMed] [Google Scholar]
- Radua J., Davies C., Fusar-Poli P. Evaluation of variability in individual response to treatments in the clinical high-risk state for psychosis: a meta-analysis. Schizophr. Res. 2021;227:20–27. doi: 10.1016/j.schres.2020.05.010. [DOI] [PubMed] [Google Scholar]
- Roberts R.C., McCollum L.A., Schoonover K.E., Mabry S.J., Roche J.K., Lahti A.C. Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr. Res. 2020 doi: 10.1016/j.schres.2020.01.016. S0920-9964(20)30032–3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer T.J., Thompson B., Oliver D., Diederen K., Demjaha A., Weinstein S., Morgan S.E., Day F., Valmaggia L., Rutigliano G., De Micheli A., Mota N.B., Fusar-Poli P., McGuire P. Lower speech connectedness linked to incidence of psychosis in people at clinical high risk. Schizophr. Res. 2021;228:493–501. doi: 10.1016/j.schres.2020.09.002. [DOI] [PubMed] [Google Scholar]
- Strauss G.P., Pelletier-Baldelli A., Visser K.F., Walker E.F., Mittal V.A. A review of negative symptom assessment strategies in youth at clinical high-risk for psychosis. Schizophr. Res. 2020;222:104–112. doi: 10.1016/j.schres.2020.04.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suhas S., Kumar V., Damodharan D., Sharma P., Rao N.P., Varambally S., Venkatasubramanian G., Murthy P., Gangadhar B.N. Do Indian patients with schizophrenia need half the recommended clozapine dose to achieve therapeutic serum level? An exploratory study. Schizophr. Res. 2020 doi: 10.1016/j.schres.2020.05.057. [DOI] [PubMed] [Google Scholar]
- Sydnor V.J., Roalf D.R. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione in psychosis: implications for studies of psychosis risk. Schizophr. Res. 2020;226:61–69. doi: 10.1016/j.schres.2020.06.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taipale H., Schneider-Thoma J., Pinzón-Espinosa J., Radua J., Efthimiou O., Vinkers C.H., Mittendorfer-Rutz E., Cardoner N., Pintor L., Tanskanen A., Tomlinson A., Fusar-Poli P., Cipriani A., Vieta E., Leucht S., Tiihonen J., Luykx J.J. Representation and outcomes of individuals with schizophrenia seen in everyday practice who are ineligible for randomized clinical trials. JAMA Psychiatry. 2022 doi: 10.1001/jamapsychiatry.2021.3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang Y., Wang Junjie, Zhang T., Xu L., Qian Z., Cui H., Tang X., Li H., Whitfield-Gabrieli S., Shenton M.E., Seidman L.J., McCarley R.W., Keshavan M.S., Stone W.S., Wang Jijun, Niznikiewicz M.A. P300 as an index of transition to psychosis and of remission: data from a clinical high risk for psychosis study and review of literature. Schizophr. Res. 2020;226:74–83. doi: 10.1016/j.schres.2019.02.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson A.D., Jones H.J., Heron J., Hibbeln J., Sullivan S., Zammit S. Omega-3 and Omega-6 fatty acids and risk of psychotic outcomes in the ALSPAC birth cohort. Schizophr. Res. 2020;224:108–115. doi: 10.1016/j.schres.2020.09.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiihonen J., Koskuvi M., Lähteenvuo M., Trontti K., Ojansuu I., Vaurio O., Cannon T.D., Lönnqvist J., Therman S., Suvisaari J., Cheng L., Tanskanen A., Taipale H., Lehtonen Š., Koistinaho J. Molecular signaling pathways underlying schizophrenia. Schizophr. Res. 2021;232:33–41. doi: 10.1016/j.schres.2021.05.011. [DOI] [PubMed] [Google Scholar]
- Torous J., Keshavan M. Towards precision clinical trials and personalized prevention in CHR with smartphone digital phenotyping and personal sensing tools. Schizophr. Res. 2021;227:61–62. doi: 10.1016/j.schres.2020.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waters F., Chiu V.W., Dragovic M., Ree M. Different patterns of treatment response to Cognitive-Behavioural Therapy for Insomnia (CBT-I) in psychosis. Schizophr. Res. 2020;221:57–62. doi: 10.1016/j.schres.2020.03.054. Sleep Pathology in Schizophrenia and the Psychosis Spectrum. [DOI] [PubMed] [Google Scholar]
- Woods S.W., Bearden C.E., Sabb F.W., Stone W.S., Torous J., Cornblatt B.A., Perkins D.O., Cadenhead K.S., Addington J., Powers A.R., Mathalon D.H., Calkins M.E., Wolf D.H., Corcoran C.M., Horton L.E., Mittal V.A., Schiffman J., Ellman L.M., Strauss G.P., Mamah D., Choi J., Pearlson G.D., Shah J.L., Fusar-Poli P., Arango C., Perez J., Koutsouleris N., Wang J., Kwon J.S., Walsh B.C., McGlashan T.H., Hyman S.E., Gur R.E., Cannon T.D., Kane J.M., Anticevic A. Counterpoint. Early intervention for psychosis risk syndromes: minimizing risk and maximizing benefit. Schizophr. Res. 2021;227:10–17. doi: 10.1016/j.schres.2020.04.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods S.W., Mourgues-Codern C.V., Powers A.R. Commentary. Towards a core outcomes assessment set for clinical high risk. Schizophr. Res. 2021;227:78–80. doi: 10.1016/j.schres.2020.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worthington M.A., Walker E.F., Addington J., Bearden C.E., Cadenhead K.S., Cornblatt B.A., Mathalon D.H., McGlashan T.H., Perkins D.O., Seidman L.J., Tsuang M.T., Woods S.W., Cannon T.D. Incorporating cortisol into the NAPLS2 individualized risk calculator for prediction of psychosis. Schizophr. Res. 2021;227:95–100. doi: 10.1016/j.schres.2020.09.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang K., Longo L., Narita Z., Cascella N., Nucifora F.C., Coughlin J.M., Nestadt G., Sedlak T.W., Mihaljevic M., Wang M., Kenkare A., Nagpal A., Sethi M., Kelly A., Di Carlo P., Kamath V., Faria A., Barker P., Sawa A. A multimodal study of a first episode psychosis cohort: potential markers of antipsychotic treatment resistance. Mol. Psychiatry. 2021;1–8 doi: 10.1038/s41380-021-01331-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeppillo T., Schulmann A., Macciardi F., Hjelm B.E., Föcking M., Sequeira P.A., Guella I., Cotter D., Bunney W.E., Limon A., Vawter M.P. Functional impairment of cortical AMPA receptors in schizophrenia. Schizophr. Res. 2020 doi: 10.1016/j.schres.2020.03.037. S0920–9964(20)30147-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., Quiñones G.M., Ferrarelli F. Sleep spindle and slow wave abnormalities in schizophrenia and other psychotic disorders: recent findings and future directions. Schizophr. Res. 2020;221:29–36. doi: 10.1016/j.schres.2019.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zipursky R.B., Odejayi G., Agid O., Remington G. You say “schizophrenia” and I say “psychosis”: just tell me when I can come off this medication. Schizophr. Res. 2020;225:39–46. doi: 10.1016/j.schres.2020.02.009. [DOI] [PubMed] [Google Scholar]
